Calibrating Highway Safety Manual for Rural Multilane Highways by Considering Fatal and Injury Crashes in Kansas

Syeda Rubaiyat Aziz Sunanda Dissanayake, PhD, P.E.

2015 Mid-Continent Transportation Research Symposium August 19, 2015

Outline

- Background
- Problem Statement
- Objectives
- Methodology
- Data
- Analysis & Results
- Acknowledgements

Background

- Highway fatal crashes 32,719 (2013) in US FHWA
 - The number of fatalities increased by 2.5%
- Out of total 140,686 miles in Kansas, 90.7% rural roads.
- 2013, rural travel accounted for 47.8% of all vehicle miles (60% for state highways) in Kansas.

2001-2013 Kansas Crash Distribution

Problem Statement

• Highway Safety Manual (2010) provides models and methodologies for prediction of crash frequency and analysis of safety

• Predictive methods in HSM developed based on national trends, statistics or using sample states throughout US.

• Limited use of methodologies.

Objectives

• Calibration of HSM for rural multilane highways considering the Fatal and Injury crashes in Kansas.

• If the HSM methodology fails to predict crashes at rural segments and intersections accurately, new models or safety performance functions (SPFs) will be developed. (not shown in this presentation)

Methodology & Required Data

The standard HSM calibration

Identify Facility Type

- Segments
- Intersections

HSM Predictive Models

- Safety Performance Functions (SPF)
- Crash Modification Factors (CMF)
- Calibration Factor (C)

Collect Required Data

- Crash Data
- Road Geometric Data
- Traffic Volume

Select Locations Obtaining Study Segments/Intersections

Apply HSM Predictive Models

- Obtain SPF
- Obtain CMFs

Compute Calibration Factor

• If over-prediction or underprediction then derive statespecific SPF If Calibration Factor close to 1 then HSM predicts accurate crash situation

HSM Predictive Methodology

- Safety Performance Function (SPF)
- Crash Modification Factors (CMF)
- Calibration Factor

Safety Performance Function (SPF)

SPFs are regression equations that calculate the dependent variable, predicted crash frequency, based on independent variables.

$$N_{spf} = e^{[a + b \times ln(AADT) + ln(L)]}$$

Where,

 N_{spf} = Base total expected average crash frequency for the rural segment,

AADT = AADT on the highway segment,

L = Length of highway segment (miles), and

a, b = regression coefficients.

Crash Modification Factors (CMF)

The SPF is multiplied by CMF for each independent variable.

$$N_{Predicted} = N_{spf} * (CMF_1 * CMF_2 *CMF_i)$$

Where,

 $N_{Predicted}$ = Adjusted number of predicted crash frequency, N_{spf} = Total predicted crash frequency under base condition, CMF_i = Crash modification factors

A CMF > 1.0 ---> increase in crashes, countermeasure decreases safety

A CMF < 1.0 ---> reduction in crashes, countermeasure increases safety

CMFs for 4D & 4U

For rural multi-lane highways, five CMFs for 4D segments and five CMFs for 4U segments

4Γ		4 U		
Variable	Base Condition	Variable	Base Condition	
Lane width Right shoulder width Median Width Lighting Automated Speed Enforcement	12 feet 8 feet 30 feet None None	Lane width Shoulder width and type Side-slope Lighting Automated Speed Enforcement	12 feet 6 feet, paved 1:7 or flatter None None	

- \triangleright CMF = 1 indicates variable at base condition
- > Deviation from base condition changes the factor

CMFs from HSM (4D)

Table 11-16. CMF for Collision Types Related to Lane Width (CMF_{RA})

Lane Width	Annual Average Daily Traffic (AADT) (vehicles/day)					
	< 400	400 to 2000	> 2000			
9 ft	1.03	1.03 + 1.38 × 10 ⁻⁴ (AADT – 400)	1.25			
10 ft	1.01	$1.01 + 8.75 \times 10^{-5} (AADT - 400)$	1.15			
11 ft	1.01	$1.01 + 1.25 \times 10^{-5} (AADT - 400)$	1.03			
12 ft	1.00	1.00	1.00			

