Calibrating Highway Safety Manual for Rural Multilane Highways by Considering Fatal and Injury Crashes in Kansas

Syeda Rubaiyat Aziz
Sunanda Dissanayake, PhD, P.E.

2015 Mid-Continent Transportation Research Symposium August 19, 2015

Outline

- Background
- Problem Statement
- Objectives
- Methodology
- Data
- Analysis \& Results
- Acknowledgements

Background

- Highway fatal crashes 32,719 (2013) in US - FHWA
- The number of fatalities increased by 2.5%
- Out of total 140,686 miles in Kansas, 90.7\% rural roads.
- 2013, rural travel accounted for 47.8% of all vehicle miles (60\% for state highways) in Kansas.

2001-2013 Kansas Crash Distribution

Problem Statement

- Highway Safety Manual (2010) provides models and methodologies for prediction of crash frequency and analysis of safety
- Predictive methods in HSM developed based on national trends, statistics or using sample states throughout US.
- Limited use of methodologies.

Objectives

- Calibration of HSM for rural multilane highways considering the Fatal and Injury crashes in Kansas.
- If the HSM methodology fails to predict crashes at rural segments and intersections accurately, new models or safety performance functions (SPFs) will be developed. (not shown in this presentation)

Methodology \& Required Data

The standard HSM calibration

Identify
 Facility
 Type

- Segments
- Intersections
HSM

Predictive
Models

- Safety Performance Functions (SPF)
- Crash Modification Factors (CMF)
- Calibration Factor (C)

Collect Required

Data

- Crash Data
- Road Geometric Data
- Traffic Volume

Select
Locations

- Obtaining Study

Segments/Intersectio
ns

HSM Predictive Methodology

- Safety Performance Function (SPF)
- Crash Modification Factors (CMF)
- Calibration Factor

Safety Performance Function (SPF)

SPFs are regression equations that calculate the dependent variable, predicted crash frequency, based on independent variables.

$$
\mathrm{N}_{\mathrm{spf}}=\mathrm{e}^{[\mathrm{a}+\mathrm{b} \times \ln (\mathrm{AADT})+\ln (\mathrm{L})]}
$$

Where,
$\mathrm{N}_{\text {spf }}=$ Base total expected average crash frequency for
the rural segment,

AADT = AADT on the highway segment,
L = Length of highway segment (miles), and
a, b = regression coefficients.

Crash Modification Factors (CMF)

The SPF is multiplied by CMF for each independent variable.

$$
\mathrm{N}_{\text {Predicted }}=\mathrm{N}_{\text {spf }} *\left(\mathrm{CMF}_{1} * \mathrm{CMF}_{2} * \ldots \ldots \ldots . \mathrm{CMF}_{\mathrm{i}}\right)
$$

Where,
$\mathrm{N}_{\text {Predicted }}=$ Adjusted number of predicted crash frequency,
$\mathrm{N}_{\mathrm{spf}}=$ Total predicted crash frequency under base condition,
$\mathrm{CMF}_{\mathrm{i}}=$ Crash modification factors
A CMF > $1.0 \longrightarrow$ increase in crashes, countermeasure decreases safety

A CMF $<1.0 \longrightarrow$ reduction in crashes, countermeasure increases safety

CMFs for 4D \& 4U

For rural multi-lane highways, five CMFs for 4D segments and five CMFs for 4 U segments

4D		4U	
Variable	Base Condition	Variable	Base Condition
Lane width Right shoulder width	12 feet Median Width	30 feet	Lane width Shoulder width and type
Lighting	Side-slope None	Lighting feet	
Automated	None	Automated	None

$>\mathrm{CMF}=1$ indicates variable at base condition
$>$ Deviation from base condition changes the factor

CMFs from HSM (4D)

Table 11-16. CMF for Collision Types Related to Lane Width $\left(\mathrm{CMF}_{R A}\right)$

	Annual Average Daily Traffic (AADT) (vehicles/day)		
Lane Width	$\mathbf{< 4 0 0}$	$\mathbf{4 0 0}$ to 2000	$\mathbf{> 2 0 0 0}$
9 ft	1.03	$1.03+1.38 \times 10^{-4}(\mathrm{AADT}-400)$	1.25
10 ft	1.01	$1.01+8.75 \times 10^{-5}(\mathrm{AADT}-400)$	1.15
11 ft	1.01	$1.01+1.25 \times 10^{-5}(\mathrm{AADT}-400)$	1.03
12 ft	1.00	$\mathbf{1 . 0 0}$	1.00

