RURAL EXPRESSWAY INTERSECTION SAFETY TOOLBOX DESKTOP REFERENCE **June 17, 2011** IOWA STATE UNIVERSITY Institute for Transportation # RURAL EXPRESSWAY INTERSECTION SAFETY TOOLBOX DESKTOP REFERENCE June 17, 2011 Joshua L. Hochstein Chris Albrecht Reginald R. Souleyrette ## **TABLE OF CONTENTS** | Disclaimer & Background | 4 | |--|----| | Definitions | | | Treatment List | 6 | | Summary Charts | 7 | | Category A: Improve Management of Access | 10 | | Category B: Choose Appropriate Intersection Traffic Control | 14 | | Category C: Reduce Conflict Points Through Geometric Design Improvements | 17 | | Category D: Improve Intersection Sight Distance | 25 | | Category E: Assist Minor Road Drivers in Judging/Identifying Gaps | 33 | | Category F: Assist Minor Road Drivers in Expressway Merging | 37 | | Category G: Positive Guidance Promoting Two-Stage Gap Selection | 40 | | Category H: Improve Intersection Recognition (Driver Awareness) | 44 | | Category I: Reduce Expressway Operating Speeds | 55 | | References | 58 | ## **Disclaimer & Background** - This document is intended to be a guide for planning-level decisions concerning safety issues and subsequent potential improvements at rural expressway intersections. It is NOT a design guide. It simply presents the gamut of safety treatment options and available strategies that have been employed in an attempt to reduce the number and severity of collisions at unsignalized rural expressway intersections. - This document should only be used as a tool for considering safety treatment options at rural expressway intersections. It is meant to aid transportation agency management in selecting the most appropriate rural expressway treatment to address the particular safety issue they are facing. - This document is a quick reference companion to the "Rural Expressway Intersection Safety Toolbox".¹ More details on each strategy can be found within the contents of that document. - Treatment strategies have been categorized within 9 emphasis areas (A through I) similar to those within NCHRP 500, Volume 5 ²; however, the focus here is directly on unsignalized rural expressway intersections rather than unsignalized intersections in general. Some strategies may qualify for multiple categories, but have been placed in the category judged to be the most applicable. ### **Definitions** #### Effectiveness The effectiveness of the various strategies have been rated as either proven, tried, or experimental based on the NCHRP 500 Series² definitions given below: - Proven (P) = Strategies used in multiple locations for which properly designed safety evaluations have been conducted showing the treatment to be effective. These strategies may be employed with a good degree of confidence, but with the understanding that any application may lead to results that vary significantly from those found in previous evaluations. - Tried (T) = Strategies implemented at a number of locations and may even be accepted as standard practice, but for which there have NOT been found valid safety evaluations. While there can be some degree of assurance that implementation will not likely have a negative impact on safety, these strategies should be applied with caution. Users should carefully consider the "concerns addressed" and the "potential application" attributes and relate them to the specific site conditions for which they are being considered. - Experimental (E) = Strategies that have been suggested and at least one agency has tried on a small scale in at least one location. These strategies should only be considered after others have been determined to be inappropriate or unfeasible. Their implementation should initially occur using a very controlled and limited pilot study including a properly designed evaluation component. #### Cost Project costs will vary considerably and are affected by local conditions. Costs have been rated on a four-point scale of *low, moderate, high, and extreme*. Specific dollar value ranges are not associated with these rankings. They are a general scale meant to reflect costs relative to the other treatments. #### Time Treatment implementation timeframes will also vary based on numerous factors. The three-point timeframe scale of **short** (< 1 **Year**), **medium** (1-2 **Years**), **and long** (> 2 **Years**) is provided as a general guide to reflect project timelines relative to the other treatments. ## **Treatment List** | Al: Convert Single Al-Grade Intersection to Interchange Al: Convert Single Al-Grade Intersection to All-Way Stop Control Bl: Convert Expressway Lett/Right-Turn Deceleration Lanes Cl: Provide or Lengthen Expressway Lett/Right-Turn Deceleration Lanes Cl: Convert to U-Turn Intersection TRIED LOW SHORT DI-Turn Intersection TRIED LOW SHORT Cl: Convert to U-Turn Intersection TRIED LOW SHORT DI-Turn DI | TREATMENT | EFFECTIVENESS | COST | TIME | |--|---|---|---|---| | A2. Convert Single At-Grade Intersection to Interchange B1. Convert Intersection to All-Way Stop Control B1. Convert Intersection to All-Way Stop Control B2. Provide Signalization Signaliz | | | | | | A3: Convert Expressway Corridor to Freeway B1: Convert Intersection to All-Way Stop Control B2: Provide Signalization C1: Provide or Lengthen Expressway Left/Right-Turn Deceleration Lanes TRIED C2: Closs Medical Crossovers (Right-Int, Right-Out Access Only) TRIED C3: Convert to U-Turn Intersection C4: Provide or Lengthen Expressway Left/Right-Turn Deceleration Lanes C5: Convert to U-Turn Intersection C5: Convert to U-Turn Intersection C6: Convert to U-Turn Intersection C6: Convert to U-Turn Intersection C7: Intersecti | · | | | | | Bit Convert Intersection to All-Way Stop Control 2: Provide Signalization TRIED MODERATE MEDIUM CC: Provide Signalization TRIED MODERATE MEDIUM CC: Provide Signalization TRIED MODERATE MEDIUM CC: Convert to Lirum Intersection TRIED MODERATE MEDIUM CC: Convert to Offset Tried Intersection TRIED MODERATE MEDIUM CC: Convert to Offset Tried Intersection TRIED MODERATE MEDIUM CC: Convert to Offset Tried Intersection TRIED DXTREME LOW SHORT D2: Move Minor Road Median Stop/Yield Bars Closer to Expressway &/or Provide Dotted Edge Line Extensions TRIED DX W SHORT D3: Provide Offset Left-Turn Lanes TRIED MODERATE MEDIUM D4: Provide Offset Right-Turn Channekization D5: Readign Intersection Approaches to Reduce or Elliminate Skew PROVEN D6: Realign Intersection Approaches to Reduce or Elliminate Skew PROVEN
D7: Modify Horizontal/Vertical Alignment of Expressway Approaches TRIED DXTREME LONG SHORT DXTREME LONG SHORT DXTREME LONG SHORT DXTR | | | | | | RE: Provide Signalization C1: Provide or Lengthen Expressway Left/Right-Turn Deceleration Lanes C2: Close Median Crossovers (Right-In, Right-Out Access Only) TRIED MODERATE MEDIUM C3: Convert to D-Turn Intersection TRIED MODERATE MEDIUM C5: Convert to D-Turn Intersection TRIED MODERATE MEDIUM C5: Convert to D-Turn Intersection (ITI) C5: Convert to D-Turn Intersection (ITI) C6: Convert to Offset T-Intersection (ITI) C7: Convert to D-Turn Intersection (ITI) C7: Convert to D-Turn Intersection TRIED MODERATE MEDIUM C7: Convert to One-Quadrant Interchange TRIED DXTREME LONG D1: Provide Clear Sight Triangles from Stop Controlled Approaches & the Median D2: Move Minor Road/Median stopy/feld Bars Closer to Expressway & for Provide Dotted Edge Line Extensions TRIED LOW SHORT D3: Provide Offset Right-Turn Lanes TRIED MODERATE MEDIUM D6: Realign Intersection Approaches to Reduce or Bliminate Skew TRIED D6: Realign Intersection Approaches to Reduce or Bliminate Skew TRIED DXTREME TONG D7: Realign Intersection Approaches to Reduce or Bliminate Skew TRIED DXTREME TONG TRIED TONG DXTREME | | | | | | Ci: Provide or Lengthen Expressway Left/Right-Turn Deceleration Lanes C2: Close Median Crossovers (Right-In, Right-Out Access Only) C3: Close Median Crossovers (Right-In, Right-Out Access Only) C4: Convert to U-Turn Intersection C5: Convert to U-Turn Intersection (IT) C6: Convert to U-Turn Intersection (IT) C6: Convert to Office T-Intersection (IT) C6: Convert to Office T-Intersection (IT) C6: Convert to Office T-Intersection (IT) C7: Convert to Office T-Intersection C7: Convert to Office T-Intersection C7: Convert to Office T-Intersection C8: Convert to Office T-Intersection C9: Move Minor Road/Median Stop/Field Bars Closer to Expressway &/or Provide Detted Edge Line Extensions D2: Move Minor Road/Median Stop/Field Bars Closer to Expressway &/or Provide Otted Edge Line Extensions D3: Provide Office Left-Turn Lanes D4: Provide Office Left-Turn Lanes D6: Realign Intersection Agight-Turn Lanes D6: Realign Intersection Agight-Turn Channelization D6: Realign Intersection Agight-Turn Channelization D6: Realign Intersection Agight-Turn Channelization D7: Modify Horizontal/Vertical Alignment of Expressway Approaches D7: Realign Intersection Decision Support (IOS) Technology (Minosout DOT System) E1: Intersection Decision Support (IOS) Technology (Minosout DOT System) E2: Intersection Decision Support (IOS) Technology (Minosout DOT System) E3: Intersection Decision Support (IOS) Technology (Minosout DOT System) E3: Intersection Decision Support (IOS) Technology (Minosout DOT System) E3: Intersection Decision Support (IOS) Technology (Minosout DOT System) E3: Intersection Decision Support (IOS) Technology (Minosout DOT System) E4: Intersection Decision Support (IOS) Technology (Minosout DOT System) E5: Intersection Decision Support (IOS) Technology (Minosout DOT System) E6: Intersection Decision Support (IOS) Technology (Minosout DOT System) E6: Intersection Decision Support (IOS) Technology (Minosout DOT System) E7: Intersection Decision Support (IOS) Technology (Minosout DOT System) E | | | | | | C2: Grovent to U-turn Intersection C3: Gonvent to U-turn Intersection C4: Provide Directional Mediand Opening TRIED LOW SHORT C5: Convent to D-turn Intersection (JTI) C5: Convent to D-turn Intersection (JTI) C6: Convent to D-turn Intersection (JTI) C7: Convent to D-quadrant Interchange LOW SHORT C7: Convent to One-Quadrant Interc | | | | | | CS: Convert to U-Turn Intersection CS: Convert to U-Turn Intersection (TI) Redesign Intersection (TI) CS: Redesign Intersection (Approaches to Reduce or Elliminate Skew PROVEN TRIED MODERATE MEDIUM DS: Redesign Intersection (Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM DS: Redesign Intersection (Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM DS: Redesign Intersection (Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM DS: Redesign Intersection (Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM DS: Redesign Intersection (Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM DS: Redesign Intersection (Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM DS: Redesign Intersection (Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM HIGH MEDIUM TRIED LOW SHORT HIGH MEDIUM HIGH MEDIUM TRIED LOW SHORT HIGH MEDIUM TRIED LOW SHORT HIGH MEDIUM HIGH MEDIUM HIGH MEDIUM TRIED LOW SHORT HIGH MEDIUM HIGH MED | | | | | | C4: Provide Directional Median Opening C5: Convert to 1-Turn Intersection (TII) C6: Convert to 1-Turn Intersection (TII) C7: Convert to 1-Turn Intersection (TII) C7: Convert to 10-fiser 1-Intersection | | | | | | CS: Convert to J-Turn Intersection (TIT) C6: Convert to Offset T-Intersection C7: Convert to Offset T-Intersection C7: Convert to Offset T-Intersection C7: Convert to One-Quadrant Interchange D1: Provide Clear Sight Triangles from Stop-Controlled Approaches & the Median D1: Provide Clear Sight Triangles from Stop-Controlled Approaches & the Median D2: Move Minor Road/Median Stop/Yield Bars Closer to Expressway &/or Provide Dotted Edge Line Extensions TRIED D3: Provide Offset Edit-Turn Lanes D4: Provide Offset