Table 11-17. CMF for Right Shoulder Width on Divided Roadway Segments (CMF_{2nd})

Average Shoulder Width (ft)						
0	2	4	6	8 or more		
1.18	1.13	1.09	1.04	1.00		

Table 11-18. CMFs for Median Width on Divided Roadway Segments without a Median Barrier (CMF3nd)

Median Width (ft)	CMF	
10	1.04	
20	1.02	
30	1.00	
40	0.99	
50	0.97	
60	0.96	
70	0.96	
80	0.95	
90	0.94	
100	0.94	

CMFs from HSM (4U)

Table 11-11. CMF_{RA} for Collision Types Related to Lane Width

	Average Annual Daily Traffic (AADT) (vehicles per day)						
Lane Width	< 400	400 to 2000	> 2000				
9 ft or less	1.04	1.04 + 2.13 × 10 ⁻⁴ (AADT - 400)	1.38				
10 ft	1.02	$1.02 + 1.31 \times 10^{-4} (AADT - 400)$	1.23				
11 ft	1.01	$1.01 + 1.88 \times 10^{-5} (AADT - 400)$	1.04				
12 ft or more	1.00	1.00	1.00				

Table 11-12. CMF for Collision Types Related to Shoulder Width (CMF_{WRA})

	Annual Average Daily Traffic (AADT) (vehicles per day)					
Shoulder Width	< 400	400 to 2000	> 2000			
0 ft	1.10	$1.10 + 2.5 \times 10^{-4} (AADT - 400)$	1.50			
2 ft	1.07	$1.07 + 1.43 \times 10^{-4} (AADT - 400)$	1.30			
4 ft	1.02	$1.02 + 8.125 \times 10^{-5} (AADT - 400)$	1.15			
6 ft	1.00	1.00	1.00			
8 ft or more	0.98	$0.98 - 6.875 \times 10^{-5} (AADT - 400)$	0.87			

Table 11-13. CMF for Collision Types Related to Shoulder Type and Shoulder Width (CMF_{TRA})

Shoulder -	Shoulder Width (ft)							
_	0	1	2	3	4	6	8	
Paved	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Gravel	1.00	1.00	1.01	1.01	1.01	1.02	1.02	
Composite	1.00	1.01	1.02	1.02	1.03	1.04	1.06	
Turf	1.00	1.01	1.03	1.04	1.05	1.08	1.11	

Table 11-14. CMF for Sideslope on Undivided Roadway Segments (CMF_{3m})

1:2 or Steeper	1:3	1:4	1:5	1:6	1:7 or Flatter
1.18	1.15	1.12	1.09	1.05	1.00

CMF for Presence of Lighting (4D/4U)

CMF _{lighting} =
$$1 - [(1 - 0.72 * P_{inr} - 0.83 * P_{pnr}) * P_{nr}]$$

Where,

- P_{inr} = Proportion of nighttime crashes for unlighted segments that involve fatality or injury,
- P_{pnr} = Proportion of nighttime crashes for unlighted segments that involve PDO crashes, and
- P_{nr} = Proportion of total crashes for unlighted segments that occur at night.

Base Condition = No Lighting = 1.00

Calibration Factor

Total predicted crashes = N_{SPF} * (CMF₁*CMF₂*CMF₃....) Calibration factor (C)

$$C = \frac{\sum \text{Total observed crashes}}{\sum \text{Total predicted crashes}}$$

C < 1 --> overprediction of crash frequencies. multiplying the factor lowers the predictions to match observed frequencies on average.

C > 1 —>underprediction of crash frequencies, multiplying the factor increases the predictions to match the observed frequencies.