Table 11-17. CMF for Right Shoulder Width on Divided Roadway Segments $\left(\mathrm{CMF}_{2 n}\right)$
Average Shoulder Width (ft)

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$ or more
1.18	1.13	1.09	1.04	1.00

Table 11-18. CMFs for Median Width on Divided Roadway Segments without a Median Barrier $\left(\mathrm{CMF}_{3 /<}\right)$

Median Width (ft)	CMF
10	1.04
20	1.02
30	1.00
40	0.99
50	0.97
60	0.96
70	0.96
80	0.95
90	0.94
100	0.94

CMFs from HSM (4U)

Table 11-11. $\mathrm{CMF}_{R A}$ for Collision Types Related to Lane Width

	Average Annual Daily Traffic (AADT) (vehicles per day)		
Lane Width	$<\mathbf{4 0 0}$	$\mathbf{4 0 0}$ to 2000	$\mathbf{> 2 0 0 0}$
9 ft or less	$\mathbf{1 . 0 4}$	$1.04+2.13 \times 10^{-4}(\mathrm{AADT}-\mathbf{4 0 0})$	1.38
10 ft	1.02	$1.02+1.31 \times 10^{-4}(\mathrm{AADT}-400)$	1.23
11 ft	1.01	$1.01+1.88 \times 10^{-5}(\mathrm{AADT}-400)$	1.04
12 ft or more	$\mathbf{1 . 0 0}$	1.00	1.00

Table 11-12. CMF for Collision Types Related to Shoulder Width $\left(\mathrm{CMF}_{\text {WRA }}\right)$

	Annual Average Daily Traffic (AADT) (vehicles per day)		
Shoulder Width	$\mathbf{< 4 0 0}$	$\mathbf{4 0 0}$ to 2000	$>\mathbf{2 0 0 0}$
0 ft	1.10	$1.10+2.5 \times 10^{-4}(\mathrm{AADT}-\mathbf{4 0 0})$	1.50
2 ft	1.07	$1.07+1.43 \times 10^{-4}(\mathrm{AADT}-\mathbf{4 0 0})$	1.30
4 ft	1.02	$1.02+8.125 \times 10^{-5}(\mathrm{AADT}-400)$	1.15
6 ft	1.00	1.00	1.00
8 ft or more	0.98	$0.98-6.875 \times 10^{-5}(\mathrm{AADT}-400)$	0.87

Table 11-13. CMF for Collision Types Related to Shoulder Type and Shoulder Width $\left(\mathrm{CMF}_{\text {TRA }}\right)$

Shoulder Type	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
	1.00	1.00	1.00	1.00	1.00	$\mathbf{1 . 0 0}$	1.00
Gravel	1.00	1.00	1.01	1.01	1.01	$\mathbf{1 . 0 2}$	1.02
Composite	1.00	1.01	1.02	1.02	1.03	$\mathbf{1 . 0 4}$	1.06
Turf	1.00	1.01	1.03	1.04	1.05	$\mathbf{1 . 0 8}$	1.11

Table 11-14. CMF for Sideslope on Undivided Roadway Segments $\left(\mathrm{CMF}_{3 \pi}\right)$

$1: 2$ or Steeper	$1: 3$	$1: 4$	$1: 5$	$1: 6$	$1: 7$ or Flatter
1.18	1.15	1.12	1.09	1.05	1.00

CMF for Presence of Lighting (4D/4U)

$$
\mathrm{CMF}_{\text {lighting }}=1-\left[\left(1-0.72 * \mathrm{P}_{\mathrm{inr}}-0.83 * \mathrm{P}_{\mathrm{pnr}}\right) * \mathrm{P}_{\mathrm{nr}}\right]
$$

Where,

$$
\begin{aligned}
& P_{\text {inr }}=\text { Proportion of nighttime crashes for } \\
& \text { unlighted segments that involve fatality or injury, }
\end{aligned}
$$

$\mathrm{P}_{\mathrm{pnr}}=$ Proportion of nighttime crashes for unlighted segments that involve PDO crashes, and
$\mathrm{P}_{\mathrm{nr}}=$ Proportion of total crashes for unlighted segments that occur at night.
Base Condition $=$ No Lighting $=1.00$

Calibration Factor

Total predicted crashes $=\mathrm{N}_{\mathrm{SPF}} *\left(\mathrm{CMF}_{1} * \mathrm{CMF}_{2} * \mathrm{CMF}_{3} \ldots.\right)$
Calibration factor (C)

$$
\mathrm{C}=\frac{\sum \text { Total observed crashes }}{\sum \text { Total predicted crashes }}
$$

$\mathrm{C}<1 \longrightarrow$ overprediction of crash frequencies. multiplying the factor lowers the predictions to match observed frequencies on average.
C > $1 \longrightarrow$ underprediction of crash frequencies, multiplying the factor increases the predictions to match the observed frequencies.

