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INTRODUCTION 

A field study at a site located in Weirton, West Virginia was conducted from March 17 to 
20, 2009 to evaluate the support conditions of three different geosynthetics placed at the 
interface between soft clayey subgrade and crushed limestone. The project involved preparing 
and testing four different test sections.  All four sections evaluated as part of this study included 
crushed limestone over a relatively weak, lean clay subgrade.  One of the test sections included a 
control section where the crushed stone was placed directly on the subgrade.  The remaining 
three sections included a woven geotextile (W-PP-GT), Tensar BX1200 geogrid, and Tensar TX 
160 geogrid at the interface between the subgrade and crushed limestone.  Case/Ammann and 
Caterpillar roller-integrated compaction monitoring systems, in-ground piezoelectric earth 
pressure cells (EPCs), and various in-situ point measurement techniques were used to evaluate 
the support conditions of the test sections.  The Case/Ammann smooth drum roller was equipped 
with roller-integrated stiffness (ks) measurement system and the Caterpillar smooth drum roller 
was equipped with roller-integrated CMV measurement system.  The rollers were equipped with 
real time kinematic (RTK) global positioning system (GPS) and on-board visual display and 
documentation systems. The EPCs were installed to measure in-ground total stresses before, 
during, and after compaction and trafficking.   

 
Goals of this field investigation were to: 

 
 Obtain roller-integrated measurement values (MVs), in-ground instrumentation, and 

various in-situ point measurements to document performance of geosynthetic 
reinforcement of aggregate base material over relatively weak and non-uniform 
subgrade soils, and 

 Develop relationships between measured deformations from truck traffic and the 
various in-situ measurements. 
  

Tasks 

The specific tasks completed during this research project are summarized below. 

 Mobilized the rollers and geotechnical mobile lab to the project site in West Virginia. 
 Obtained CMV and ks roller-integrated compaction measurements for the underlying 

subgrade layer prior to placement of geogrid/geotextile. 
 Worked with the contractor to layout the test strip locations, each with lengths of 

about 18.3 meters (60 feet).   
 Placed in-ground earth pressure cells in the subgrade prior to placement of crushed 

stone fill and geotextile/geogrid.  
 After placing the geogrid/geotextile, aggregate base layers were placed and 

compacted using the Case and Caterpillar rollers with variable machine operations 
(frequency, amplitude, and speed).  Generated field compaction curves for each 
roller-integrated compaction measurements and test section.  

 Performed in-situ point measurements and develop compaction curves for density, 
300 mm plate load modulus, dynamic cone penetration index profile, and light weight 
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deflectometer measurements for each test section. 
 Obtained samples of the aggregate material and underlying subgrade soil for 

laboratory classification including liquid limit, plasticity index, classification, 
moisture content, and compactability. 

 Trafficking passes were made on the sections with a loaded truck to obtain 
deformations or rut depths beneath the wheels. 

 Analyzed and synthesized the results.  
 

Background information for the rollers, EPCs, and various in-situ point measurement 
techniques utilized in this field study are described in this report.  This report documents the 
results and analysis from test bed field studies and the field demonstration activities. To the 
authors’ knowledge, this is the first documented field study to report link all of the various 
measurements together.  These results should be of significant interest to the pavement, 
geotechnical, and construction engineering community.  
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TEST METHODS 

Laboratory Test Procedures 

Laboratory testing was conducting on the subgrade and base materials used in this field 
study.  A list of ASTM test methods used is provided in Table 1. 
 