Data

In order to obtain the SPF, data collected from:

- Geometric properties data

 — the state's highway inventory database Control Section Analysis System (CANSYS)
 - study duration was determined to be 2011 2013

Required Data & Their Sources For Rural Four-lane Segments

Data Description	Source
AADT	Control Section Analysis System (CANSYS)
Lane Width	Control Section Analysis System (CANSYS)
Median Width	Control Section Analysis System (CANSYS)
Shoulder Width	Control Section Analysis System (CANSYS)
Side Slope	Control Section Analysis System (CANSYS)
Presence of Lighting	Google Maps
Number of Crashes	KCARS
Presence of Speed Enforcement	Not Applicable for Kansas
Segment locations	Control Section Analysis System (CANSYS)

Segment Selection

• HSM recommends minimum segment length 0.1 mile.

• Segments obtained from CANSYS database identified by beginning and ending of mile post.

• No. of 4D Segments: 283

• No. of 4U Segments: 83

Rural Four-Lane Divided Segments and Crash Location Map

Rural Four-Lane Undivided Segments and Crash Location Map

Total Crashes on Segments = 44 / year

Legends:

End of Segment

Presence of Lighting

Google Maps and Google Earth ® used to identify presence of lighting at segments

Analysis & Results

Preliminary Crash Analysis

Crash Percentages by Crash Severity Level for Rural Four-lane Highways in Kansas

	Year						
Crash Severity Level	2011		2012		2013		
Crash Seventy Level	Count	Percent	Count	Percent	Count	Percent	
Fatal	27	1.5	21	1.4	17	1.5	
Incapacitating (disabled) Injuries	49	2.7	37	2.4	29	2.5	
Non-incapacitating Injuries	157	8.7	132	8.5	119	9.9	
Possible Injuries	96	5.3	80	5.2	65	5.4	
Property Damage Only	1,479	81.7	1,285	82.5	969	80.7	
Total	1,808	100.0	1,550	100.0	1,199	100.0	

Preliminary Crash Analysis

Crash Severity Level vs Collision Type for Rural Four-lane Highways in Kansas

		2011	811 11 4		2012			2013	
Collision Type	F (%)	I (%)	PDO (%)	F (%)	I (%)	PDO (%)	F (%)	I (%)	PDO (%)
Head-On	20.0	5.4	3.0	20.0	3.9	0.5	23.1	3.0	0.0
Rear End	20.0	45.9	38.1	0.0	46.7	41.6	15.4	50.3	47.3
Angle - Side Impact	55.0	38.4	16.8	70.0	35.6	16.3	61.5	28.4	15.9
Sideswipe - Opposite Direction	5.0	1.6	1.1	0.0	1.7	0.8	0.0	2.0	0.2
Sideswipe – Same Direction	0.0	8.1	33.0	10.0	11.7	32.6	0.0	13.2	29.8
Backed Into	0.0	0.0	1.5	0.0	0.0	1.6	0.0	0.0	0.9
Other	0.0	0.5	6.4	0.0	0.6	5.7	0.0	2.0	5.5
Unknown	0.0	0.0	0.2	0.0	0.0	1.0	0.0	1.0	0.2

Crash Proportion by Lighting Condition over Study Period

Roadway Type	Nighttime Crash Proportions	Kansas Four-lane Highways	HSM Given Default
	P_{inr}	0.599	0.426
4D	P_{pnr}	0.124	0.323
	P_{nr}	0.876	0.677
	P_{inr}	0.477	0.255
4U [P_{pnr}	0.127	0.361
	P_{nr}	0.873	0.639

 P_{inr} = Proportion of nighttime crashes for unlighted segments that involve fatality or injury, P_{pnr} = Proportion of nighttime crashes for unlighted segments that involve PDO crashes, P_{nr} = Proportion of total crashes for unlighted segments that occur at night.