Data

In order to obtain the SPF, data collected from:

- Highway crash data \longrightarrow Kansas Crash and Analysis Reporting System (KCARS) database
- Geometric properties data \longrightarrow the state’s highway inventory database Control Section Analysis System (CANSYS)
- study duration was determined to be 2011-2013

Required Data \& Their Sources For Rural Four-lane Segments

Data Description

Source

AADT	Control Section Analysis System (CANSYS)
Lane Width	Control Section Analysis System (CANSYS)
Median Width	Control Section Analysis System (CANSYS)
Shoulder Width	Control Section Analysis System (CANSYS)
Side Slope	Control Section Analysis System (CANSYS)
Presence of Lighting	Google Maps
Number of Crashes	KCARS
Presence of Speed Enforcement	Not Applicable for Kansas
Segment locations	Control Section Analysis System (CANSYS)

Segment Selection

- HSM recommends minimum segment length 0.1 mile.
- Segments obtained from CANSYS database identified by beginning and ending of mile post.
- No. of 4D Segments: 283
- No. of 4U Segments: 83

Rural Four-Lane Divided Segments and Crash Location Map

Kansas State UNIVERSITY

Rural Four-Lane Undivided Segments and Crash Location Map

Total Crashes on Segments
= 44 / year

- Beginning of
Segment

Legends:

0
Location of
Crash

Kansas State

Presence of Lighting

Google Maps and Google Earth ${ }^{\circledR}$ used to identify presence of lighting at segments

$\frac{\text { Kansas State }}{\text { UNIVERSITY }}$

Analysis \& Results

Preliminary Crash Analysis

Crash Percentages by Crash Severity Level for Rural Four-lane Highways in Kansas

	Year						
Crash Severity Level	2011		2012		2013		
	Count	Percent	Count	Percent	Count	Percent	
Fatal	27	1.5	21	1.4	17	1.5	
Incapacitating (disabled) Injuries	49	2.7	37	2.4	29	2.5	
Non-incapacitating Injuries	157	8.7	132	8.5	119	9.9	
Possible Injuries	96	5.3	80	5.2	65	5.4	
Property Damage Only	1,479	81.7	1,285	82.5	969	80.7	
Total	1,808	100.0	1,550	100.0	1,199	100.0	

Preliminary Crash Analysis

Crash Severity Level vs Collision Type for Rural Four-lane Highways in Kansas

	2011			2012			2013		
Collision Type	F $(\%)$	I $(\%)$	PDO $(\%)$	F $(\%)$	I $(\%)$	PDO $(\%)$	F $(\%)$	I $(\%)$	PDO $(\%)$
Head-On	20.0	5.4	3.0	20.0	3.9	0.5	23.1	3.0	0.0
Rear End	20.0	45.9	38.1	0.0	46.7	41.6	15.4	50.3	47.3
Angle - Side	55.0	38.4	16.8	70.0	35.6	16.3	61.5	28.4	15.9
Impact									
Sideswipe -		1.6	1.1	0.0	1.7	0.8	0.0	2.0	0.2
Opposite	5.0	1.6							
Direction									
Sideswipe-	0.0	8.1	33.0	10.0	11.7	32.6	0.0	13.2	29.8
Same Direction									
Backed Into	0.0	0.0	1.5	0.0	0.0	1.6	0.0	0.0	0.9
Other	0.0	0.5	6.4	0.0	0.6	5.7	0.0	2.0	5.5
Unknown	0.0	0.0	0.2	0.0	0.0	1.0	0.0	1.0	0.2

Crash Proportion by Lighting Condition over Study Period

Roadway Type	Nighttime Crash Proportions	Kansas Four-lane Highways	HSM Given Default
4 D	$\mathrm{P}_{\mathrm{inr}}$	0.599	0.426
	$\mathrm{P}_{\mathrm{pnr}}$	0.124	0.323
	P_{nr}	0.876	0.677
	$\mathrm{P}_{\mathrm{inr}}$	0.477	0.255
	$\mathrm{P}_{\mathrm{pnr}}$	0.127	0.361
	P_{nr}	0.873	0.639

$\mathrm{P}_{\text {inr }}=$ Proportion of nighttime crashes for unlighted segments that involve fatality or injury, $\mathrm{P}_{\mathrm{pnr}}=$ Proportion of nighttime crashes for unlighted segments that involve PDO crashes, $\mathrm{P}_{\mathrm{nr}}=$ Proportion of total crashes for unlighted segments that occur at night.