Table 1. Summary of test methods used in this study 

Test Name ASTM Standard  

Particle size analysis of soils ASTM D422 

Liquid Limit, Plastic Limit, and Plasticity Index of Soils ASTM D4318 

Classification of Soils for Engineering Purposes (Unified Soil 
Classification System 

ASTM D2487 

Laboratory Compaction Characteristics of Soil Using Standard Effort 
(12,400 ft-lbf/ft3 (600 kN-m/m3)) 

ASTM D698 

Maximum Index Density and Unit Weight of Soils Using a Vibratory 
Table 

ASTM D4253 

Standard Test Methods for Specific Gravity of Soil Solids by Water 
Pycnometer 

ASTM D854 

Unconsolidated-Undrained Triaxial Compression Test on Cohesive 
Soils 

ASTM D2850 

Use of the Dynamic Cone Penetrometer in Shallow Pavement 
Applications 

ASTM D6951 

CBR (California Bearing Ratio) of Laboratory-Compacted Soils ASTM 1883* 

* Tests performed on subbase material samples prepared using three different compaction energies: Substandard 300 kN-m/m3, 
Standard 600 kN-m/m3, Modified 2700 kN-m/m3, and on subgrade material using one compaction energy: Substandard 570 kN-
m/m3 (i.e., about 95% of standard Proctor energy) 
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In-Situ Testing Methods 

Six different in-situ testing methods were used in this study to evaluate the in-situ 
compaction properties (Figure 1): (a) 200-mm diameter Zorn light weight deflectometer (LWD) 
setup with 50 mm drop height to determine elastic modulus (ELWD-Z2), (b) Dynamic Cone 
Penetrometer (DCP) to determine California bearing Ratio (CBR), (c) calibrated nuclear 
moisture-density gauge (NG), and (d) 300-mm diameter static PLT to determine initial (EV1) and 
re-load modulus (EV2).  LWD, DCP, NG, and PLT tests were conducted by the ISU research 
team with aid of the geotechnical mobile lab (Figure 1e). 
 

LWD tests were performed following manufacturer recommendations (Zorn 2003) and 
the ELWD-Z2 value was determined using Equation 1, where E = elastic modulus (MPa), d0 = 
measured settlement (mm), v = Poisson’s ratio, 0 = applied stress (MPa), r = radius of the plate 
(mm), f  = shape factor depending on stress distribution (assumed as 8/3 for aggregate base 
and/2 for clay subgrade).   

 
2

0

0

(1 )v r
E f

d


          (1) 

 
DCP test was performed in accordance with ASTM D6951-03 to determine dynamic 

cone penetration index (DPI) and calculate CBR using Equation 2. The DCP test results are 
presented in this report as CBR point values or CBR profiles. When the data is presented as point 
values, the data represents an average CBR of the compaction layer or the depth specified (e.g., 
CBR0-250 represents 0-250 mm depth). 

 

1.12

292
CBR

DPI
         (2) 

 
Static PLT’s were conducted by applying a static load on a 300 mm diameter plate 

against a 6.2kN capacity reaction force. The applied load was measured using a 90-kN load cell 
and deformations were measured using three 50-mm linear voltage displacement transducers 
(LVDTs). The load and deformation readings were continuously recorded during the test using a 
data logger. The EV1 and EV2 values were determined from Equation 1, using appropriate stress 
and deflection values as illustrated in Figure 2 depending on the material/layer type.  
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Figure 1. In-situ testing methods used on the project: (a) 200-mm diameter plate Zorn 
LWD, (b) dynamic cone penetrometer, (c) calibrated nuclear moisture-density gauge, (d) 

300-mm diameter static PLT, and (e) Iowa State University geotechnical mobile lab 

 

(a) (b) 

(c) (d) 

(e) 
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Figure 2. EV1 and EV2 determination procedure from static PLT for subgrade and base 
materials  

 
Roller-Integrated Compaction Monitoring Technology 

Roller-Integrated Stiffness (ks) measurement Value 

A smooth drum Case roller equipped with Ammann’s roller-integrated stiffness ks 
measurement value was used on this project (Figure 3).  The ks measurement system was 
introduced by Ammann during late 1990’s considering a lumped parameter two-degree-of-
freedom spring dashpot system illustrated in Figure 4 (Anderegg 1998). The spring dashpot 
model has been found effective in representing the drum-ground interaction behavior (Yoo and 
Selig 1980).  The drum inertia force and eccentric force time histories are determined from drum 
acceleration and eccentric position (neglecting frame inertia).  The drum displacement zd is 
determined by double integrating the measured peak drum accelerations.  The soil stiffness ks is 
determined using Equation 3 when there is no loss of contact between drum and soil. The ks 
value represents a quasi-static stiffness value and is independent of the excitation frequency 
between 25 to 40 Hz (Anderegg and Kaufmann 2004).   
 

