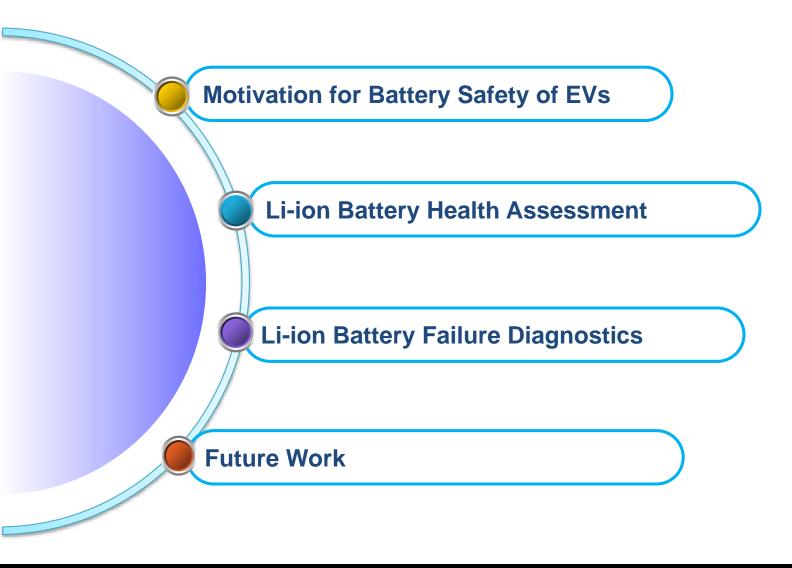


Battery System Safety and Health Management for Electric Vehicles

Guangxing Bai and Pingfeng Wang

Department of Industrial and Manufacturing Engineering
Wichita State University



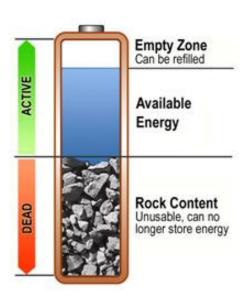
Motivation for Battery Safety

- Motivation:
 - ❖ Due to Li-ion batteries' highlighted advantages such as high energy density, slow self-discharging rate, and no memory effect, they become primary energy storage solutions to electric vehicles (EVs)
 - ❖ Safe and reliable operation of lithiumion batteries is of vital importance, as unexpected battery failures could result in catastrophic accidents of EVs

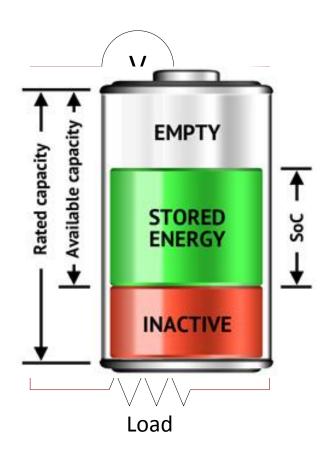
- Two tasks:
 - ❖ Battery health assessment: indicates the capability of the EVs
 - ❖ Battery failure diagnostics: avoid an catastrophic failure of a car

Li-ion Battery Health Assessment

- System health assessment: collects sensory signals from the system, extracts health-relevant features and system characteristics from the sensory signals
- Challenges:
 - system modeling is generally complicated and even incapable to access due to high dimensional I/O spaces and nonlinear processes of a complex system
 - high system dynamics increase the mutability of system inherent parameters that cause invalidation of original system models along a long time line



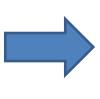
Battery System Basics



Measurements: current, voltage

SoC: the ratio of the stored energy to the rated capacity of a cell





SoH: the ratio of the available capacity to the rated capacity after degradation of a cell

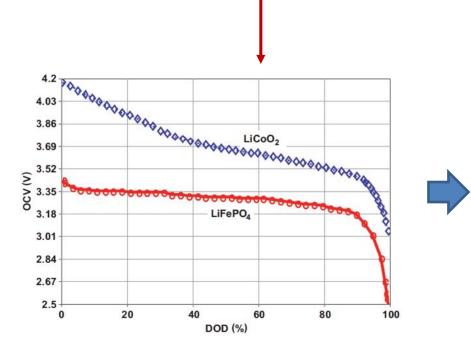
$$SoH_N = \frac{C_{available,N}}{C_{rated}}$$

Battery System Dynamics

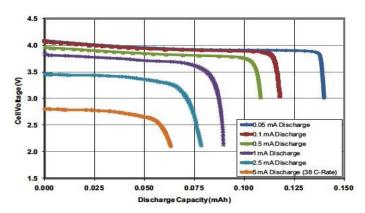
SoC and SoH Estimations

State Transition:
$$x_k = \mathbf{F}(x_{k-1}, u_{k-1}, \theta_{k-1}) + w_k, \ \theta_k = \theta_{k-1} + r_k$$