Edit-Turn Lanes D6: Provide Offset Right-Turn Lanes D6: Realign Minor Road Right-Turn Chanelization D6: Realign Intersection Approaches to Reduce or Eliminate Skew D7: Modify Horizontal/Vertical Alignment of Expressway Approaches Exp | | | | | | CG: Convert to Offset T-Intersection CT: Convert to One-Quadrant Interchange TRIED DCT: Provide Class Sight Triangles from Stop-Controlled Approaches & the Median TRIED DC: Provide Class Sight Triangles from Stop-Controlled Approaches & the Median TRIED DC: Move Minor Road/Median Stop/Yield Bars Closer to Expressway &/or Provide Dotted Edge Line Extensions TRIED DC: Move Minor Road/Median Stop/Yield Bars Closer to Expressway &/or Provide Dotted Edge Line Extensions TRIED DC: MODERATE MEDIUM DC: Provide Offset Left-Turn Lanes TRIED MODERATE MEDIUM DC: Redesign Minor Road Right-Turn Channelization DC: Realign Intersection Approaches to Reduce or Elliminate Skew PROVEN DC: Realign Intersection Approaches to Reduce or Elliminate Skew PROVEN TRIED DCTREME LONG DC: Realign Intersection Approaches to Reduce or Elliminate Skew PROVEN TRIED DCTREME LONG DC: Realign Intersection Approaches to Reduce or Elliminate Skew PROVEN TRIED DCTREME LONG DC: Realign Intersection Approaches to Reduce or Elliminate Skew PROVEN TRIED DCTREME LONG DC: Modify Horizontal/Vertical Alignment of Expressway Approaches DC: Intersection Decision Support (IDS) Technology (Missouri DOT System) EDEPRIMENTAL DCW SHORT DC: Intersection Decision Support (IDS) Technology (Missouri DOT System) DC: Median Support (IDS) Technology (Minnesota DOT System) DC: Median Signage TRIED DC: MODERATE MEDIUM DC: Median Delineation with Pavement Marking DC: Median Signage TRIED DCW SHORT DC: Modify Expressway Median TRIED DCW SHORT TRIED DCW SHORT DC: Modify Expressway Median TRIED DCW SHORT DCW SHORT DCW DCW SHORT DCW | | | | | | C7: Convert to One-Quadrant Interchange D1: Provide Clear Sight Triangles from Stop-Controlled Approaches & the Median D1: Provide Clear Sight Triangles from Stop-Controlled Approaches & the Median D2: Move Minor Road / Median Stop / Yield Bars Closer to Expressway & / or Provide Dotted Edge Line Extensions D3: Provide Offset Left-Turn Lanes TRIED MODERATE MEDIUM D4: Provide Offset Right-Turn Lanes TRIED MODERATE MEDIUM D6: Realign Intersection Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM D7: Modify Horizontal/Vertical Alignment of Expressway Approaches E1: Roadside Markers/Poles E1: Roadside Markers/Poles E1: Intersection Decision Support (IDS) Technology (Missouri DOT System) E2: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Support (IDS) Technology (Missouri DOT System) E4: Provide Right-Turn Acceleration Lanes E7: Provide Right-Turn Median Acceleration Lanes E7: Provide Left-Turn Median Acceleration Lanes (MALs) E3: Median Delineation with Pavement Marking E3: Median Signage TRIED LOW SHORT E4: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E4: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E4: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E7: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E7: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E7: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E7: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E7: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E7: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E7: Provide Wrong-Way Entry Prevention Signage on Minor Road E7: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E7: Provide Wrong-Way Entry Prevention Signage / Pavement Markings for Minor Road E7: Provid | · · · · · · · · · · · · · · · · · · · | | | | | D1: Provide Clear Sight Triangles from Stop-Controlled Approaches & the Median D2: Move Minor Road/Median Stop/Field Bars Closer to Expressway & for Provide Dotted Edge Line Extensions D3: Provide Offset Left-Turn Lanes D4: Provide Offset Left-Turn Lanes D5: Provide Offset Right-Turn Channelization D5: Redesign Minor Road Right-Turn Channelization D6: Realign Intersection Approaches to Reduce or Elliminate Skew D7: Modify Horizontal/Vertical Alignment of Expressway Approaches D7: Modify Horizontal/Vertical Alignment of Expressway Approaches D7: Modify Horizontal/Vertical Alignment of Expressway Approaches D7: Intersection Decision Support (IDS) Technology (Missouri DOT System) D8: Intersection Decision Support (IDS)
Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection Decision Support (IDS) Technology (Minnesota DOT System) D8: Intersection D8: Interse | C7: Convert to One-Quadrant Interchange | | | | | D2: Move Minor Road/Median Stop/Yield Bars Closer to Expressway &/or Provide Dotted Edge Line Extensions TRIED MODERATE MEDIUM MODERATE MEDIUM D5: Provide Offset Reight-Turn Lanes D5: Redesign Minor Road Right-Turn Channelization MEDIUM D6: Realign Intersection Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM D7: Modify Horizontal/Vertical Alignment of Expressway Approaches E1: Roadside Markers/Poles E2: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Decision Support (IDS) Technology (Minnesota DOT System) E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) E4: Intersection Decision Support (IDS) Technology (Minnesota DOT System) E7: Provide Right-Turn Acceleration Lanes TRIED MODERATE MEDIUM F1: Provide Left-Turn Median Acceleration Lanes MEDIUM F2: Provide Left-Turn Median Acceleration Lanes MEDIUM F2: Median Signage TRIED MODERATE MEDIUM MODERATE MEDIUM F3: Median Signage TRIED LOW SHORT G3: Median Signage TRIED LOW SHORT H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road TRIED LOW SHORT H2: Provide Larger/More Reflective/Coverhead/Flashing Approach Signage on Minor Road TRIED LOW SHORT H3: Provide In-Lane Rumble Strips on Minor Road MEDIUM MEDIUM MEDIUM MEDIUM SHORT MEDIUM SHORT H3: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H3: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H3: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H3: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H3: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H3: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H3: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H3: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H3: Provide In-Lane Rumble Strips on Minor Road TRIED LOW | | | | | | D3: Provide Offset Reft-Turn Lanes D4: Provide Offset Right-Turn Lanes D5: Redesign Minor Road Right-Turn Channelization D5: Redesign Minor Road Right-Turn Channelization D6: Realign Intersection Approaches to Reduce or Elliminate Skew D7: Modify Horizontal/Vertical Alignment of Expressway Approaches Redeside Markers/Poles D7: Modify Horizontal/Vertical Alignment of Expressway Approaches D7: Modify Horizontal/Vertical Alignment of Expressway Approaches D7: Modify Expression Support (IDS) Technology (Missouri DOT System) D7: Modify Expression Support (IDS) Technology (Missouri DOT System) D7: Provide Right-Turn Acceleration Lanes D7: Provide Right-Turn Acceleration Lanes D7: Modify Expressway Median | | | | | | D4: Provide Offset Right-Turn Lanes D5: Redesign Minor Road Right-Turn Channelization D6: Realign Intersection Approaches to Reduce or Elliminate Skew D7: Modify Horizontal/Vertical Alignment of Expressway Approaches E1: Roadside Markers/Poles E1: Roadside Markers/Poles E2: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) E4: Provide Right-Turn Acceleration Lanes F2: Provide Right-Turn Acceleration Lanes F3: Provide Right-Turn Median Acceleration Lanes (MALs) G3: Median Delineation with Pavement Marking G4: Median Delineation with Pavement Marking G5: Median Oelineation with Pavement Marking G6: Median Oelineation with Pavement Marking G7: Median Oelineation with Pavement Marking G8: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road Traffic H4: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H5: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H6: Provide In-Lane Rumble Strips on Minor Road H7: Provide In-Lane Rumble Strips on Minor Road H7: Provide In-Lane Rumble Strips on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Intersection Lighting TRIED LOW SHORT H8: Provide Intersection Lighting LOW SHORT H8: Provide Intersection Lighting LOW SHORT H8: Provide Intersection Lighting H8: Provide Intersection Lighting TRIED LOW SHORT | | | | | | D5: Redesign Minor Road Right-Turn Channelization D6: Realign Intersection Approaches to Reduce or Elliminate Skew PROVEN HIGH MEDIUM D7: Modify Horizontal/Vertical Alignment of Expressway Approaches E1: Roadside Markers/Poles E2: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Support (IDS) Technology (Minorsota DOT System) E3: Intersection Decision Support (IDS) Technology (Minorsota DOT System) E3: Provide Right-Turn Acceleration Lanes E4: Provide Right-Turn Acceleration Lanes E7: Provide Right-Turn Median Right Right E7: Provide Right-Turn Median Right E7: Provide Right-Turn Median Right E7: Provide Right-Turn Median Right E7: Provide Right-Turn | | | | | | DG: Realign Intersection Approaches to Reduce or Elliminate Skew DT: Modify Horizontal/Vertical Alignment of Expressway Approaches EXTREME DT: Modify Horizontal/Vertical Alignment of Expressway Approaches EXPREME LONG EXPREMENTAL EXPRIMENTAL EXPREME EXTREME EXTREME EXTREME LONG EXTREME EXTREME EXTREME LONG LONG EXTREME EXTREME LONG EXTREME EXTREME LONG EXTREME EXTREME LONG EXTREME EXTREME LONG EXTREME LONG EXTREME LONG EXTREME EXTREME LONG EXTREME LONG EXTREME LONG EXTREME EXTREME LONG EXTREME LONG EXTREME EXTREME LONG EXTREME LONG EXTREME EX | | | | | | D7: Modify Horizontal/Vertical Alignment of Expressway Approaches E1: Roadside Markers/Poles E2: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Support (IDS) Technology (Missouri DOT System) E4: Intersection Decision Support (IDS) Technology (Missouri DOT System) E5: Provide Right-Turn Acceleration Lanes TRIED MODERATE MEDIUM F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage TRIED LOW SHORT G2: Median Signage TRIED LOW SHORT G2: Median Signage TRIED LOW SHORT H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road TRIED LOW SHORT H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic EXPERIMENTAL LOW SHORT H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road TRIED LOW SHORT H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road TRIED LOW SHORT H5: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H6: Provide Dissional/Splitter Island at Mouth of Intersection on Minor Road TRIED LOW SHORT H6: Provide Traditional "Intersection Ahead" Warning Signs on Expressway TRIED LOW SHORT H6: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway TRIED LOW SHORT H6: Provide Intersection Lighting PROVEN H10: Provide Intersection Lighting PROVEN H10: Provide Intersection Lighting PROVEN H10: PROVIDE H10: MEDIUM H10: Provide Intersection Lighting PROVEN H10: PROVIDE H10: MEDIUM H10: Provide Intersection Lighting PROVEN H10: PROVIDE H10: MEDIUM H10: Provide Intersection Lighting PROVEN H10: PROVIDE H10: MEDIUM H10: Expressway Speed Zoning Through Intersections | D6: Realign Intersection Approaches to Reduce or Elliminate Skew | | | | | E1: Roadside Markers/Poles E2: Intersection Decision Support (IDS) Technology (Missouri DOT System) E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) E4: Provide Right-Turn Acceleration Lanes E5: Provide Left-Turn Median Acceleration Lanes E6: Median Delineation with Pavement Marking E7: Provide Left-Turn Median Acceleration Lanes (MALs) E6: Median Delineation with Pavement Marking E7: Median Delineation with Pavement Marking E7: Median Delineation with Pavement Marking E7: Median Signage Delineation with