Number of Crashes at Segments

Descriptive Statistics for Rural Four-lane Segments

Roadway Type	Description	Average	Minimum	Maximum	Std. Dev.
	Length (mile)	1.53	0.1	8.63	1.55
_	AADT (2013)	8,000	490	31,000	4657
_	Left lane width (ft)	12.06	10.99	20.99	0.59
- 4D	Right lane width (ft)	12.06	10.99	20.99	0.59
4D -	Left paved shoulder width (ft)	5.68	0	9.84	1.43
_	Right paved shoulder width (ft)	9.35	0	9.84	1.84
_	Median width (ft)	30.65	4.92	152.00	15.79
_	Number of crashes	9.72	0	98.0	11.90
	Length (mile)	0.28	0.1	0.86	0.16
	AADT (2013)	4,114	460	12,600	2919
	Left lane width (ft)	12.45	10.00	22.51	1.33
411	Right lane width (ft)	12.45	10.00	22.51	1.33
4U -	Left paved shoulder width (ft)	5.05	0	10.00	4.68
	Right paved shoulder width (ft)	4.83	0	10.00	4.66
	Side Slope	-	1:2	1:6	-
	Number of crashes	1.59	0	11.0	2.14
				KANICAC ST	PATE

KANSAS STATE

Calibration Worksheet 4D

1	ID	BEGIN CO MP	END CO MP	Segement Length (mile)	MED TYPE DESCR	SHOR DESC	AADT SMRY AADT CNT	MED WDTH (feet)	CMF (Median)	SHOR SHLDR WDTH	SHOR SHLDR WDTH (feet)	CMF (Shoulder)	SHLD SHIN SHLDR WDTH	SHLD SHIN SHLDR WDTH (feet)	LN1R LN WDTH (feet)	CMF (Lane Width)	LN2R LN WDTH
2	163	10.357	11.161	0.804) - Depress	ilized, (CAC	2275	7.87	1.04	3	9.84	1	1.2	3.94	12.01	1.00	3.66
3	498	6.009	6.93	0.921) - Depress	Bituminous	2695	29.86	1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
4	499	6.93	8.097	1.167) - Depress	Bituminous	3420	29.86	1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
5	500	8.097	9.067	0.97) - Depress	Bituminous	3950		1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
6	513	12.715	13.155	0.44) - Depress	Bituminous	2830	,	1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
7	514	13.155	15.235	2.08) - Depress	cement cor	2830	, i	1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
8	515	15.235	18.273	3.038) - Depress	cement cor	2685	, i	1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
9	516	18.273	22.323	4.05) - Depress	cement cor	2545		1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66
10	517	22.323	25.356	3.033) - Depress	cement cor	2420	-	1.00	3	9.84	1	1.8	5.91	12.01	1.00	3.66

Sample Analysis:

Segment ID: 499

Segment Length: 1.167 mile

Median Type: Depressed

Median Width: 29.86 ft

CMF (Median): Using HSM Table 11-18: 1.00

Shoulder Type: Bituminous Right Shoulder Width: 9.84 ft

CMF (Shoulder): Using HSM Table 11-17: 1.00

Lane Width: 12.01 ft

CMF (Lane): *Using HSM Table 11-16*: 1.00

Contd....

Calibration Worksheet 4D

1	LANE LN2R LN WDTH (feet)	Presence of Lighting	CMF (Lighting)	No. of Fatal Crash	No. of Injury Crash	No. of Property Damage Crash	Total (F+I+PO)	No. of Daytime Crashes	No. of Nighttime Crashes	Night time Fatal Crash	Night time Injury Crash	Night time PDO Crash	N (spf) [Total Crash]	AADT 2013	N (spf) [Fatal/Injur y Crash]	Predicted Total Crashes	Predicted Fatal/Injury Crashes
2	12.01	n	1.00	0	1	5	6	3	3	0	0	3	0.665	4550	0.373	2.08	1.16
3	12.01	n	1.00	0	1	6	7	5	2	0	0	2	0.910	5390	0.503	2.73	1.51
4	12.01	n	1.00	0	0	5	5	1	4	0	0	4	1.481	6840	0.800	4.44	2.40
5	12.01	n	1.00	0	2	4	6	1	5	0	2	3	1.432	7900	0.764	4.30	2.29
6	12.01	n	1.00	0	0	7	7	0	7	C		7	0.458	5660	0.252	1.37	0.75
7	12.01	n	1.00	0	0	13	13	3	10	a		10	2.164	5660	1.190	6.49	3.57
8	12.01	n	1.00	0	3	20	23	8	15	a		14	2.991	5370	1.652	8.97	4.96
9	12.01	n	1.00	0	2	18	20	13	7	a		7	3.770	5090	2.092	11.31	6.28
10	12.01	n	1.00	0	0	12	12	8	4	a		4	2.678	4840	1.493	8.03	4.48
175	77777																