Number of Crashes at Segments

Descriptive Statistics for Rural Four-lane Segments

Roadway Type	Description	Average	Minimum	Maximum	Std. Dev.
4D	Length (mile)	1.53	0.1	8.63	1.55
	AADT (2013)	8,000	490	31,000	4657
	Left lane width (ft)	12.06	10.99	20.99	0.59
	Right lane width (ft)	12.06	10.99	20.99	0.59
	Left paved shoulder width (ft)	5.68	0	9.84	1.43
	Right paved shoulder width (ft)	9.35	0	9.84	1.84
	Median width (ft)	30.65	4.92	152.00	15.79
	Number of crashes	9.72	0	98.0	11.90
4U	Length (mile)	0.28	0.1	0.86	0.16
	AADT (2013)	4,114	460	12,600	2919
	Left lane width (ft)	12.45	10.00	22.51	1.33
	Right lane width (ft)	12.45	10.00	22.51	1.33
	Left paved shoulder width (ft)	5.05	0	10.00	4.68
	Right paved shoulder width (ft)	4.83	0	10.00	4.66
	Side Slope	-	1:2	1:6	-
	Number of crashes	1.59	0	11.0	2.14

Calibration Worksheet 4D

1	ID	BEGIN CO MP	$\begin{gathered} \text { END CO } \\ \text { MP } \end{gathered}$	Segement Length (mile)	MED TYPE DESCR	SHOR DESC	AADT SMRY AADT CNT	MED WDTH (feet)	CMF (Median)	SHOR SHLDR WDTH	SHOR SHLDR WDTH (feet)	CMF (Shoulder)	SHLD SHIN SHLDR WDTH	SHLD SHIN SHLDR WDTH (feet)	$\begin{aligned} & \text { LN1R } \\ & \text { LN } \\ & \text { WDTH } \\ & \text { (feet) } \end{aligned}$	CMF (Lane Width)	$\begin{aligned} & \text { LN2R } \\ & \text { LN } \\ & \text { WDTH } \end{aligned}$
2	163	10.357	11.161	0.804) - Depres	zed, (CAC	2275	7.87	1.04	3	9.84	1	1.2	3.94	12.01	1.00	3.66
3	498	6.009	6.93	0.921) - Depres	tuminous	2695	29.86	1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
4	499	6.93	8.097	1.167) - Depres	tuminous	3420	29.86	1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
5	500	8.097	9.067	0.97) - Depress	tuminous	3950		1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
6	513	12.715	13.155	0.44) - Depres	tuminous	2830		1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
7	514	13.155	15.235	2.08) - Depres	ment cor	2830		1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
8	515	15.235	18.273	3.038) - Depres	ment cor	2685		1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
9	516	18.273	22.323	4.05) - Depres	ment cor	2545		1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
10	517	22.323	25.356	3.033) - Depres	ment cor	2420		1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
	Sample Analysis: Segment ID: 499																

Segment Length: 1.167 mile
Median Type: Depressed
Median Width: 29.86 ft
CMF (Median): Using HSM Table 11-18 : 1.00
Shoulder Type: Bituminous
Right Shoulder Width: 9.84 ft
CMF (Shoulder): Using HSM Table 11-17 : 1.00
Lane Width: 12.01 ft
CMF (Lane): Using HSM Table 11-16 : 1.00
Kansas State
Contd....

Calibration Worksheet 4D

4D Segments Calibration Factor Calculation

		雨			No. of Daytime Crashes							
45	483	528	2202	2730	1087	1636	18	185	1433	1636	1901.6	1007.7

Fatal and Injury Crash, $\mathbf{C}_{\mathbf{r}}=\frac{\text { Total Observed Crashes }}{\text { Total Predicted Crashes }}=\frac{528}{1007.7}=\mathbf{0 . 5 2 4}$