Pavement Marking E7: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road E7: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road E7: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road E7: Provide Unsure Trailed E7: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road E7: Provide Divisional/Spitter Island at Mouth of Intersection on Minor Road E7: Provide Divisional/Spitter Island at Mouth of Intersection on Minor Road E7: Provide Divisional/Spitter Island at Mouth of Intersection on Minor Road E7: Provide Divisional/Spitter Island at Mouth of Intersection Guide Signs on Expressway E7: Provide Divisional/Spitter Island at Mouth of Intersection Guide Signs on Expressway E7: Provide Divisional/Spitter Island at Mouth of Intersection Guide Signs on Expressway E7: Provide Divisional/Spitter Island at Mouth of Intersection Guide Signs on Expressway E7: Provide Divisional/Spitter Island E7: Median E7: Median E7: Median E7: Median E7: Median E7: Median E7: | • | | | | | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modity Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic EXPERIMENTAL LOW SHORT H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road TRIED LOW SHORT H5: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road TRIED LOW SHORT H6: Provide Traditional "Intersection Ahead" Warning Signs on Expressway TRIED LOW SHORT H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway TRIED LOW SHORT H8: Provide Intersection Lighting PROVEN H10H MEDIUM 11: Expressway Speed Zoning Through Intersections | | EXPERIMENTAL | | | | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modity Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic EXPERIMENTAL LOW SHORT H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road TRIED LOW SHORT H5: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road TRIED LOW SHORT H6: Provide Traditional "Intersection Ahead" Warning Signs on Expressway TRIED LOW SHORT H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway TRIED LOW SHORT H8: Provide Intersection Lighting PROVEN H10H MEDIUM 11: Expressway Speed Zoning Through Intersections | | EVDEDINAFACTAL | A A O D C D A T C | SHORT | | F1: Provide Right-Turn Acceleration Lanes (MALs) TRIED MODERATE MEDIUM F2: Provide Left-Turn Median Acceleration Lanes (MALs) TRIED LOW SHORT G2: Median Delineation with Pavement Marking G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H1: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic EXPERIMENTAL LOW SHORT H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H9: Provide Traditional "Intersection Lighting H9: Provide Intersection Lighting H1: Expressway Speed Zoning Through Intersections H10: WEDIUM H11: Expressway Speed Zoning Through Intersections | Lea Intersection Decision Support (105) Technology (missouri DOT System) | EXPERIMENTAL | MODERATE | SHORT | | F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median G3: Widen/Modify Expressway Median TRIED DXTREME LONG H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road TRIED LOW SHORT H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road TRIED LOW SHORT H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road TRIED LOW SHORT H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road TRIED LOW SHORT H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road TRIED MODERATE MEDIUM H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway TRIED LOW SHORT H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway TRIED LOW SHORT H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway TRIED LOW SHORT H1: Expressway Speed Zoning Through Intersections TRIED LOW SHORT | | | | | | G2: Median Signage G3: Widen/Modify Expressway Median TRIED EXTREME LONG H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road TRIED LOW SHORT H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic EXPERIMENTAL LOW SHORT H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road TRIED LOW SHORT H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road TRIED LOW SHORT H5: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road TRIED MODERATE MEDIUM H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway TRIED LOW SHORT H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway TRIED LOW SHORT H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway TRIED LOW SHORT H10: Provide Intersection Lighting TRIED LOW SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) | EXPERIMENTAL | HIGH | MEDIUM | | G2: Median Signage G3: Widen/Modify Expressway Median TRIED EXTREME LONG H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road TRIED LOW SHORT H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic EXPERIMENTAL LOW SHORT H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road TRIED LOW SHORT H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road TRIED LOW SHORT H5: Provide In-Lane Rumble Strips on Minor Road TRIED LOW SHORT H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road TRIED MODERATE MEDIUM H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway TRIED LOW SHORT H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway TRIED LOW SHORT H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway TRIED LOW SHORT H10: Provide Intersection Lighting TRIED LOW SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes | EXPERIMENTAL
TRIED | HIGH
MODERATE | MEDIUM
MEDIUM | | G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway H1: Expressway Speed Zoning Through Intersections TRIED LOW SHORT H6: Provide Intersection Lighting PROVEN H1GH MEDIUM SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) | EXPERIMENTAL
TRIED
TRIED | HIGH
MODERATE
MODERATE | MEDIUM
MEDIUM
MEDIUM | | H1:
Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway H10: Provide Intersection Lighting H10: Expressway Speed Zoning Through Intersections TRIED LOW SHORT TRIED LOW SHORT TRIED LOW SHORT H10: Provide Intersection Lighting PROVEN H16H MEDIUM MEDIUM 11: Expressway Speed Zoning Through Intersections | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking | EXPERIMENTAL TRIED TRIED TRIED | HIGH MODERATE MODERATE LOW | MEDIUM
MEDIUM
MEDIUM
SHORT | | H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway H1: Expressway Speed Zoning Through Intersections TRIED LOW SHORT H0: Provide Intersection Lighting TRIED LOW SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage | EXPERIMENTAL TRIED TRIED TRIED TRIED | HIGH MODERATE MODERATE LOW LOW | MEDIUM
MEDIUM
MEDIUM
SHORT
SHORT | | H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H7: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway H1: Expressway Speed Zoning Through Intersections TRIED LOW SHORT H8: Provide Intersection Lighting PROVEN HIGH MEDIUM SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME | MEDIUM MEDIUM SHORT SHORT LONG | | H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway H10: Provide Intersection Lighting H10: Provide Intersection Lighting H10: Expressway Speed Zoning Through Intersections TRIED LOW SHORT PROVEN HIGH MEDIUM SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME LOW | MEDIUM MEDIUM SHORT SHORT LONG SHORT | | H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway H10: Provide Intersection Lighting H10: Provide Intersection Lighting TRIED LOW SHORT PROVEN HIGH MEDIUM II: Expressway Speed Zoning Through Intersections TRIED LOW SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED EXPERIMENTAL | HIGH MODERATE MODERATE LOW LOW EXTREME LOW LOW | MEDIUM MEDIUM SHORT SHORT LONG SHORT SHORT | | H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway H10: Provide Intersection Lighting H10: Provide Intersection Lighting TRIED LOW SHORT PROVEN HIGH MEDIUM 11: Expressway Speed Zoning Through Intersections TRIED LOW SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED EXPERIMENTAL TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME LOW LOW LOW | MEDIUM MEDIUM SHORT SHORT LONG SHORT SHORT SHORT SHORT | | H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway TRIED LOW SHORT H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway TRIED LOW SHORT H10: Provide Intersection Lighting PROVEN HIGH MEDIUM 11: Expressway Speed Zoning Through Intersections TRIED LOW SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED EXPERIMENTAL TRIED TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME LOW LOW LOW LOW LOW LOW | MEDIUM MEDIUM SHORT SHORT LONG SHORT SHORT SHORT SHORT SHORT SHORT | | H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway TRIED LOW SHORT PROVEN HIGH MEDIUM 11: Expressway Speed Zoning Through Intersections TRIED LOW SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED EXPERIMENTAL TRIED TRIED TRIED TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME LOW LOW LOW LOW LOW LOW LOW LOW LOW | MEDIUM MEDIUM SHORT SHORT LONG SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT | | H10: Provide Intersection Lighting PROVEN HIGH MEDIUM 11: Expressway Speed Zoning Through Intersections TRIED LOW SHORT | F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED
EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME LOW LOW LOW LOW LOW LOW MODERATE | MEDIUM MEDIUM SHORT SHORT LONG SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT MEDIUM | | 11: Expressway Speed Zoning Through Intersections TRIED LOW SHORT | F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME LOW | MEDIUM MEDIUM SHORT SHORT LONG SHORT | | | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED TRIED EXPERIMENTAL TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME LOW | MEDIUM MEDIUM SHORT SHORT LONG SHORT | | 12: Targeted Intersection Speed Enforcement PROVEN LOW SHORT | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED EXPERIMENTAL TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME LOW | MEDIUM MEDIUM SHORT SHORT LONG SHORT | | | E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) F1: Provide Right-Turn Acceleration Lanes F2: Provide Left-Turn Median Acceleration Lanes (MALs) G1: Median Delineation with Pavement Marking G2: Median Signage G3: Widen/Modify Expressway Median H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Traffic H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings for Minor Road H4: Provide Larger/More Reflective/Overhead/Flashing Approach Signage on Minor Road H5: Provide In-Lane Rumble Strips on Minor Road H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway H9: Provide "Watch For Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway | EXPERIMENTAL TRIED TRIED TRIED TRIED TRIED TRIED TRIED EXPERIMENTAL TRIED | HIGH MODERATE MODERATE LOW LOW EXTREME LOW LOW LOW LOW LOW LOW LOW LOW LOW HIGH | MEDIUM MEDIUM SHORT SHORT LONG SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT SHORT MEDIUM SHORT SHORT SHORT SHORT MEDIUM SHORT SHORT SHORT MEDIUM | **CONCERNS ADDRESSED VS COST** LOW B1, D1, D2, E1, H1, H3, H4, H5, H7, H8, H9, I1, I2 C2, C4, G1, G2 D2 D1, E1, H1, H7, H8, H9, I1, I2 H3, H4, H5 B1, C2, C4, D1, I1, I2 B1, C2, C4, G1 H1, H2 B1, D1, D2, E1 B1, C2, C4, E1 **PROVEN** A2, A3, D6, H10, I2 A2, A3, H10 12 A2, A3, D6, H10, I2 A2, A3, H10 H10 A2, A3, D6 A2, A3 **A3** CONCERN ADDRESSED **ALL RIGHT-ANGLE (25)** **FAR-SIDE RIGHT-ANGLE (10)** **NEAR-SIDE RIGHT-ANGLE (3)** ALL REAR-END (8) **MAINLINE REAR-END (14)** MINOR ROAD REAR-END (4) **LEFT-TURN LEAVING (16)** **MEDIAN COLLISIONS (15)** MAINLINE HEAD-ON COLLISIONS (3) MINOR ROAD DELAY (17) **MEDIAN DELAY (15)** **EXPRESSWAY DELAY (1)** CONCERN ADDRESSED **ALL RIGHT-ANGLE (25)** **FAR-SIDE RIGHT-ANGLE (10)** **NEAR-SIDE RIGHT-ANGLE (3)** ALL REAR-END (8) **MAINLINE REAR-END (14)** MINOR ROAD REAR-END (4) **LEFT-TURN LEAVING (16)** **MEDIAN COLLISIONS (15)** MAINLINE HEAD-ON COLLISIONS (3) MINOR ROAD DELAY (17) **MEDIAN DELAY (15)** **EXPRESSWAY DELAY (1)** SAFETY DELAY SAFETY DELAY **EFFECTIVENESS** TRIED