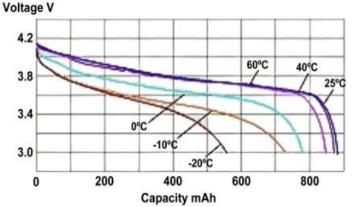
Measurement: $y_k = G(x_k, u_k, \theta_k) + v_k$



^{*} Figure Courtesy of Texas Instruments



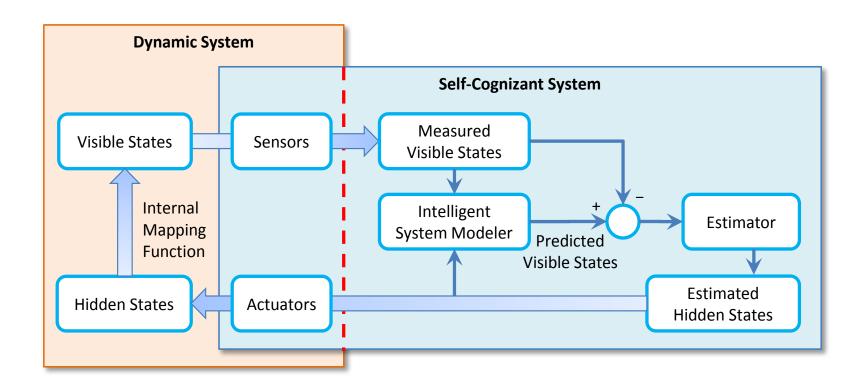
* Figure Courtesy of Infinite Power Solutions.



* Figure courtesy of IBT Power

Self-Cognizant Dynamic System (SCDS) Approach

The schematic diagram of a self-cognizant dynamic system

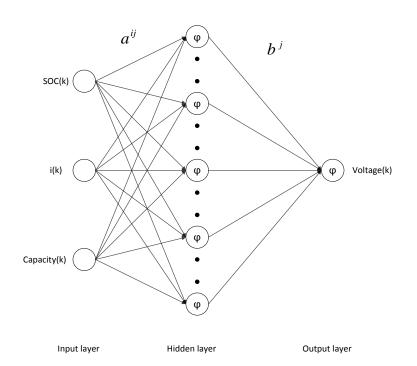


Intelligent System Modeler

Battery terminal voltage modeling:

$$V_k = G(SOC_k, i_k, C_k)$$

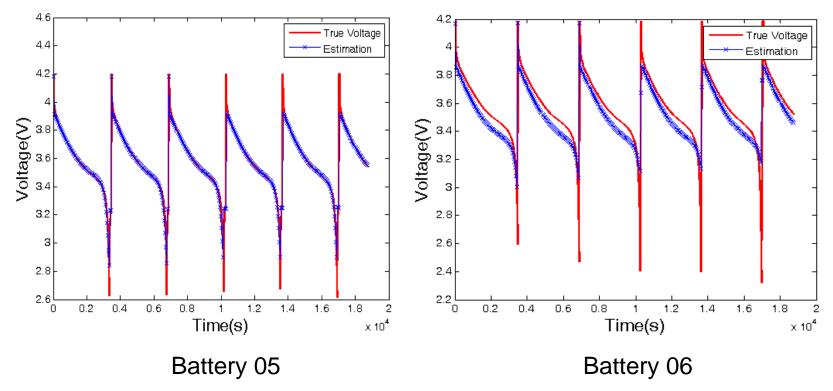
$$\approx G_{NN}(SOC_k, i_k, C_k)$$



a^{ij}, b^j: the weights on the branches linking with input nodes, hidden nodes and output nodes
Transfer function φ is sigmoid function

Modeling of the Li-ion battery

• Battery 05 is employed to train the neural network



Error of terminal voltage estimation by ANN

	Battery 05	Battery 06	Battery 07	Battery 18
RMS	0.0289	0.1034	0.1058	0.0871

Implementation of the SCDS Approach

• Developed battery system state-space model:

Transition:
$$SOC_k = \mathbf{F}(SOC_{k-1}, i_{k-1}, C_{k-1}) + w_{k-1}$$

$$= SOC_{k-1} + \frac{\eta \triangle t}{C_{k-1}} i_{k-1} + w_{k-1}$$

$$\mathbf{\theta}_k = \mathbf{\theta}_{k-1} + \mathbf{r}_{k-1} = [C_{k-1}, \mathbf{W}_{k-1}]^{\mathbf{T}} + \mathbf{r}_{k-1}$$