Calibration Worksheet 4U

1	ID	BEGIN CO MP	$\begin{array}{\|c} \text { END CO } \\ \mathrm{MP} \end{array}$	Length of segment	$\begin{aligned} & \text { SHOR } \\ & \text { DESC } \end{aligned}$	$\begin{gathered} \text { AADT } \\ 2013 \end{gathered}$	SHLD SHOR FORES LOPE	CMF (Fore slope)	TRA	Shoulde r width (ft)	WRA	CMF (Shoulde r width)	Lane Width (ft)	$\begin{aligned} & \text { CMF } \\ & \text { (RA) } \end{aligned}$	CMF (Lane Width)	$\begin{aligned} & \text { BEG } \\ & \text { LON } \end{aligned}$	$\begin{aligned} & \text { BEG } \\ & \text { LAT } \end{aligned}$	$\begin{aligned} & \text { END } \\ & \text { LON } \end{aligned}$	$\begin{aligned} & \text { END } \\ & \text { LAT } \end{aligned}$
2	78	18.647	18.873	0.226	uminous	2880	6:01	1.05	1	9.84	0.87	0.96	12.01	1	1	-95.24	38.266	-95.238	38.269
3	151	7.666	8.171	0.505	ituminou:	7910	6:01	1.05	1	9.19	0.87	0.96	13.48	1	1	-95.38	37.922	-95.37	37.922
4	152	8.171	8.649	0.478	jurb and	7910	0	1	1	0.00	1.50	1.14	13.48	1	1	-95.37	37.922	-95.362	37.922
5	153	8.649	9.046	0.397	ized, (CAI	7910	6:01	1.05	1	9.84	0.87	0.96	13.48	1	1	-95.36	37.922	-95.354	37.922
6	161	10.004	10.109	0.105	ized, (CAI	4420	6:01	1.05	1	9.84	0.87	0.96	13.48	1	1	-95.34	37.922	-95.335	37.922
7	162	10.109	10.357	0.248	ized, (CAI	4550	6:01	1.05	1	9.84		0.96	13.48	1	1	-95.33	37.922	-95.33	37.922
8	164	11.161	11.415	0.254	ized, (CAI	4550	6:01	1.05	1	9.84		0.96	12.01	1	1	-95.32	37.922	-95.311	37.922
9	168	12.059	12.29	0.231	jurb and	2740	0	1	1	0.00		1.14	12.01	1	1	-95.3	37.922	-95.295	37.922
10	169	12.29	12.56	0.27	ized, (CAI	2740	6:01	1.05	1	9.84		0.96	12.01	1	1	-95.29	37.922	-95.29	37.922
		$\begin{aligned} & \text { Sam } \\ & \text { Segi } \end{aligned}$	ple A ment	nalysi ID: 16															

Segment Length: 0.105 mile
Shoulder Type: Aggregate base stabilized
AADT: 4,420
Side Slope: 1:6
CMF (Side Slope): Using HSM Table 11-14 : 1.05
Shoulder Width: 9.84 ft
CMF (Shoulder): Using HSM Table 11-12 \& 11-13 : 0.96
Lane Width: 13.48 ft
CMF (Lane): Using HSM Table 11-11 : 1.00
Contd....

Calibration Worksheet 4U

No. of Injury Crashes:0
No. of PDO Crashes: 0
Total Crashes: 0
$\mathrm{N}_{\text {spf }}$ (F/I Crash): Using HSM SPF for rural $4 U: \mathrm{N}_{\text {spf }}=\mathrm{e}^{[\mathrm{a}+\mathrm{b} \times \ln (\mathrm{AADT})+\ln (\mathrm{L})]}=0.08$
Predicted F/I Crashes: $\mathrm{N}_{\text {spf }}$ (F/I Crash)*CMF(ln.)*CMF(Sh.)*CMF(Slp.)*CMF(Lt)=0.25

4U Segments Calibration Factor Calculation

0	20	20	112	132	69	63	0	8	55	63	88.28	55.68

Fatal and Injury Crash, $\mathbf{C}_{\mathbf{r}}=\frac{\text { Total Observed Crashes }}{\text { Total Predicted Crashes }}=\frac{20}{55.68}=\mathbf{0 . 3 5 9}$

Conclusion

- $\mathrm{C}=0.524$ (4D), 0.359 (4U) over predicts fatal and injury crashes combined.
- For more accurate prediction, jurisdictionspecific SPFs should be developed.

Applications of HSM Calibration

- Facilitate private, county, state, and federal government agencies to identify possible factors that may influence rural crash occurrence.
- Finally, the calibration will assist in reducing fatalities experienced on rural roadways in Kansas.

Acknowledgements

Kansas Department of Transportation
Dr. Howard Lubliner
Mr. Steven Buckley
Ms Elsit Mandal
Mr. Rex McCommon
Mr. Leif Holliday

Thank You.