2 2 cos( )
4 e e

s d

m r
k f m

a

    
 

             (3) 

 
where f is the excitation frequency, md is the drum mass, mere is the eccentric moment of the 
unbalanced mass,  is the phase angle, a is vibration amplitude. The machines used on this 
project reported a measurement value approximately every 0.5 m at the drum center along the 
direction of travel.  The ks measurement system has the capability to perform compaction in a 
manual mode (i.e., using constant amplitude setting) and in an automatic feedback control (AFC) 
mode. AFC mode operations, however, were not evaluated at this site.  
 

Subgrade  Granular Base 
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Figure 3. Case smooth drum roller used on the project 
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Figure 4. Lumped parameter two-degree-of-freedom spring dashpot model representing 
vibratory compactor and soil behavior (reproduced from Yoo and Selig 1980) 

 
Roller-Integrated Compaction Meter Value (CMV) 

 A Caterpillar 563 smooth drum roller equipped with the Accugrade system was used on 
this project (Figure 5). The system measures compaction meter value (CMV) as an indicator of 
compaction quality. The CMV technology uses accelerometers to measure drum accelerations in 
response to soil behavior during compaction operations.  The ratio between the amplitude of the 
first harmonic and the amplitude of the fundamental frequency provides an indication of the soil 
compaction level (Thurner and Sandström, 1980).  An increase in CMV indicates increasing 
compaction.  CMV is calculated using Equation 4. 

1

0

A
CMV  C

A
   (4) 

where C = constant , A1 = acceleration of the first harmonic component of the vibration, and A0 
= acceleration of the fundamental component of the vibration (Sandström and Pettersson, 2004). 
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CMV is a dimensionless parameter that depends on roller dimensions (i.e., drum diameter, 
weight) and roller operation parameters (i.e., frequency, amplitude, speed). The machine used on 
this project reported a measurement value approximately every 0.5 m at the drum center along 
the direction of travel.  
 
Roller Positioning 

Both rollers were outfitted with RTK-GPS systems for collecting spatial data associated 
with roller measurement values.  A base station was established on site to provide corrections.  
The Case/Ammann roller was equipped with a Trimble Zephyr Model 2 Rugged antenna and 
Trimble SPS GPS receiver.  The Caterpillar roller was equipped with a MS 990 GPS receiver 
and radio. 
 

 

Figure 5. CAT smooth drum roller used on the project 

 
 
Piezoelectric Earth Pressure Cells 

Geokon Model 3500 piezoelectric earth pressure cells (EPC) were installed to measure 
in-ground total stresses before, during, and after compaction and trafficking.  These EPCs are 
designed to measure total stress in soil with a dynamic readout capability.  The EPC consist of 
two thin metal plates separated by a small gap containing hydraulic fluid.  As stress is applied to 
the cell a pressure transducer measures the change in pressure of the fluid. Calibration of these 
cells was conducted in the laboratory. For stress calibration the each was calibrated in standard 
silica sand in a pressure controlled chamber (Figure 6).  Known stress was applied and 
measurements were recorded over the range of EPC.  The hydraulic fluid volume is temperature 
dependant.  To correct for this effect a correction factor must be applied.  Correction factors 
were determine in a temperature controlled room by taking zero readings from 4.4° C to 37.8° C 
in 5.6° C increments.  A National Instruments Compact DAQ system was used to interface a 
field rugged laptop computer with the EPC (Figure 7).  Customized labview software was used 
for data acquisition. 
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Figure 6. Calibration of EPC in the lab 