A1, B1, B2, C1, C7, D1, D2, D7, H1, H3, H4, H5, H6, H7, H8, H9, I1 C2, C3, C4, C5, C6, D3, F2, G1, G2, G3 D4, F1 A1, C7, D2, F1 C1, D1, D3, D4, F2, H1, H7, H8, H9, I1 H3, H4, H5, H6 A1, B1, C1, C2, C3, C4, C5, C7, D1, D3, I1 A1, B1, B2, C2, C3, C4, C5, C6, C7, D3, G1, G3 Н1 B1, B2, C1, C7, D1, D2, D4, D7, F1, F2 B1, B2, C1, C2, C3, C4, C5, C6, C7, F2 COST MODERATE A1, B2, C1, E2, H6 C3, C5, D3, F2 D4, D5, F1 A1, D5, F1 C1, D3, D4, E2, F2 Н6 A1, C1, C3, C5, D3 A1, B2, C3, C5, D3 B2, C1, D4, D5, E2, F1, F2 B2, C1, C3, C5, E2, F2 **EXPERIMENTAL** E1, E2, E3 D5 D5 E1, E2, E3 H2 D5, E1, E2, E3 E1, E2, E3 **EXTREME** G3 A2, A3, C7 A2, A3, C7 A2, A3, C7, G3 A2, A3, C7, D7 A2, A3, C7 A3 D6, E3, H10 A2, A3, C7, D7 HIGH **C6** H10 **E3** D6, H10 C6, H10 H10 D6, E3 C6, E3 ## **CONCERNS ADDRESSED VS TIME** | | | TIME | | | | |-------|---------------------------------|--|--------------------------------|----------------|--| | | CONCERN ADDRESSED | SHORT | MEDIUM | LONG | | | | ALL RIGHT-ANGLE (25) | B1, D1, D2, E1, E2, H1, H3, H4, H5, H7, H8, H9, I1, I2 | A1, B2, C1, D6, E3, H6, H10 | A2, A3, C7, D7 | | | | FAR-SIDE RIGHT-ANGLE (10) | C2, C4, G1, G2 | C3, C5, C6, D3, F2 | G3 | | | | NEAR-SIDE RIGHT-ANGLE (3) | | D4, D5, F1 | | | | ַ [| ALL REAR-END (8) | D2 | A1, D5,F1, H10 | A2, A3, C7 | | | AFEIT | MAINLINE REAR-END (14) | D1, E1, E2, H1, H7, H8, H9, I1, I2 | C1, D3, D4, E3, F2 | | | | Š | MINOR ROAD REAR-END (4) | H3, H4, H5 | H6 | | | | | LEFT-TURN LEAVING (16) | B1, C2, C4, D1, I1, I2 | A1, C1, C3, C5, D3, D6, H10 | A2, A3, C7 | | | | MEDIAN COLLISIONS (15) | B1, C2, C4, G1 | A1, B2, C3, C5, C6, D3, H10 | A2, A3, C7, G3 | | | | MAINLINE HEAD-ON COLLISIONS (3) | H1, H2 | H10 | | | | DELAY | MINOR ROAD DELAY (17) | B1, D1, D2, E1, E2 | B2, C1, D4, D5, D6, E3, F1, F2 | A2, A3, C7, D7 | | | | MEDIAN DELAY (15) | B1, C2, C4, E1, E2 | B2, C1, C3, C5, C6, E3, F2 | A2, A3, C7 | | | | EXPRESSWAY DELAY (1) | | | Δ3 | | ## CONCERNS ADDRESSED VS EFFECTIVENESS, COST, & TIME 9 | | CONCERN ADDRESSED | BY | TREATMENTS | | | | |--------|---------------------------------|----------------------|--|-----------------------------------|-----------------------------------|----------------| | | | EFFECTIVENESS | A2, A3, D6, H10, I2 | A1, B1, B2, C1, C7, D1, D2, D7, H | 1, H3, H4, H5, H6, H7, H8, H9, I1 | E1, E2, E3 | | | ALL RIGHT-ANGLE (25) | COST | B1, D1, D2, E1, H1, H3, H4, H5, H7, H8, H9, I1, I2 | A1, B2, C1, E2, H6 | D6, E3, H10 | A2, A3, C7, D7 | | | | TIME | B1, D1, D2, E1, E2, H1, H3, H4, H5, H7, H8, H9, I1, I2 | A1, B2, C1, D6 | 5, E3, H6, H10 | A2, A3, C7, D7 | | | | EFFECTIVENESS | | C2, C3, C4, C5, C6, | D3, F2, G1, G2, G3 | | | | FAR-SIDE RIGHT-ANGLE (10) | COST | C2, C4, G1, G2 | C3, C5, D3, F2 | C6 | G3 | | | | TIME | C2, C4, G1, G2 | C3, C5, C | 6, D3, F2 | G3 | | | | EFFECTIVENESS | | D4, | , F1 | D5 | | | NEAR-SIDE RIGHT-ANGLE (3) | COST | | D4, D5, F1 | | | | | | TIME | | D4, C | 5, F1 | | | | | EFFECTIVENESS | A2, A3, H10 | A1, C7, | D2, F1 | D5 | | | ALL REAR-END (8) | COST | D2 | A1, D5, F1 | H10 | A2, A3, C7 | | | | TIME | D2 | A1, D5, | F1, H10 | A2, A3, C7 | | ≥ | | EFFECTIVENESS | 12 | C1, D1, D3, D4, F2, | , H1, H7, H8, H9, I1 | E1, E2, E3 | | SAFETY | MAINLINE REAR-END (14) | COST | D1, E1, H1, H7, H8, H9, I1, I2 | C1, D3, D4, E2, F2 | E3 | | | | | TIME | D1, E1, E2, H1, H7, H8, H9, I1, I2 | C1, D3, D | 94, E3, F2 | | | | | EFFECTIVENESS | | H3, H4, | H5, H6 | | | | MINOR ROAD REAR-END (4) | COST | H3, H4, H5 | H6 | | | | | | TIME | H3, H4, H5 | Н | 6 | | | | | EFFECTIVENESS | A2, A3, D6, H10, I2 | A1, B1, C1, C2, C3, C | 4, C5, C7, D1, D3, I1 | | | | LEFT-TURN LEAVING (16) | COST | B1, C2, C4, D1, I1, I2 | A1, C1, C3, C5, D3 | D6, H10 | A2, A3, C7 | | | | TIME | B1, C2, C4, D1, I1, I2 | A1, C1, C3, C5 | | A2, A3, C7 | | | MEDIAN COLLISIONS (15) | EFFECTIVENESS | A2, A3, H10 | A1, B1, B2, C2, C3, C4, | C5, C6, C7, D3, G1, G3 | | | | | COST | B1,
C2, C4, G1 | A1, B2, C3, C5, D3 | C6, H10 | A2, A3, C7, G3 | | | | TIME | B1, C2, C4, G1 | A1, B2, C3, C5 | 5, C6, D3, H10 | A2, A3, C7, G3 | | | MAINLINE HEAD-ON COLLISIONS (3) | EFFECTIVENESS | H10 | Н | | H2 | | | | COST | H1, H2 | | H10 | | | | | TIME | H1, H2 | | 10 | | | | MINOR ROAD DELAY (17) | EFFECTIVENESS | A2, A3, D6 | B1, B2, C1, C7, D1, | D2, D4, D7, F1, F2 | D5, E1, E2, E3 | | | | COST | B1, D1, D2, E1 | B2, C1, D4, D5, E2, F1, F2 | D6, E3 | A2, A3, C7, D7 | | | | TIME | B1, D1, D2, E1, E2 | | , D6, E3, F1, F2 | A2, A3, C7, D7 | | DELAY | MEDIAN DELAY (15) | EFFECTIVENESS | A2, A3 | B1, B2, C1, C2, C3, | C4, C5, C6, C7, F2 | E1, E2, E3 | | | | COST | B1, C2, C4, E1 | B2, C1, C3, C5, E2, F2 | C6, E3 | A2, A3, C7 | | | | TIME | B1, C2, C4, E1, E2 | B2, C1, C3, C | 5, C6, E3, F2 | A2, A3, C7 | | | | EFFECTIVENESS | A3 | | | | | | EXPRESSWAY DELAY (1) | COST | | | | A3 | | | | TIME | | | | A3 | | LEGEND | | | | | | |----------------------|---------------|----------|------|-------------|--| | EFFECTIVENESS | PROVEN | TRIED | | EXPERIMENTA | | | COST | LOW | MODERATE | HIGH | EXTREME | | | TIME | SHORT | MEDIUM | | LONG | | ## Category A: Improve Management of Access The primary purpose of rural expressways is to provide mobility. Access is secondary, but necessary. This is a difficult balance to achieve. Managing and protecting the partial access control rights on rural expressways is a key factor in the safety of these facilities. The intent of the strategies presented in this category are to provide more stringent access control, thereby improving the safety of existing access points and preserving the high-speed mobility of rural expressway corridors. A1: Close Low Volume Intersections & Connect via Frontage Roads A2: Convert Single At-Grade Intersection to Interchange **A3: Convert Expressway Corridor to Freeway** Green Book³ Exhibit 1-5 ## A1: Close Low Volume Intersections and Connect via Frontage Roads ## **A2: Convert Single At-Grade Intersection to Interchange** DESCRIPTION: Involves converting a single at-grade intersection to a grade-separated interchange. May also involve closing other nearby expressway intersections to force more traffic through the interchange. concerns addressed: All intersection-related crashes (particularly severe right-angle) and delay on minor roadway approaches. #### **POTENTIAL APPLICATION:** High volume expressway intersections (with total minor roadway entering volumes around 2,000 vpd) with a history of severe crashes⁷. In addition, Chapter 10 of the AASHTO Green Book³ describes six general interchange warrants. ## **A3: Convert Expressway Corridor to Freeway** DESCRIPTION: Involves upgrading an expressway corridor to full access control by eliminating all at-grade access points and constructing grade separations/interchanges at key locations. concerns addressed: All intersection-related crashes (especially severe right-angle) and delay on both mainline and minor roadways. #### POTENTIAL APPLICATION: Corridors with mainline traffic volumes approaching 10,000 vpd or a history of severe crashes at intersections 10. May be most appropriate for urban fringe and bypass corridors. # Category B: Choose Appropriate Intersection Traffic Control The type of traffic control chosen for an intersection has a strong influence on the frequency, severity, and type of crashes that occur at an intersection. The strategies within this category focus strictly on selecting the appropriate traffic control for rural expressway intersections and do not include strategies which alter intersection geometrics. **B1: Convert Intersection to All-Way Stop-Control** **B2: Provide Signalization** ## **B1: Convert Intersection to All-Way Stop Control** DESCRIPTION: Involves converting a two-way stop-controlled expressway intersection (base traffic control condition) to an all-way stop-control condition. CONCERNS ADDRESSED: High frequency of severe right-angle crashes and excessive minor road delays. #### **POTENTIAL APPLICATION:** Intersections with history of right-angle and turning crashes, moderate/relatively balanced traffic volumes on all approaches², and a relatively narrow median width. **CAUTION**: Potential drawbacks to this treatment include expressway driver expectancy violation, reduced expressway mobility (delays), & trade-off with right-angle to rear-end crashes. ### **B2: Provide Signalization** DESCRIPTION: Involves installing traffic signals at a previously unsignalized intersection. #### **CONCERNS ADDRESSED:** High frequency of severe right-angle crashes with excessive minor road delays. #### **POTENTIAL APPLICATION:** Medium to high-volume unsignalized intersections where all other less restrictive forms of traffic control have been considered. Preferably, the median width would be less than 60 feet³. Larger median widths would require separate signals for each roadway of the divided highway. #### **EFFECTIVENESS: TRIED** Traffic signals generally increase crash rates, but reduce severity as a result of trading off right-angle for rear-end collisions ($\approx 77\%$ right-angle reduction and $\approx 58\%$ increase in rear-end)⁸. However, great variability in their safety effects have been observed ¹⁴. **COST: MODERATE** **CAUTION:** Avoid installing signal control on rural expressways TIME: 1-2 Years ## Category C: Reduce Conflict Points Through Geometric Design Improvements Decreasing the number of conflict points at an intersection can reduce the frequency and severity of intersection crashes. The strategies within this category focus strictly on geometric improvements which reduce or relocate intersection conflict points and/or change the type of vehicle-vehicle conflicts that can occur at a typical rural expressway intersection. Treatments C2 through C6 are good applications for high growth corridors as they lend themselves to two-phase signal operation if traffic signals are needed in the future. As such, placement of median openings & U-turns should consider future signal coordination. C1: Provide or Lengthen Expressway Left/Right-Turn Lanes C2: Close Median Crossovers (Right-In, Right-Out Access Only) **C3:** Convert to U-Turn Intersection **C4: Provide Directional Median Opening** **C5:** Convert to J-Turn Intersection (JTI) **C6: Convert to Offset T-Intersection** C7: Convert to One-Quadrant Interchange ## C1: Provide or Lengthen Expressway Left/Right-Turn Deceleration Lanes **DESCRIPTION:** Involves installing or lengthening expressway turn lanes at unsignalized intersections. concerns addressed: High frequency of mainline rear-end & sideswipe/weaving crashes resulting from the conflict between turning and following vehicles². Also right-angle & left-turn leaving collisions by enabling drivers to determine destinations of oncoming expressway traffic earlier, giving them more time to make improved gap selection decisions. POTENTIAL APPLICATION: Unsignalized intersections with moderate to high turn volumes, a history of mainline rear-end & sideswipe crashes, and no turn lanes or existing turn lanes that are not long enough for deceleration and storage of all turning vehicles². **EFFECTIVENESS: TRIED** Depends on existing turn lane length, approach speeds & volumes, turning volumes, and available stopping sight distance². Overall crash reduction ≈ 14% for providing a single right-turn lane³, ≈ 28% for a left-turn lane³, and ≈ 7% for extending a deceleration lane by 100 feet³. **COST: MODERATE** TIME: 1-2 Years <u>CAUTION</u>: Appropriate turn lane lengths should be based on policies of individual highway agencies. The use of offset turn lanes is preferred (See <u>Strategies D3 & D4</u>). ## C2: Close Median Crossovers (Right-In, Right-Out Access Only) DESCRIPTION: Involves closing the median leaving right-in right-out access only, while ensuring alternate indirect routes