Presence of Lighting: No

CMF (Lighting): 1.00

No. of Fatal Crashes: 0

No. of Injury Crashes:0

No. of PDO Crashes: 5

Total Crashes: 5

AADT: 6,840

 N_{spf} (F/I Crash): Using HSM SPF for rural 4D: $N_{spf} = e^{[a+b \times ln(AADT) + ln (L)]} = 0.80$

Predicted F/I Crashes: N_{spf} (F/I Crash)*CMF(ln.)*CMF(Sh.)*CMF(Md.)*CMF(Lt)=2.4

4D Segments Calibration Factor Calculation

No. of Fatal Crashes	No. of Injury Crashes	Total (Fatal / Injury) Crashes	No. of Property Damage Crashes	Total (Fatal + Injury + Personal Damage Only)	No. of Daytime Crashes	No. of Nighttime Crashes	Nighttime Fatal Crash	Nighttime Injury Crash	Nighttime PDO Crash	No. of Total Nighttime Crashes	Predicted Total Crashes	Predicted Fatal / Injury Crashes
45	483	528	2202	2730	1087	1636	18	185	1433	1636	1901.6	1007.7

Fatal and Injury Crash,
$$C_r = \frac{\text{Total Observed Crashes}}{\text{Total Predicted Crashes}} = \frac{528}{1007.7} = 0.524$$

Calibration Worksheet 4U

1	ID	BEGIN CO MP	END CO MP	Length of segment	SHOR DESC	AADT 2013	SHLD SHOR FORES LOPE	CMF (Fore slope)	TRA	Shoulde r width (ft)	WRA	CMF (Shoulde r width)	Lane Width (ft)	CMF (RA)	CMF (Lane Width)	BEG LON	BEG LAT	END LON	END LAT
2	78	18.647	18.873	0.226	uminous	2880	6:01	1.05	1	9.84	0.87	0.96	12.01	1	1	-95.24	38.266	-95.238	38.269
3	151	7.666	8.171	0.505	ituminous	7910	6:01	1.05	1	9.19	0.87	0.96	13.48	1	1	-95.38	37.922	-95.37	37.922
4	152	8.171	8.649	0.478	Curb and (7910	0	1	1	0.00	1.50	1.14	13.48	1	1	-95.37	37.922	-95.362	37.922
5	153	8.649	9.046	0.397	ized, (CA	7910	6:01	1.05	1	9.84	0.87	0.96	13.48	1	1	-95.36	37.922	-95.354	37.922
6	161	10.004	10.109	0.105	ized, (CA	4420	6:01	1.05	1	9.84	0.87	0.96	13.48	1	1	-95.34	37.922	-95.335	37.922
7	162	10.109	10.357	0.248	ized, (CA	4550	6:01	1.05	1	9.84		0.96	13.48	1	1	-95.33	37.922	-95.33	37.922
8	164	11.161	11.415	0.254	ized, (CA	4550	6:01	1.05	1	9.84		0.96	12.01	1	1	-95.32	37.922	-95.311	37.922
9	168	12.059	12.29	0.231	Curb and (2740	0	1	1	0.00		1.14	12.01	1	1	-95.3	37.922	-95.295	37.922
10	169	12.29	12.56	0.27	ized, (CA	2740	6:01	1.05	1	9.84		0.96	12.01	1	1	-95.29	37.922	-95.29	37.922

Sample Analysis:

Segment ID: 161

Segment Length: 0.105 mile

Shoulder Type: Aggregate base stabilized

AADT: 4,420

Side Slope: 1:6

CMF (Side Slope): *Using HSM Table 11-14*: 1.05

Shoulder Width: 9.84 ft

CMF (Shoulder): *Using HSM Table 11-12 & 11-13*: 0.96

Lane Width: 13.48 ft

CMF (Lane): *Using HSM Table 11-11*: 1.00

Contd....