 

 

Figure 7. Obtaining stress cell data during traffic 

 
Three EPCs were placed in each test section for field data collection. A  summary profile 

of the test section with location of the EPCs is shown in Figure 8.  Vertical stress measurements 
were taken at the subgrade/geotextile/subbase interface (Figure 9, Figure 10).  Horizontal stress 
measurements were taken in the subgrade and layer 1 of the subbase material (Figure 11).  
During installation, EPCs were placed and surrounded by the same standard silica sand used 
during calibration.  Use of the sand ensured a uniform stress was applied to the EPC surface.  
Measurements were taken at a frequency of 1613 Hz.  Periodic temperature measurements for 
temperature correction were taken using thermistors mounted on the EPC. 
 



10 

Subbase Layer 2

Subbase Layer 1

Subgrade

12 in (loose lift)

12 in (loose lift)6 in

Vertical EPC Horizontal EPC

Transient roller/
trafficking passes

Treatment Layer

8 in

 

Figure 8.  Profile of EPC installation 

 
 

Vertical 
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Figure 9. Placing vertical earth pressure cell on Tensar BX1200 at base of subbase 1 
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Figure 10. Vertical and horizontal EPC during placement of subbase 1 in control section – 
cardboard is used as a temporary liner to contain the sand backfill 

 

 

Figure 11. Placing horizontal earth pressure cell in subbase 1 
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Load Test Truck 

The Ford L8000 dump truck shown in Figure 12 was used for trafficking the constructed 
test sections.  The vehicle was loaded to a gross vehicle weight of 18,370 kg (20 tons).  The front 
tires were Goodyear G159 size 11R22.5 and rear dual tires were Continental HSR size 11R22.5. 
Both front and rear tire pressures were about 690 kPa (100 psi).  The truck was operated at 
approximately 5 km/h (3 mph) during trafficking passes following the same wheel path during 
each pass and in the same direction. 
 

 

Figure 12. Truck utilized for load testing 

Elevation Profiling 

Prior to compaction and trafficking profile surveys were conducted at locations in each 
treatment section.  Profile surveys were also conducted at intervals during the trafficking and 
after final pass to evaluate changes in ground conditions.  A variety of survey devices and 
techniques were used to collect data points as described below. 
 
Transit Survey 

Vertical profile measurements of rutting were collected using an auto level and rod 
measurements.  The horizontal positions of these points were marked and the same locations 
surveyed at intervals during trafficking. 
 
RTK-GPS 

Vertical and horizontal survey data was acquired using RTK-GPS (Figure 13).  A 
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Trimble SPS 881 receiver was used with base station correction provided from a Trimble 
SPS851 established on site.  This survey system is capable of horizontal accuracies of less than 
10 mm and vertical accuracies less than 20 mm. 

 

 

Figure 13. Cross section surveys of W-PP-GT section prior to traffic on subbase 1 

 
 
Ruler Measurement 

At intervals between trafficking passes, rut depth measurements were recorded. A 1 m 
straight edge was placed perpendicularly across the rut and a tape measure was used to measure 
the depth from the straight edge to the bottom of the rut.  Measurements were taken at the rut 
edges and every 10 cm across the rut. 
 
Post-Trafficking Excavation  

Trenches were excavated using a trenching machine (Figure 14) and a mini-excavator 
across the test sections after final trafficking was completed to inspect changes in the profile 
geometry.  Transit survey and RTK-GPS survey was conducted.  Measurements were focused on 
the subgrade/subbase interface zone to investigate the resulting deformation from trafficking. 
Excavations were initially planned at several locations within each test section, but limited to 
just one or a few in each section due to the amount of time to complete each excavation. 
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Figure 14. Trenching sections after traffic 

 

MATERIALS 

Soils and Aggregates 
 

Two materials comprised the test beds in this study – clay subgrade and crushed 
limestone subbase.  Index properties for both materials are summarized in Table 2.  The clay 
subgrade was classified as CL and the crushed limestone subbase was classified as GP-GM with 
about 8 percent of fines passing the No. 200 sieve. The maximum particle size of the crushed 
limestone subbase was 1.5 inches.  Figure 15 shows a picture of the subbase material.  Grain-size 
distribution curves for the subgrade and subbase materials are provided in Figure 16 and Figure 
17, respectively. 