are still available. CONCERNS ADDRESSED: Far-side right-angle & all left-turn related collisions. #### POTENTIAL APPLICATION: Unsignalized intersections with a history of severe left-turn or far-side right-angle crashes and relatively low volumes of crossing/left-turn movements from the minor road and relatively low left-turn volumes from the expressway. #### **EFFECTIVENESS: TRIED** Elimination of nearly all left-turn and far-side right-angle crashes at the treated intersection², while crash migration may occur. **COST: LOW** TIME: <1 Year <u>CAUTION</u>: This treatment may change the nature of access along a corridor & should be used where indirect turn opportunities are available. If the indirect movements have moderate to high volume, other alternatives should be considered (see <u>Strategies C3</u>, <u>C4</u>, & <u>C5</u>). ### **C3:** Convert to U-Turn Intersection **DESCRIPTION:** Involves closing the median leaving right-in right-out access only, while providing alternate indirect access via median U-turns. Reduces total intersection conflict points from 42 to 16. **CONCERNS ADDRESSED:** Far-side rightangle & all left-turn related collisions. **POTENTIAL APPLICATION: Unsignalized** intersections with a history of severe left-turn or far-side right-angle crashes and moderate volumes of crossing/left-turn movements from the minor road and relatively low leftturn volumes from the expressway. **EFFECTIVENESS: TRIED** Elimination of nearly all left-turn and farside right-angle crashes at the treated intersection². **COST:** MODERATE **TIME**: 1-2 Years | ○ ○ ○ **CAUTION:** U-turn spacing & addition of accel/decel lanes & U-turn loons should be carefully considered. If left-turn volumes from the expressway are moderate to high, Strategy C5 should be considered. Advantages over Strategy C5 include the ability to locate U-turns closer to the main intersection & extend left/right-turn deceleration lanes all the way from the main intersection to the U-turns. ## **C4: Provide Directional Median Opening** DESCRIPTION: Involves restricting direct left-turn and crossing maneuvers from
the minor roads by providing a channelized median with offset left-turn lanes (Strategy D3) for the exclusive use of left-turning traffic leaving the expressway. **CONCERNS ADDRESSED:** Far-side right-angle and left-turn leaving collisions. POTENTIAL APPLICATION: Unsignalized intersections with a history of severe farside right-angle crashes and relatively low volumes of crossing/left-turn movements from the minor road with relatively high left-turn volumes from the expressway. **EFFECTIVENESS: TRIED** T Elimination of nearly all far-side crashes at the treated intersection². Approximately 15% reduction in overall crashes has been observed in urban areas¹⁵; however, crash migration may occur. COST: LOW TIME: <1 Year **CAUTION:** This treatment may change the nature of access along a corridor & should be used where indirect turn opportunities are available for minor road traffic. If the minor road indirect movements have a moderate to high volume, **Strategy C5** should be considered instead. ## **C5:** Convert to J-Turn Intersection (JTI) DESCRIPTION: Involves restricting direct left-turn & crossing maneuvers from the minor roads by providing a directional median opening (Strategy C4) combined with U-turns to accommodate indirect minor road movements. Reduces total intersection conflict points from 42 to 24. **CONCERNS ADDRESSED:** Far-side right-angle & left-turn leaving crashes. POTENTIAL APPLICATION: Unsignalized intersections with a history of severe far-side right-angle crashes & moderate volumes of crossing/left-turn traffic on the minor roads with relatively high left-turn volumes from the expressway. EFFECTIVENESS: TRIED TElimination of nearly 100% far-side right-angle crashes & ≈ 43-92% reduction in total intersection crashes 16,17. **COST: MODERATE** TIME: 1-2 Years Loon or bulb-out for U-turn <u>CAUTION</u>: U-turn spacing & addition of accel/decel lanes & loons should be carefully considered. ### **C6:** Convert to Offset T-Intersection **DESCRIPTION: Involves closing** one minor road approach at a 4legged intersection and moving it either up or downstream to create two independent 3-legged T-intersections. A right-left (R-L) configuration is preferred. Reduces total conflict points from 42 to 26. Conflict points at a R-L can be further reduced by making the minor roads right-out only with lefts & U-turns allowed from the major road. **CONCERNS ADDRESSED: Far-side** right-angle collisions by creating indirect crossing maneuvers. POTENTIAL APPLICATION: Two-way stop-controlled intersections with a history of far-side right-angle crashes and relatively low through and left-turn volumes on the minor road or where the median is too narrow to store the design crossing minor road vehicle 16. **CAUTION: Minimum** spacing between Tintersections should be carefully considered as well as the volumes of commercial vehicles and farm equipment making the indirect crossing maneuvers. **EFFECTIVENESS: TRIED** ≈ 40% to 60% reduction in total crashes^{2,16,18}. **COST: HIGH** 0000 TIME: 1-2 Years O ## **C7: Convert to One-Quadrant Interchange** DESCRIPTION: Involves replacing an existing four-legged at-grade intersection with a combination of a three-legged intersection (on the expressway) and a grade separation to accommodate through traffic on the minor road. All turning movements are completed via a two-way connector road joining the intersecting roadways. Conflict points are reduced from 42 to 11 along the expressway. CONCERNS ADDRESSED: Rightangle, left-turn leaving, & median collisions. #### **POTENTIAL APPLICATION:** Unsignalized intersections with a history of severe right-angle crashes and heavy through volumes on the minor road. The location of the connector road depends on traffic flow and availability of right-of-way. Green Book³ Exhibit 10-1C **EFFECTIVENESS: TRIED** ≈ 60% reduction in crash severity 16. **COST: EXTREME** TIME: > 2 Years ## Category D: Improve Intersection Sight Distance Limited sight distance for drivers approaching or stopped at an intersection can lead to collisions at unsignalized intersections. Sight obstructions may be caused by roadside objects (buildings, trees, crops, signs, sign posts, etc.), the roadway itself (vertical/horizontal alignment), and vehicles on the roadway. The strategies within this category are intended to provide clear or improved sight-lines for drivers approaching or stopped at rural expressway intersections so that they may better recognize the presence of other traffic using the intersection. - D1: Provide Clear Sight Triangles from Stop-Controlled Approaches & the Median - D2: Move Minor Road/Median Stop/Yield Bars Closer to Expressway &/or Provide Dotted Edge Line Extensions - **D3: Provide Offset Left-Turn Lanes** - **D4: Provide Offset Right-Turn Lanes** - D5: Redesign Minor Road Right-Turn Channelization - D6: Realign Intersection Approaches to Reduce or Eliminate Skew - D7: Modify Horizontal/Vertical Alignment of Expressway Approaches ## **D1: Provide Clear Sight Triangles from Stop-Controlled Approaches & the Median** **DESCRIPTION:** Involves improving intersection sight distance (ISD) by removing roadside or median obstructions (natural & artificial) within departure sight triangles. ISD guidelines are established by AASHTO³. **CONCERNS ADDRESSED: Patterns of crashes related** to lack of ISD (particularly right-angle collisions). **POTENTIAL APPLICATION: Unsignalized intersections** with restricted sight distance due to roadside or median obstructions. **EFFECTIVENESS: TRIED** Up to a 20% reduction in crashes related to lack of sight distance and ≈ 48% reduction in injury crashes, depending on the severity of the sight restriction and the number of intersection quadrants affected^{2,8}. **COST: LOW** **NOTE:** This strategy may include using thinner sign posts, modifying sign height, or paving medians (to prevent vegetation growth) near intersections. ## D2: Move Minor Road/Median Stop/Yield Bars Closer to Expressway &/or Provide Dotted Edge Line Extensions DESCRIPTION: Involves moving minor road stop bars &/or median yield/stop bars as close to the expressway through lanes as possible (≥ 4 ft) to encourage drivers to stop at a location that would maximize their ISD. See MUTCD¹¹ Section 3B.16 for stop & yield line placement guidelines. May also include extending expressway edge/center lines through an intersection to more clearly delineate the expressway through lanes. CONCERNS ADDRESSED: Crashes (particularly right-angle & rear-end) related to lack of ISD or lack of driver recognition of the intersection or of the stop/yield control. POTENTIAL APPLICATION: Unsignalized intersections where ISD can be improved by moving the stop/yield bars forward or where intersection recognition seems to be an issue. EFFECTIVENESS: TRIED Crash rates decrease as the total distance across an expressway intersection decreases 19. **COST: LOW** TIME: <1 Year NOTE: May combine with Strategy H6. See Strategy G1 for more on median delineation. ### **D3: Provide Offset Left-Turn Lanes** DESCRIPTION: Involves moving left-turn deceleration lanes further into the median so opposing left-turn vehicles do not obstruct each other's sight line toward oncoming through traffic (i.e., a positive offset²⁰). Parallel or tapered designs may be used³. CONCERNS ADDRESSED: Left-turn leaving, mainline rear-end, & far-side right-angle crashes resulting from sight-line obstructions due to left-turn vehicles in conventional left-turn lanes. Also addresses median locking by providing a separate holding point for left-turn traffic. POTENTIAL APPLICATION: Intersections where left-turn leaving mainline volumes are at least 60 vph in both directions²¹, there are large volumes of left-turn leaving trucks, or where patterns of left-turn leaving, mainline rear-end, or far-side right-angle collisions exist as a result of shadowing. The median must be wide enough (≥ 24 ft)²² to provide the appropriate offset. <u>CAUTION</u>: Signage & marking are important to limit driver confusion regarding vehicle placement & priority (see <u>Strategy H2</u>). Follow your agency's design guide. Future signalization should be considered in the design; however, indirect left-turn alternatives should be considered first in high-growth areas. **EFFECTIVENESS: TRIED** ≈ 85-100% reduction in left-turn leaving crashes, 33-50% crash reduction overall^{8,16}. COST: MODERATE TIME: 1-2 Years ### **D4: Provide Offset Right-Turn Lanes** DESCRIPTION: Involves moving rightturn deceleration lanes laterally to the right (offset) as far as necessary so that right-turning vehicles do not obstruct the sight line of minor road drivers positioned at the adjacent stop bar. Parallel and tapered designs have been used ¹⁶. concerns addressed: Near-side right-angle or mainline rear-end collisions resulting from sight-line obstructions (shadowing) due to the presence of right-turning vehicles. #### **POTENTIAL APPLICATION:** Unsignalized expressway intersections with patterns of near-side right-angle collisions, right-turn volumes that warrant a right-turn deceleration lane (>30 vph)²³, large volumes of right-turn trucks, or other potential sight line difficulties (horizontal/vertical curves, intersection skew, etc.). ## **D5: Redesign Minor Road Right-Turn Channelization** **DESCRIPTION:** Involves reconstructing the right-turn channelization island along the minor road to provide an improved observation angle for minor road rightturn drivers so they don't have to turn their heads as much to view oncoming traffic. Includes the use of edge line rumble stripes to help control the angle of right-turn vehicles. The edge of pavement is determined from the path of a PC with truck offtracking accommodated via a paved shoulder apron. **CONCERNS ADDRESSED: Near-side right-angle and** mainline rear-end collisions. May also reduce rearend collisions along the minor road. **POTENTIAL APPLICATION: Expressway intersections** with a pattern of near-side