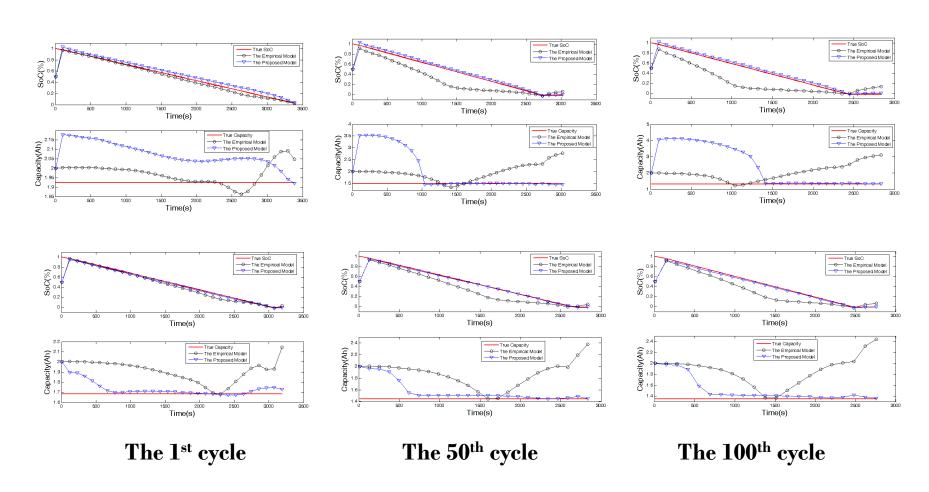
Measurement: $y_k = \mathbf{G}(SOC_k, u_k, \mathbf{\theta}_k) + v_k$

 y_k : the terminal voltage w_k and r_k : the process noise v_k : the measurement noise C_k : the maximum capacity \mathbf{W}_k : the weights of

FFNN

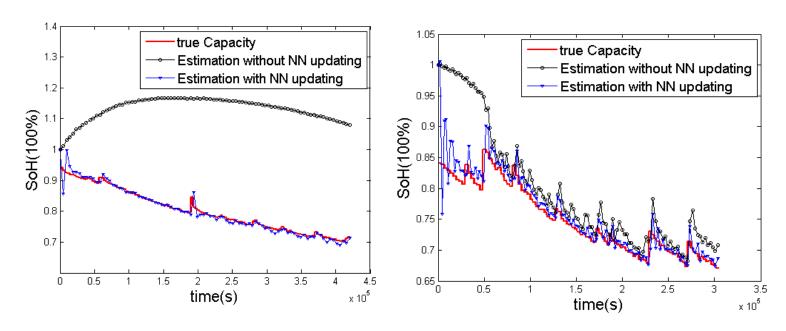
SCDS for SoC and SoH Estimation

The short-term SoC and SoH estimation



SCDS for SoC and SoH Estimation

The long-term SoH estimation



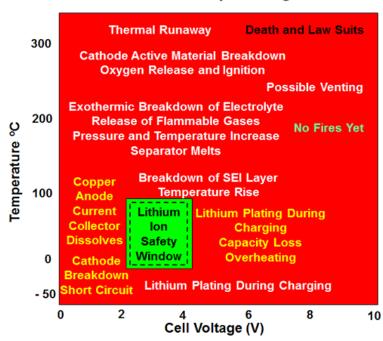
- Observations:
 - Capacity fade with hundreds of cycles
 - * Ability to track the true capacity after initial cycles
 - **Quick convergence** from wrong initial guesses

Li-ion Battery Failure Diagnostics

Battery Failure diagnostics:

identify characteristics of system failure by monitoring and estimating system states, and diagnose various failure modes

Lithium Ion Cell Operating Window



Challenges:

- how to locate characteristics of different system failure modes
- how to model a rapidly varying system when normal system processes are out of control

Li-ion Battery Failure Diagnostics: Li-plating

• Motivation:

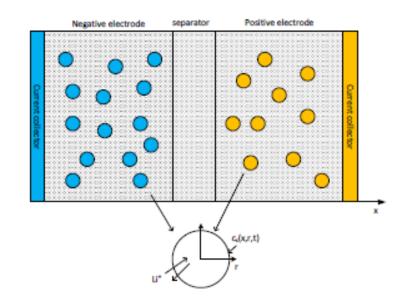
- Li-plating is a typical and common failure mechanism that could lead to capacity fade due to active material loss, or even short circuit due to dendrites formation
- *Li-plating happens under various operating conditions such as charging under low temperature or high current

• Objectives:

