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• Motivation:

 Due to Li-ion batteries’ highlighted advantages such as high

energy density, slow self-discharging rate, and no memory effect,

they become primary energy storage solutions to electric vehicles

(EVs)

Motivation for Battery Safety

 Safe and reliable operation of lithium-

ion batteries is of vital importance, as 

unexpected battery failures could 

result in catastrophic accidents of EVs

• Two tasks:

 Battery health assessment: indicates 

the capability of the EVs

 Battery failure diagnostics: avoid an 

catastrophic failure of a car
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Li-ion Battery Health Assessment

• System health assessment: collects sensory 

signals from the system, extracts health-

relevant features and system characteristics 

from the sensory signals 

• Challenges:

 system modeling is generally 

complicated and even incapable to 

access due to high dimensional I/O 

spaces and nonlinear processes of a 

complex system

 high system dynamics increase the 

mutability of system inherent 

parameters that cause invalidation of 

original system models along a long 

time line
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Battery System Basics

Measurements: current, voltage

SoC: the ratio of the 

stored energy to the  

rated capacity of a 

cell

SoH: the ratio of the 

available capacity to 

the rated capacity 

after degradation of a 

cell
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Battery System Dynamics

 1 1 1 1
, , ,

k k k k k k k k
x x u w r  

   
   State Transition:  F   

 , ,k k k k ky x u v Measurement: G                         

• SoC and SoH Estimations
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* Figure Courtesy of Texas Instruments

* Figure Courtesy of Infinite Power Solutions.

* Figure courtesy of IBT Power
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Self-Cognizant Dynamic System (SCDS) Approach

• The schematic diagram of a self-cognizant dynamic system
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Intelligent System Modeler

• Battery terminal voltage modeling:
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Modeling of the Li-ion battery

• Battery 05 is employed to train the neural network

• Error of terminal voltage estimation by ANN

Battery 05 Battery 06

Battery 05 Battery 06 Battery 07 Battery 18

RMS 0.0289 0.1034 0.1058 0.0871
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Implementation of the SCDS Approach

• Developed battery system state-space model:
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Measurement:

yk : the terminal voltage

wk and rk : the process 

noise

vk : the measurement 

noise

Ck: the maximum 

capacity

Wk: the weights of 

FFNN
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SCDS for SoC and SoH Estimation

The 1st cycle The 100th cycleThe 50th cycle

• The short-term SoC and SoH estimation
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SCDS for SoC and SoH Estimation

• The long-term SoH estimation

• Observations:
 Capacity fade with hundreds of cycles

 Ability to track the true capacity after initial cycles

 Quick convergence from wrong initial guesses
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Li-ion Battery Failure Diagnostics

• Challenges:

– how to locate characteristics of different system failure modes

– how to model a rapidly varying system when normal system 

processes are out of control

Battery Failure diagnostics: 

identify characteristics of 

system failure by monitoring 

and estimating system states, 

and diagnose various failure 

modes
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Li-ion Battery Failure Diagnostics: Li-plating

• Motivation:
Li-plating is a typical and common failure mechanism that 

could lead to capacity fade due to active material loss, or even 

short circuit due to dendrites formation

Li-plating happens under various operating conditions such as 

charging under low temperature or high current

• Objectives:
Investigate Li-plating mechanism based on 

electrochemical principles

Build criterions to judge Li-plating occurrence

Predict the onset of Li-plating with estimation

of current battery states
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Reviews of the Electrochemical Model

• Li-ion battery physical 

internal structure:
 Three domains: negative 

electrode, separator, 

positive electrode

 Two phases: solid phase, 

electrolyte phase

• Electrochemical Model
 Based on ohmic porous 

electrode theory and 

Bulter-Volmer kinetics

 A set of partial differential 

equations (PDEs) is used 

for modeling
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Li-plating Mechanism

Li-ions

Negative Electrode

Plated Li

Possible side reactions for Li-plating
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• The necessary assumptions for 

creating a Li-plating model
 Only side reactions for Li-plating 

occur

 The concentration gradient (or C-

rate) on the surface of electrodes 

approximates to the extraction or 

intercalation rate

• The criterion of Li-plating 

occurrence
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Important Coefficients Involved in Li-plating

• Diffusion coefficients in solid 

phase:[1]

Ds,n = 1.0e-14 m2/s 

range from (10-10-10-15) 

Ds,p = 3.9e-14 m2/s

range from (10-12-10-15)

• Intercalation/extraction 

reaction rate: [2] 

kn = 5.0307*10-11 

mol/(L*s)/(mol/L)1.5

[1] M., Park, et. al., “A review of conduction phenomena in Li-ion batteries

[2] V. R., Subramanian, et. al., “Mathematical model reformulation for Lithium-

ion battery simulations: Galvanostatic boundary conditions
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Internal State Variable (ISV) Mapping Approach

•Problem Statement:

•Rationale:
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ISV Mapping Approach

20

Simulation Model Experimental Data

Collect I-V 

data from 

battery 

electrical tests

Construct a 

simulation 

model in 

COMSOL

Designed model 

parameters 

Surrogate Model for 

Simulation I-V Data

Construct a 

NN model 

from pseudo 

I-V data 

Surrogate Model for 

Experimental Data

Construct a 

NN model 

from experi-

mental data 

Kriging Model for 

ISV Mapping

Construct 

a mapping 

surface 

and obtain 

true model 

parameters
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11 11, , , ,W
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Designed model 

parameters
True  model 

parameters

Construct a 

Kriging model

Map weights 

variable to true 

model parameters

Offline Stage Online Stage
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Battery Multi-physics Simulation

• The geometry of Li-ion battery 2D mode:

• To observe the Li-plating phenomenon at the specific area, 

the testing model is divided into the local test area and the 

rest area

• A set of V-I data under different parameters is generated as a 

training pool; another set of V-I data under random 

parameters is also generated to be online experimental data
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ISV Mapping Validation

Estimation of diffusion coefficient in 

negative electrode

Estimation of diffusion coefficient in 

positive electrode
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Li-plating Onset Diagnosis

• Getting estimation of Dn and Dp, we use different pairs of 

estimation to predict the concentration rate performance  
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C rate for NE

C rate for PE •C-rate for positive electrode doesn’t exceed C-

rate for negative electrode in the whole charge 

process 

•C-rate for positive electrode exceeds C-rate for 

negative electrode in the whole charge process 

•Li-plating  occurrence at      t = 4s
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Future Work

• Challenges:

– system degradation model is generally difficult to test and 

analyze

– changes of operational and environmental parameters could 

significantly impact system degradation model

Battery prognostics: capture the 

system degradation trend based on 

the current and previous health 

conditions of the system, and 

predict its future health condition 

and remaining useful life (RUL)
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* Figure Courtesy of NASA Ames: Prognostics 

Center of Excellence (PCoE)
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