right-angle right-turn merge/rear-end collisions & standard or no right-turn channelization on the minor road(s). **EFFECTIVENESS: EXPERIMENTAL** **COST: MODERATE** TIME: 1-2 Years **CAUTION:** Stagger stop bars to ensure line-of-sight for rightturn drivers is not obstructed by through vehicles on the same approach or by the island stop sign/post. Standard Right-Turn Island ## D6: Realign Intersection Approaches to Reduce or Eliminate Skew **DESCRIPTION:** Involves realignment of minor road approaches from a skewed intersection angle to a right angle or closer to it in order to provide improved observation angles for minor road drivers so they don't have to turn their heads as much to view oncoming traffic. **CONCERNS ADDRESSED: Patterns** of crashes (especially right-angle) related to insufficient sight distance or awkward sight lines. May be particularly beneficial to older drivers. #### POTENTIAL APPLICATION: **Unsignalized skewed intersections** with a high frequency of crashes resulting from insufficient intersection sight distance and awkward sight lines. **EFFECTIVENESS: PROVEN** Reduction in total crashes is dependent on the reduction in the intersection skew angle². Crash severity is also reduced with less skew^{24,25}. COST: HIGH TIME: 1-2 Years **CAUTION:** Avoid creating sharp horizontal curvature when realigning a skewed approach². **Strategy C6** may be a preferred alternative. **Old Alignment** ## D7: Modify Horizontal/Vertical Alignment of Expressway Approaches **DESCRIPTION:** Involves modification of expressway alignment (vertical or horizontal) near at-grade intersections. CONCERNS ADDRESSED: Patterns of crashes (especially right-angle) related to lack of adequate intersection sight distance due to horizontal curvature, vertical curvature, or independent vertical alignments of the two one-way roadways. POTENTIAL APPLICATION: Unsignalized intersections with restricted sight distance due to horizontal and/or vertical geometry and patterns of crashes related to that lack of sight distance which have not been ameliorated by less expensive methods². #### **EFFECTIVENESS: TRIED** Up to a 20% reduction in crashes related to lack of sight distance, depending on the severity of the sight restriction and the number of intersection quadrants affected². Crash severity is also reduced²⁴. **COST: EXTREME** TIME: > 2 Years Sight distance after realignment # Category E: Assist Minor Road Drivers in Judging/Identifying Gaps Collisions at rural expressway intersections may occur because drivers stopped on the minor road have difficulty judging gap sizes and oncoming vehicle arrival times while deciding whether or not to enter or cross the expressway. The strategies within this category are intended to aid these minor road drivers in recognizing the presence of approaching expressway traffic and judging the adequacy of available gaps in the expressway traffic stream. **E1: Roadside Markers/Poles** **E2: Intersection Decision Support (IDS) Technology** (Missouri DOT System) E3: IDS Technology (Minnesota DOT System) ### **E1: Roadside Markers/Poles** DESCRIPTION: Involves placement of static roadside markers (delineators, roadway lighting poles, etc.) and pavement markings at a fixed distance along the expressway in the field of view of minor road drivers to demarcate a hazardous approach zone and assist them in deciding when to accept a gap^{2,16,26}. CONCERNS ADDRESSED: Right-angle and mainline rear-end crashes related to minor road drivers selecting insufficient gaps or lack of expressway driver awareness of the intersection. POTENTIAL APPLICATION: Two-way stopcontrolled rural expressway intersections with a pattern of crashes in which minor road/median drivers misjudge arrival times of approaching expressway traffic. COST: LOW OOO TIME: <1 Year <u>CAUTION</u>: Drivers on the minor road or in the median must be told (through signing or driver education) not to proceed when an approaching mainline vehicle is within the marked zone. Liability concerns exist with this treatment as the marked zone may not be adequate for speeding vehicles. ## **E2: Intersection Decision Support (IDS) Technology (Missouri DOT System)** **DESCRIPTION:** Involves using "Traffic **Approaching When Flashing" intersection** warning signs with actuated flashers facing minor road and median drivers to alert them to the detected presence of vehicles approaching on the expressway within a specified distance of the intersection. **CONCERNS ADDRESSED: Right-angle** and mainline rear-end crashes related to minor road and/or median drivers selecting insufficient gaps in the expressway traffic stream. **POTENTIAL APPLICATION: Two-way** stop-controlled rural expressway intersections with a pattern of right-angle crashes related to poor gap selection, higher minor road volumes, and/or limited sight distance as a result of horiz./vert. alignment issues or intersection skew. **EFFECTIVENESS: EXPERIMENTAL** 0000 COST: MODERATE TIME: <1 Year ## E3: Intersection Decision Support (IDS) Technology (Minnesota DOT System) DESCRIPTION: Involves installing an automated real-time system utilizing radar to track approaching mainline vehicles, compute their arrival times, and activate the appropriate dynamic message sign to alert minor road and median drivers to their presence and inform them when a safe gap exists for crossing or merging with expressway traffic ¹⁶. concerns addressed: Right-angle and mainline rear-end crashes related to minor road and/or median drivers selecting insufficient gaps in the expressway traffic stream. POTENTIAL APPLICATION: Two-way stop-controlled rural expressway intersections with a pattern of right-angle crashes related to poor gap selection, higher minor road volumes, and/or limited sight distance as a result of horiz./vert. alignment issues or intersection skew ¹⁶. # Category F: Assist Minor Road Drivers in Expressway Merging Collisions at rural expressway intersections may occur because drivers stopped on the minor road have difficulty judging gap sizes and determining what lane oncoming expressway traffic is in while deciding whether or not to merge into expressway traffic. The strategies within this category are intended to aid these minor road drivers by providing separate acceleration lanes for these merging maneuvers. - F1: Provide Right-Turn Acceleration Lanes - F2: Provide Left-Turn Median Acceleration Lanes (MALs) ### F1: Provide Right-Turn Acceleration Lanes DESCRIPTION: Involves adding a right-turn auxiliary speed change lane adjacent to the expressway through lanes which allows right-turning minor road vehicles entering the expressway to accelerate to or near expressway speeds before merging into the through lanes. Parallel and tapered designs have been used². concerns addressed: Near-side right-angle and all rear-end collisions related to right-turn entry onto the expressway from the minor road & minor road delay. POTENTIAL APPLICATION: Two-way stop-controlled intersections with relatively high right-turn volumes (particularly trucks) on the minor road, right-turns on an uphill grade, right-turns with sight-distance issues, or those intersections that experience a high proportion of near-side right-angle, rear-end, or sideswipe collisions related to the speed differential caused by vehicles making right-turn movements onto the expressway². EFFECTIVENESS: TRIED (No quantitative estimates available². **COST: MODERATE** TIME: 1-2 Years **NOTE:** Positive guidance into the lane is essential to help avoid minor road rear-end collisions; therefore, significant work may be needed on minor road approaches as well. # F2: Provide Left-Turn Median Acceleration Lanes (MALs) DESCRIPTION: Involves adding auxiliary speed-change lanes within the median allowing left-turn minor road traffic to accelerate before merging into the through lanes. Parallel & tapered designs have been used. CONCERNS ADDRESSED: Far-side rightangle and mainline rear-end collisions related to left-turn entry from the minor road. Also median and/or minor road delay associated with minor road left-turns²⁷. POTENTIAL APPLICATION: Two-way stop-controlled intersections with relatively high left-turn volumes from the minor road (75-100 trucks/day²²), left-turns on an uphill grade, left-turns with sight-distance issues, or where patterns of far-side right-angle, rear-end, or sideswipe collisions occur as a result of left-turn movements onto the expressway and sufficient median width is available². **NOTE:** Drivers must be able to identify/recognize the MAL from the minor road through signage, markings, or driver education. Design of the median opening should aim to minimize conflicts². **EFFECTIVENESS: TRIED** ≈ 10-25% reduction in right-angle ^{16,27}, ≈ 40-50% reduction in far-side right-angle¹⁶, ≈ 40-80% reduction in mainline rear-end 16,27. **COST:** MODERATE TIME: 1-2 Years # Category G: Positive Guidance Promoting TwoStage Gap Selection Collisions at rural expressway intersections may occur because drivers stopped on the minor road try to simultaneously find an acceptable gap in expressway traffic coming from both the left and the right without stopping/yielding in the median to reevaluate the gap to the right (one-stage gap selection). The strategies within this category are intended to promote two-stage gap selection (pictured) by providing more effective positive guidance to these drivers. Two-stage gap selection is less demanding on the minor road driver because it breaks the crossing or left-turn process into less demanding successive tasks. **G1: Median Delineation with Pavement Marking** **G2: Median Signage** G3: Widen/Modify Expressway Median ### **G1: Median Delineation with Pavement Marking** DESCRIPTION: Includes three potential options to better define the median space with pavement markings, communicate desired vehicle paths and ROW in the median, & create median target value: - 1) Dotted left edge line extensions through median, - 2)