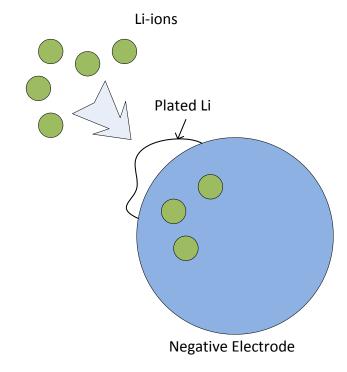
- ❖ Investigate Li-plating mechanism based on electrochemical principles
- ❖ Build criterions to judge Li-plating occurrence
- ❖ Predict the onset of Li-plating with estimation of current battery states

Reviews of the Electrochemical Model

- Li-ion battery physical internal structure:
 - Three domains: negative electrode, separator, positive electrode
 - Two phases: solid phase, electrolyte phase
- Electrochemical Model
 - ❖ Based on ohmic porous electrode theory and Bulter-Volmer kinetics
 - ❖ A set of partial differential equations (PDEs) is used for modeling



Li-plating Mechanism



$$Li^+ + e^- \rightarrow Li \downarrow$$

$$O + Li \downarrow \rightarrow Li - O$$

- The necessary assumptions for creating a Li-plating model
 - Only side reactions for Li-plating occur
 - ❖ The concentration gradient (or C-rate) on the surface of electrodes approximates to the extraction or intercalation rate

$$R_{ex} = \frac{\partial \overline{c}_{s,surf,p}}{\partial t}$$
 $R_{in} = \frac{\partial \overline{c}_{s,surf,n}}{\partial t}$

• The criterion of Li-plating occurrence $|R_{ex}| > |R_{in}|$

Possible side reactions for Li-plating

Important Coefficients Involved in Li-plating

• Diffusion coefficients in solid phase:^[1]

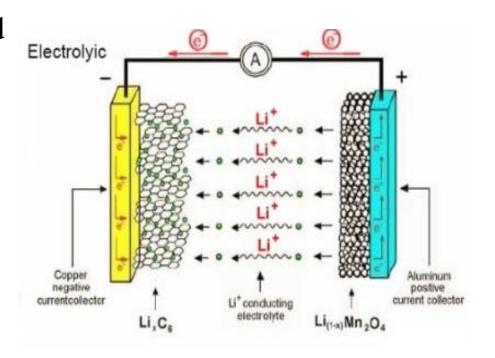
$$D_{s,n} = 1.0e-14 \text{ m}^2/\text{s}$$

range from $(10^{-10}-10^{-15})$
 $D_{s,p} = 3.9e-14 \text{ m}^2/\text{s}$
range from $(10^{-12}-10^{-15})$

• Intercalation/extraction reaction rate: [2]

$$k_n = 5.0307*10^{-11}$$

 $mol/(L*s)/(mol/L)^{1.5}$



[1] M., Park, et. al., "A review of conduction phenomena in Li-ion batteries

[2] V. R., Subramanian, et. al., "Mathematical model reformulation for Lithiumion battery simulations: Galvanostatic boundary conditions

Internal State Variable (ISV) Mapping Approach

•Problem Statement:

$$\mathcal{F}(x,t,\frac{\partial \mathbf{u}}{\partial x},\frac{\partial \mathbf{u}}{\partial t},\mathbf{\theta}) = 0 \quad \stackrel{\text{estimate}}{\longrightarrow} \quad \mathbf{\theta}$$

•Rationale:

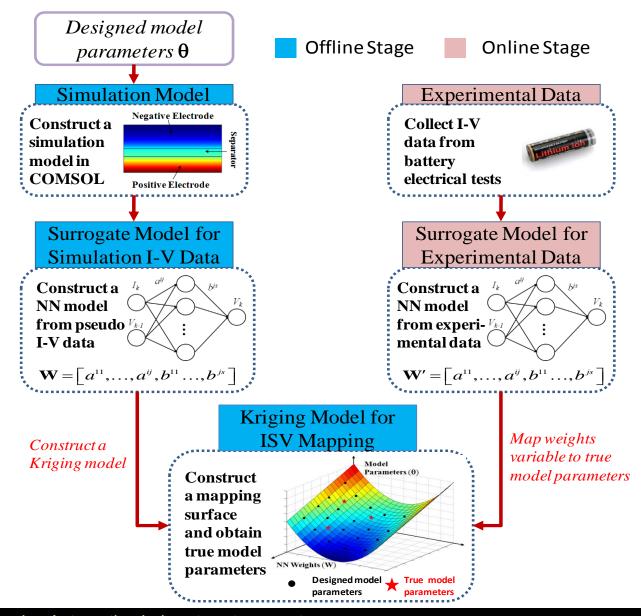
output:
$$V(t) = \Phi_{s,x=L}(t) - \Phi_{s,x=0}(t)$$