Calibration Worksheet 4U

1	Presence of Lighting	CMF (lighting)	No. of Fatal Crash		No. of Property Damage Crash		No. of Daytime Crashes	No. of Nighttime Crashes	Night time Fatal Crash	Night time Injury Crash	Night time PDO Crash	No. of Nighttime Crashes	N (spf) [Total Crash]	N (spf) [Fatal/Injury Crash]	Predicted Total Crashes	Predicted Fatal/Injury Crashes
2	у	0.912197	0	0	0	0	0	0	0	0	0	0	0.17	0.11	0.47	0.31
3	У	0.912197	0	1	10	11	5	6	0	0	6	6	1.25	0.76	3.45	2.11
4	у	0.912197	0	0	1	_ 1	0	1	0	0	1	1	1.18	0.72	3.66	2.24
5	n	1	0	0	2	2	0	2	0	0	2	2	0.98	0.60	2.98	1.82
6	n	1	0	0	0	0	0	0	0	0	0	0	0.13	0.08	0.40	0.25
7	n	1	0	0	0	0	0	0	0		0	0	0.32	0.20	0.97	0.62
8	n	1	0	0	0	0	0	0	0		0	0	0.33	0.21	0.99	0.64
9	n	1	0	1	0	1	0	1	0		0	1	0.16	0.11	0.56	0.37
10	n	1	0	0	1	1	1	0	0		0	0	0.19	0.13	0.58	0.39
20																

Presence of Lighting: No

CMF (Lighting): 1.00

No. of Fatal Crashes: 0

No. of Injury Crashes:0

No. of PDO Crashes: 0

Total Crashes: 0

 N_{spf} (F/I Crash): Using HSM SPF for rural 4U: $N_{spf} = e^{[a+b \times ln(AADT) + ln (L)]} = 0.08$

Predicted F/I Crashes: N_{spf} (F/I Crash)*CMF(ln.)*CMF(Sh.)*CMF(Slp.)*CMF(Lt)=0.25

4U Segments Calibration Factor Calculation

No. of Fatal Crash	No. of Injury Crashes	Total (Fatal / Injury) Crashes	No. of Property Damage Crashes	Total (Fatal + Injury + PDO Crashes	No. of Daytime Crashes	No. of Nighttime Crashes	Nighttime Fatal Crashes	Nighttime Injury Crashes	Nighttime PDO Crashes	No. of Total Nighttime Crashes	Predicted Total Crashes	Predicted Fatal / Injury Crashes
0	20	20	112	132	69	63	0	8	55	63	88.28	55.68

Fatal and Injury Crash,
$$C_r = \frac{\text{Total Observed Crashes}}{\text{Total Predicted Crashes}} = \frac{20}{55.68} = 0.359$$

Conclusion

• C= 0.524 (4D), 0.359 (4U) over predicts fatal and injury crashes combined.

• For more accurate prediction, jurisdictionspecific SPFs should be developed.

Applications of HSM Calibration

- Facilitate private, county, state, and federal government agencies to identify possible factors that may influence rural crash occurrence.
- Finally, the calibration will assist in reducing fatalities experienced on rural roadways in Kansas.

Acknowledgements

Kansas Department of Transportation

Dr. Howard Lubliner

Mr. Steven Buckley

Ms Elsit Mandal

Mr. Rex McCommon

Mr. Leif Holliday

Thank You.