Yield/stop bars in the median, and/or - 3) A double yellow centerline in the median. CONCERNS ADDRESSED: Far-side right-angle & other median collisions related to one-stage gap selection or median vehicle positioning. POTENTIAL APPLICATION: Two-way stop-controlled expressway intersections experiencing operational and/or safety problems related to vehicle alignment or undesirable driving behavior within the median (i.e., side-by-side queuing, angle stopping, through lane encroachment, one-stage gap selection)^{2,16,22}. **EFFECTIVENESS: TRIED** No quantitative estimates available^{2,16,22}. **COST: LOW** TIME: <1 Year <u>NOTE</u>: Place stop/yield lines as close to expressway through lanes as possible (see <u>Strategy D2</u>). Median pavement markings should be milled in to prevent them from being quickly worn off by median traffic. # **G2: Median Signage** DESCRIPTION: Involves supplementing median Yield or Stop signs with warning signs or placards having messages reinforcing median right-of-way by reminding median drivers to look right again for oncoming expressway traffic before proceeding into the far-side expressway lanes; thereby promoting two-stage gap selection. CONCERNS ADDRESSED: Far-side right-angle collisions related to one-stage gap selection (i.e., drivers not stopping in the median to re-evaluate the gap in traffic coming from the right). POTENTIAL APPLICATION: Two-way stop-controlled expressway intersections with enough room in the median for vehicle storage and a pattern of far-side right-angle collisions. **EFFECTIVENESS: TRIED** T No quantitative estimates available 16. **COST:** LOW TIME: <1 Year # G3: Widen/Modify Expressway Median **DESCRIPTION:** Involves widening the expressway median and/or modifying the median type (depressed-turf, flush-painted, or raised-curb) in the vicinity of intersections, while keeping the median opening length consistent with the crossroad width²². **CONCERNS ADDRESSED:** Far-side right-angle crashes and other collisions related to inadequate median storage, median locking, or lack of expressway driver recognition of the intersection. **POTENTIAL APPLICATION: Rural unsignalized** intersections with patterns of right-angle crashes or median locking, those with 800-1000 vpd²⁸ or serving major truck volumes through the median, or intersections where one-stage gap selection is the only option due to restricted median width and additional right-of-way is available for median expansion. Not advised in high-growth corridors which may require future signalization. **EFFECTIVENESS: TRIED** ≈ 0.74% to 1.22% reduction in annual crash frequency with every 1 foot increase in median width^{22,29}. COST: EXTREME **TIME:** > 2 Years | ○ ○ ○ **NOTE:** May be used with conventional left-turn lanes or offset lefts (D3) and/or side road widening (H6). May also be combined with other strategies such as G1, H2, H7, H8, H9, H10, and/or I1. # Category H: Improve Intersection Recognition (Driver Awareness) Collisions at rural expressway intersections may occur because one or more approaching drivers are unaware of the intersection until it is too late to avoid a collision. This is a particular problem if the minor road driver does not realize they are approaching a stop-controlled intersection. It is also a problem for drivers approaching unsignalized intersections from high-speed uncontrolled approaches. The strategies within this category are intended to enhance the visibility of intersections and alert drivers to their presence as well as the increased potential for conflicts. - H1: Provide "Divided Highway" & "Cross Traffic Does Not Stop" Placards on Minor Road - H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Drivers - H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings on Minor Road - H4: Provide Larger/More Reflective/Overhead/Flashing Signage Along Minor Road - **H5: Provide In-Lane Rumble Strips on Minor Road** - **H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road** - H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway - H8: Provide Enhanced Freeway Style or Diagrammatic Advance Intersection Guide Signs on Expressway - H9: Provide "Watch for Entering Traffic" Dynamic Warning Signs & Flashers with/without Speed Advisory on Expressway - **H10: Provide Intersection Lighting** ## H1: Provide "Divided Highway" & "Cross Traffic **Does Not Stop" Placards on Minor Road** **DESCRIPTION: Involves** installation of "Divided Highway" and/or "Cross Traffic Does Not Stop" warning placards in combination with Stop signs on minor road approaches. See MUTCD¹¹ Sections 2B.42 & 2C.59. #### **CONCERNS ADDRESSED:** Right-angle and mainline rearend collisions related to minor road drivers crossing or entering the expressway. #### POTENTIAL APPLICATION: Two-way stop controlled expressway intersections experiencing crashes due to minor road drivers running the stop sign, misinterpreting the expressway as an undivided highway, or misinterpreting the intersection as all-way stop control. **EFFECTIVENESS: TRIED** No quantitative estimates available. COST: LOW **TIME:** < 1 Year | • • • • **NOTE:** According to the MUTCD¹¹, the Divided Highway Placard is optional when the median width is ≥ 30 ft and the divided highway has an AADT < 400 vpd and a speed limit of ≤ 25 mph. It is not required when the median width is < 30 ft (see the MUTCD's definition of median width). # H2: Provide Wrong-Way Entry Prevention Signage/Pavement Markings for Minor Road Drivers DESCRIPTION: Involves installation of signage and pavement markings (such as turn path, median nose delineation, and/or lane use arrow markings) to discourage wrong-way entry onto the expressway (i.e., improper left-turns into the near roadway of the divided highway)³⁰. Visibility of the median and the far roadway from the minor road also helps to discourage wrong-way movements. See MUTCD¹¹ Sections 3B.08 and 3B.20. **CONCERNS ADDRESSED:** All crashes related to lack of minor road driver awareness of the divided nature of the expressway. POTENTIAL APPLICATION: Unsignalized intersections with a high frequency of crashes related to wrong-way entry, driver confusion/indecision, or turn vehicle positioning, especially where wide medians (G3) and/or offset left-turn lanes (D3) are present³⁰. <u>NOTE</u>: Pavement markings should be milled in to prevent them from being quickly worn off. Intersection lighting (<u>Strategy H10</u>) may also be effective at preventing wrong-way entry and may be combined with this treatment²². #### Potential Additions Include³⁰: # H3: Provide Traditional "Stop Ahead" Warning Signs & Pavement Markings on Minor Road **DESCRIPTION:** Involves installation of signage and supplementary pavement markings to alert the minor road driver to the presence of the stop controlled intersection ahead. See MUTCD¹¹ Sections 2A.16, 2C.36 and 3B.20. **CONCERNS ADDRESSED:** Right-angle or minor road rear-end crashes related to minor road driver lack of awareness of the intersection and/or running of the stop sign. POTENTIAL APPLICATION: Unsignalized intersections not clearly visible to approaching minor road drivers or those with patterns of right-angle or minor road rear-end crashes related to lack of minor road driver recognition of the intersection and/or running the stop sign. **EFFECTIVENESS: TRIED** ≈ 13-31% reduction in total crashes & ≈ 8-22% reduction in injury crashes with "Stop Ahead" pavement markings^{8,17,31}. COST: LOW TIME: < 1 Year OR # H4: Provide Larger/More Reflective/Overhead/Flashing Signage Along Minor Road DESCRIPTION: Involves enhancing the conspicuity of standard regulatory, warning, or guide signs (larger, more reflective, overhead, or flashing) along the minor road approaches to alert minor road drivers to the presence of the stop controlled intersection. The flashing red stop sign light may also indicate to minor road drivers that extra caution should be used when selecting a gap. See MUTCD¹¹ Sections 2A.07, 2A.08, 2A.11, 2A.15, 2A.16, 2A.17, 4L.03, and 4L.05. **CONCERNS ADDRESSED:** Right-angle or minor road rearend crashes related to minor road driver lack of awareness of the intersection and/or running the stop sign. POTENTIAL APPLICATION: Unsignalized intersections not clearly visible to approaching minor road drivers, those with patterns of right-angle or minor road rear-end crashes related to lack of minor road driver recognition of the intersection or the stop sign, and where Strategy H3 failed to correct the problem. #### **EFFECTIVENESS: TRIED** ≈ 5% reduction in total crashes, ≈ 8% reduction in rear-end, and ≈ 10-16% reduction in angle crashes with flashing beacons^{8,17,32}. COST: LOW TIME: < 1 Year ### **H5: Provide In-Lane Rumble Strips on Minor Road** **DESCRIPTION:** Involves installation of rumble strips on high-speed minor road approaches to alert minor road drivers to the presence of the stop-controlled intersection ahead. **CONCERNS ADDRESSED:** Right-angle or minor road rear-end crashes related to minor road driver lack of intersection recognition and/or running the stop sign. intersections not clearly visible to approaching minor road drivers or those with patterns of right-angle or minor road rear-end collisions related to lack of minor road driver recognition of the intersection or the stop control and running the stop sign. Should be used sparingly and only considered after other strategies (H3 or H4) have failed to correct the safety problem. #### **EFFECTIVENESS: TRIED** While rumble strips are perceived to be effective, their effect on crashes is inconclusive at this time^{2,8,17,33,34}. COST: LOW TIME: < 1 Year Wheel Path Rumble Strips **Full Width Rumble Strips** # H6: Provide Divisional/Splitter Island at Mouth of Intersection on Minor Road "splitter" or raised channelization island on the minor road approach at the mouth of an expressway intersection to
separate opposing traffic and narrow the minor road approach. These islands can call an approaching minor road driver's attention to the presence of the intersection, help guide traffic through the intersection, & provide a location to install a second stop sign. **CONCERNS ADDRESSED:** Right-angle or minor road rear-end crashes related to minor road driver lack of awareness of the intersection and/or stop sign violations. POTENTIAL APPLICATION: Stopcontrolled intersections (particularly skewed intersections) not clearly visible to approaching minor road drivers or those with patterns of right-angle or minor road rear-end collisions related to lack of minor road driver recognition of the intersection or the stop control. **NOTE:** May be used in combination with other strategies, particularly **D2** and **D4**, but also **H3**, **H4**, and **H5**. # H7: Provide Traditional "Intersection Ahead" Warning Signs on Expressway "Intersection Ahead" warning signs on the expressway approaches to alert expressway drivers to the presence of the intersection ahead and the potential for conflicts from turning, crossing, or entering traffic. An advance street name placard is recommended to help identify the intersecting roadway**. See MUTCD¹¹ Sections 2A.16, 2C.46, and 2C.58. **CONCERNS ADDRESSED:** Right-angle or mainline rearend crashes related to lack of expressway driver awareness of the intersection and unexpected stops, turns, and weaving. POTENTIAL APPLICATION: Two-way stop controlled intersections not clearly visible to approaching expressway drivers or those with patterns of right-angle, or mainline rear-end crashes related to lack of expressway driver recognition of the intersection. **EFFECTIVENESS: TRIED** No quantitative estimates available⁸. COST: LOW TIME: < 1 Year * Optional Signs for Different Intersection Configurations # H8: Provide Enhanced Freeway-Style or Diagrammatic Advance Intersection Guide Signs on Expressway DESCRIPTION: MUTCD¹¹ Section 2E.29 states that intersection guide sign types for conventional roads be used at expressway intersections, but gives the option of providing enhanced freeway-style or diagrammatic advance intersection guide signs to alert expressway drivers to the presence of the intersection and the potential for conflicts from turning, crossing, or entering traffic. CONCERNS ADDRESSED: Right-angle or mainline rear-end crashes related to lack of intersection recognition by expressway drivers and unexpected stops, turns, or weaving. POTENTIAL APPLICATION: Two-way stop controlled intersections not clearly visible to approaching expressway drivers, higher/peak minor road volumes, patterns of right-angle or mainline rear-end crashes related to lack of expressway driver recognition of the intersection and Strategy H7 failed to correct the problem. This treatment should be used rather sparingly to command attention. TIME: < 1 Year ### **H9: Provide "Watch For Entering Traffic" Dynamic Warning** Signs & Flashers with/without Speed Advisory on Expressway **DESCRIPTION:** Involves installation of advance intersection warning signs with actuated flashers and/or advisory speed placards to alert expressway drivers to proceed with caution due to the detected presence of