$$L\Phi(x,t) = f(x,t,I(t),\mathbf{\theta}) \to \frac{\mathrm{d}\Phi_{x=L}(t)}{\mathrm{d}t} = f(t,I(t),\mathbf{\theta})$$

$$\Phi_{x=L,k} - \Phi_{x=L,k-1} = \Delta t \times f(I_k, \mathbf{\theta})$$

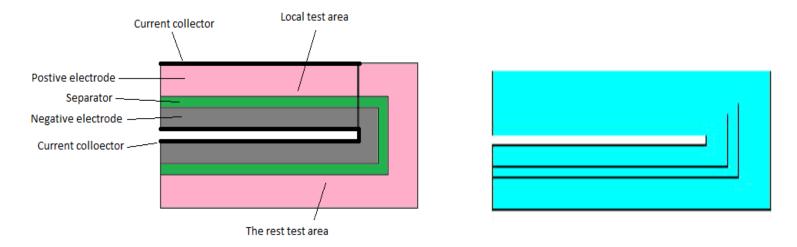
$$V_k = G(I_k, V_{k-1}, \boldsymbol{\theta})$$

ISV Mapping Approach

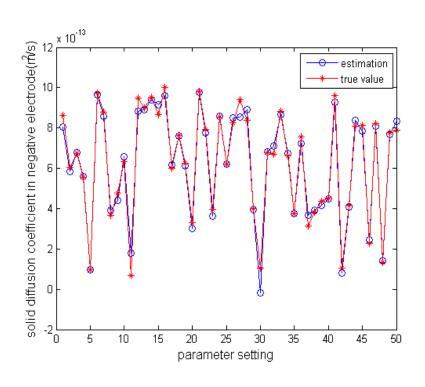


Battery Multi-physics Simulation

• The geometry of Li-ion battery 2D mode:



- To observe the Li-plating phenomenon at the specific area, the testing model is divided into the local test area and the rest area
- A set of V-I data under different parameters is generated as a training pool; another set of V-I data under random parameters is also generated to be online experimental data



(s/w)epoutose estimation true value

10

8

6

5

10

15

20

25

30

35

40

45

50

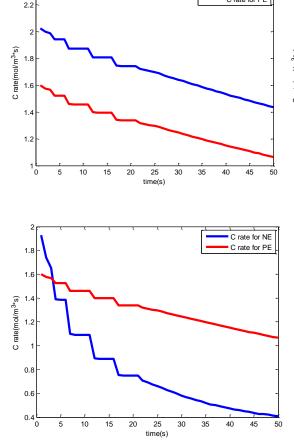
parameter setting

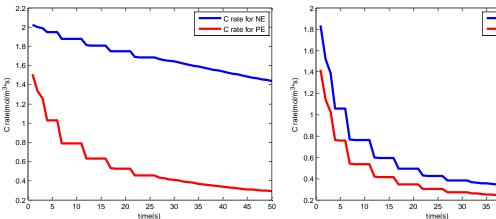
Estimation of diffusion coefficient in negative electrode

Estimation of diffusion coefficient in positive electrode

Li-plating Onset Diagnosis

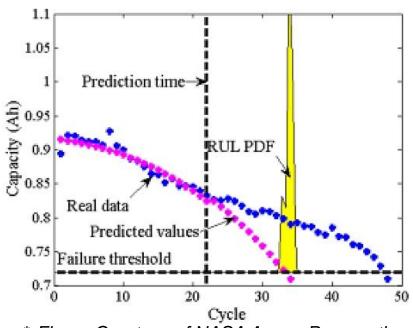
• Getting estimation of D_n and D_p , we use different pairs of estimation to predict the concentration rate performance





- •C-rate for positive electrode **doesn't exceed** C-rate for negative electrode in the whole charge process
- •C-rate for positive electrode **exceeds** C-rate for negative electrode in the whole charge process
- •Li-plating occurrence at t = 4s

Battery prognostics: capture the system degradation trend based on the current and previous health conditions of the system, and predict its future health condition and remaining useful life (RUL)



* Figure Courtesy of NASA Ames: Prognostics Center of Excellence (PCoE)

- Challenges:
 - system degradation model is generally difficult to test and analyze
 - changes of operational and environmental parameters could significantly impact system degradation model

- This research is partially supported by:
 - Department of Transportation through Midwest Transportation Center
 - National Science Foundation under Grant CMMI-1200597
 - National Science Foundation under Grant CMMI-1351414

THANK YOU