vehicles on the minor road or in the median at the intersection ahead. **CONCERNS ADDRESSED: Right-angle or** mainline rear-end collisions related to a combination of lack of expressway driver awareness of the intersection and minor road drivers selecting insufficient gaps. POTENTIAL APPLICATION: Two-way stopcontrolled intersections not clearly visible to approaching expressway drivers, higher/peak minor road volumes, or patterns of right-angle or mainline rear-end collisions related to lack of expressway driver recognition of the intersection and Strategies H7 or H8 failed to correct the problem. There is likely a minor road volume threshold where the beacons could be set to flash continuously and minor road/median detection would not be necessary. **EFFECTIVENESS: TRIED** ≈ 40-60% overall crash reduction with ≈ 30-60% reduction in right-angle crashes & reduced crash severity 16. ## **H10: Provide Intersection Lighting** **DESCRIPTION:** Involves improving visibility of an intersection and enhancing intersection sight distance at night by providing destination or full intersection lighting. **CONCERNS ADDRESSED:** All intersection-related collisions (especially right-angle, rear-end, and wrong-way entry) related to lack of driver recognition of the intersection, especially during night-time hours. **POTENTIAL APPLICATION: Unsignalized, unlit** intersections with substantial patterns of night-time crashes related to lack of driver recognition of the intersection or the divided nature of the expressway. **EFFECTIVENESS: PROVEN** ≈ 8-60% reduction in night-time crash rates & reduced severity^{2,8,16}. COST: HIGH **TIME:** 1-2 Years | ○ ○ ○ **NOTE:** Destination lighting is only intended to guide a driver to an intersection and may not provide sufficient illumination to increase visibility. Full intersection lighting is specifically designed to increase visibility. May be combined with Strategy H2. # Category I: Reduce Expressway Operating Speeds On some high-speed expressway intersection approaches, implementing measures to reduce operating speeds may provide an approaching expressway driver with additional time to react to unanticipated conflicts and make safer intersection-related decisions. Reduced operating speeds would also increase the time-to-arrival of an approaching expressway vehicle, thereby increasing the time gap for minor road traffic to cross/merge. It may also reduce crash severity. The strategies within this category are intended to reduce operating speeds on high-speed rural expressway intersection approaches. - **I1: Expressway Speed Zoning Through Intersections** - **12: Targeted Intersection Speed Enforcement** ## 11: Expressway Speed Zoning Through Intersections **DESCRIPTION:** Involves reducing the expressway speed limit in the vicinity of an intersection or posting an advisory speed limit through an intersection. See MUTCD¹¹ Section 2C.38. **CONCERNS ADDRESSED: Right-angle, mainline rear**end, and left-turn leaving collisions related to high expressway operating speeds, large speed differentials, or lack of expressway driver awareness of the intersection. POTENTIAL APPLICATION: Two-way stop controlled expressway intersections experiencing a high frequency of crashes potentially related to high speeds (particularly right-angle, mainline rear-end, and left-turn leaving collisions), where intersection recognition seems to be an issue for expressway drivers or where sight distance issues exist. **EFFECTIVENESS: TRIED** No quantitative estimates available². **COST: LOW** TIME: <1 Year | ●○○ **NOTE:** A dynamic speed zone sign displaying the reduced speed limit only during hours which it is enforced could potentially be used during peak hours ## 12: Targeted Intersection Speed Enforcement DESCRIPTION: Involves law enforcement agencies targeting key intersections of concern with speed enforcement & monitoring. CONCERNS ADDRESSED: Highspeeds and related severe crashes (right-angle and mainline rear-end). #### POTENTIAL APPLICATION: Unsignalized intersections where speed violations/citations and patterns of severe crashes (right-angle, rear-end, and left-turn leaving) related to speed violations indicate unusually hazardous conditions due to illegal driving practices². #### **EFFECTIVENESS: PROVEN** Reduces mean speed and number of speed-related collisions for a short duration (days/weeks)². This strategy tends to lose its effectiveness quickly when the enforcement is not present. COST: LOW TIME: <1 Year ### **References** - 1. Hochstein, J., T. Maze, D. Plazak, & R. Souleyrette, "Rural Expressway Intersection Safety Toolbox", Institute for Transportation at Iowa State University, Iowa Department of Transportation, Ames, IA, Working Document (Unpublished). - 2. Neuman, T.R., R. Pfefer, K.L. Slack, K.K. Hardy, D.W. Harwood, I.B. Potts, D.J. Torbic, and E.R.K. Rabbani, NCHRP Report 500: Guidance for Implementation of the AASHTO Strategic Highway Safety Plan, Volume 5: A Guide for Addressing Unsignalized Intersection Collisions, Transportation Research Board of the National Academies, Washington, D.C., 2003. - 3. AASHTO, A Policy on Geometric Design of Highways and Streets, Fifth Edition, AASHTO, Washington, D.C., 2004. - 4. Preston, H., R. Newton, C. Albrecht, and D. Keltner, *Statistical Relationship Between Vehicular Crashes & Highway Access*, Report MN/RC-1998-27, Local Road Research Board, Minnesota Department of Transportation, August 1998. - 5. California DOT, California DOT Highway Design Manual, Sacramento, CA, 2007. - 6. McDonald, J.W., "Relation Between Number of Accidents and Traffic Volume at Divided Highway Intersections", Highway Research Board Bulletin 74, Highway Research Board, National Research Council, Washington, D.C., 1953, pp. 7-17. - 7. Bonneson, J.A., P.T. McCoy, D.S. Eitel, "Interchange Versus At-Grade Intersection on Rural Expressways", *Transportation Research Record* 1395, Transportation Research Board, National Research Council, Washington, D.C., 1993, pp. 39-47. - 8. United States Department of Transportation Federal Highway Administration, *Crash Modification Factors Clearinghouse Homepage*, http://www.cmfclearinghouse.org/index.cfm. (Accessed June 10, 2011). - 9. Hans, Z. and C. Albrecht, *Summary Risk Mapping Data*, Institute for Transportation at Iowa State University, Ames, IA, (Unpublished). - 10. Maze, T.H., H. Preston, R.J. Storm, N. Hawkins, and G. Burchett, "Safety Performance of Divided Expressways", *ITE Journal, Vol. 75, No. 5*, May 2005, pp. 48-53. - 11. FHWA, Manual on Uniform Traffic Control Devices for Streets and Highways, 2009 Edition, U.S. DOT, Washington, D.C., 2009.
http://mutcd.fhwa.dot.gov/kno 2009.htm. (Accessed June 16, 2011). - 12. Briglia, P.M., "4-Way Stop Signs Cut Accident Rate 58 Percent at Rural Intersections", ITE Journal, November 1984. - 13. Harwood, D.W., F.M. Council, E. Hauer, W.E. Hughes, and A. Vogt, *Prediction of the Expected Safety Performance of Rural Two-Lane Highways*, FHWA-RD-99-207, FHWA, 2000. - 14. Souleyrette, R.R., and T. Knox, *Safety Effectiveness of High-Speed Expressway Signals*, Center for Transportation Research & Education, Iowa State University, Ames, IA, August 2005. - 15. Potts, I.B., D.W. Harwood, D.J. Torbic, K.R. Richard, J.S. Gluck, H.S. Levinson, P.M. Garvey, and R.S. Ghebrial, *NCHRP 524:* Safety of U-Turns at Unsignalized Median Openings, Transportation Research Board of the National Academies, Washington, D.C., 2004. ### **References (Continued)** - 16. Maze, T.H., J.L. Hochstein, R.R. Souleyrette, H. Preston, and R. Storm, *NCHRP 650: Median Intersection Design for Rural High-Speed Divided Highways*, Transportation Research Board of the National Academies, Washington, D.C., 2010. - 17. FHWA, Low-Cost Safety Enhancements for Stop-Controlled and Signalized Intersections, FHWA-SA-09-020, U.S. DOT, May 2009. - 18. Bared, J.G., and E.I. Kaisar, "Advantages of Offset T-Intersections with Guidelines", International Conference: Traffic Safety on Three Continents, Moscow, Russia, Proceedings CD-ROM, November 2001. - 19. Van Maren, P.A., Correlation of Design & Control Characteristics with Accidents at Rural Multi-Lane Highway Intersections in Indiana, Purdue University and Indiana State Highway Commission Joint Highway Research Project, Indianapolis, IN, July 1980. - 20. McCoy, P.T., U.R. Navarro, and W.E. Witt, "Guidelines for Offsetting Opposing Left-Turn Lanes on Four-Lane Divided Roadways", *Transportation Research Record* 1356, Transportation Research Board, National Research Council, 1992, pp. 28-36. - 21. Illinois Department of Transportation, *Bureau of Design and Environment Manual 2002 Edition*, Springfield, IL, December 2002. - 22. Harwood, D.W., M.T. Pietrucha, M.D. Wooldridge, R.E. Brydia, and K. Fitzpatrick, *NCHRP 375: Median Intersection Design*, Transportation Research Board, National Research Council, Washington, D.C., 1995. - 23. Iowa Department of Transportation, *Iowa DOT Design Manual*, Chapter 6C-5, Ames, IA, May 2007. - 24. Burchett, G.D., and T.H. Maze, "Rural Expressway Intersection Characteristics as Factors in Reducing Safety Performance", Transportation Research Record: Journal of the Transportation Research Board, No. 1953, TRB, Washington, D.C., 2006, pp. 71-80. - 25. AASHTO, Highway Safety Manual, First Edition, Volume 3, AASHTO, Washington, D.C., 2010. - 26. Zwahlen, H.T., E. Oner, F.F. Badurdeen, and A. Russ, *Human Factors Opportunities to Improve Ohio's Transportation System*, Ohio University, Ohio DOT, Columbus, OH, June 2005. - 27. Hanson, C., Median Acceleration Lane Study Report, Minnesota DOT District 6 Traffic Office, Rochester, MN, July 2002. - 28. Kansas Department of Transportation, *KDOT Design Manual*, Volume 1 (Part A and B), Road Section, Topeka, KS, November 2006. ### **References (Continued)** - 29. Maze, T.H., N.R. Hawkins, and G.D. Burchett, *Rural Expressway Intersection Synthesis of Practice and Crash Analysis: Final Report*, Center for Transportation Research & Education, Iowa State University, Ames, IA, October 2004. - 30. Staplin, L., K. Lococo, S. Byington, and D. Harkey, *Guidelines and Recommendations to Accommodate Older Drivers and Pedestrians*, FHWA-RD-01-051, Turner Fairbank Highway Research Center, McLean, VA, May 2001. - 31. Gross, F., R. Jagannathan, C. Lyon, and K. Eccles, "Safety Effectiveness of Stop Ahead Pavement Markings", *Transportation Research Record: Journal of the Transportation Research Board, No. 2056*, TRB, Washington, D.C., 2008, pp. 25-33. - 32. Srinivasan, R., D. Carter, B. Persaud, K. Eccles, and C. Lyon, "Safety Evaluation of Flashing Beacons at Stop-Controlled Intersections", *Transportation Research Record: Journal of the Transportation Research Board, No. 2056*, TRB, Washington, D.C., 2008, pp. 77-86. - 33. Srinivasan, R., J. Baek, and F. Council, "Safety Evaluation of Transverse Rumble Strips on Approaches to Stop-Controlled Intersections in Rural Areas", 89th Annual Meeting of the Transportation Research Board, Proceedings CD-ROM, TRB, Washington, D.C., 2010. - 34. Ray, B., W. Kittelson, J. Knudsen, B. Nevers, P. Ryus, K. Sylvester, I. Potts, D. Harwood, D. Gilmore, D. Torbic, F. Hanscom, J. McGill, and D. Stewart, *NCHRP 613: Guidelines for Selection of Speed Reduction Treatments at High-Speed Intersections*, Transportation Research Board of the National Academies, Washington, D.C., 2008. - 35. Bared, J., W. Hughes, R. Jagannathan, and F. Gross, "Two Low Cost Safety Concepts for Two-Way Stop-Controlled Rural Intersections on High-Speed Two-Lane Two-Way Roadways", FHWA-HRT-08-063, Federal Highway Administration, Washington, D.C., September 2008. http://www.fhwa.dot.gov/publications/research/safety/08063/ (Accessed June 14, 2011).