 
Standard Proctors curves for the subgrade material are provided in Figure 18.  Results of 

Proctor tests conducted by the ISU research team and results provided by Contractor are 
included in Figure 18. The maximum dry unit weight (dmax) and optimum moisture content 
(wopt) for this material are listed in Table 2.  Figure 18also shows the subgrade in-situ moisture 
density measurements in relation to the standard Proctor curves. In-situ test measurements were 
obtained from four to five test locations in each test section. The in-situ moisture content of the 
subgrade varied from about 15.8% to 24.0% with an average of about 20.4% which is about 
3.2% wet of wopt. The in-situ dry unit weight of the subgrade varied from about 100.4 pcf (15.77 
kN/m3) to 116.3 pcf (18.26 kN/m3) with an average of about 107.5 pcf (16.88 kN/m3) which is 
about 97% of standard Proctor dmax.  
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Figure 15. Crushed limestone subbase aggregate with maximum particle size = 1.5 inches 

 

Table 2. Summary of material properties 

Parameter Clay Crushed stone 

Layer Subgrade Subbase 

Material Description Lean clay Poorly graded gravel 
with silt and sand 

Standard Proctor maximum dry 
unit weight (kN/m3) (based on 
tests conducted by ISU) 

 — 

Optimum moisture content (%) 
(based on tests conducted by ISU)   

Maximum and minimum index 
density (kN/m3) 

— 22.4, 16.7 

Percent Finer (1.5 inch) — 100 

Percent Finer (1.0 inch) — 87 

Percent Finer (0.75 inch) — 77 

Gravel Content (%) (> 4.75mm) 3 55 

Sand Content (%) (4.75mm – 
75m) 

20 37 

Silt Content (%) (75m – 2m) 45 6 

Clay Content (%) (< 2m) 32 2 

Coefficient of Uniformity (cu) — 29.2 

Coefficient of Curvature (cc) — 3.2 
Liquid Limit, LL (%) 45 NP 
Plasticity Index, PI 21 NP 
AASHTO A-7-6(16) A-1-a 
USCS CL GP-GM 
Gs  2.75 — 
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Figure 16. Grain-size distribution curve for subgrade 
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Figure 17. Grain-size distribution curve for subbase 
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Figure 18. Laboratory Proctor curve and field moisture and dry density measurements on 
subgrade 

 
Laboratory CBR testing was conducted on subgrade materials at six different moisture contents 
varying from about 14% to 26%. Samples were compacted to about 95% of the standard Proctor 
energy achieved by using 53 blows per each layer in three layers. The objective of using lower 
compaction energy was to achieve similar relative compaction values as measured in the test 
sections.  CBR results along with moisture and dry unit weight measurements of the CBR 
samples in comparison with the laboratory standard Proctor test results are presented in Figure 
19. The relative compaction of the CBR samples varied from about 86% to 96% of standard 
Proctor maximum dry unit weight. CBR values obtained for each sample are summarized in 
Table 3. Results indicate that the CBR values are sensitive to moisture content. The CBR value 
decreased from about 28 to 10 with an increase in moisture content from about 15% to 20%. The 
CBR value further decreased to about 3 at about 22% moisture content and 1 at about 26% 
moisture content. It believed that variable and low CBR values contributed to variable rut depth 
measurements presented later. 
 
Laboratory CBR testing was also conducted on subbase material. Tests were conducted by 
preparing samples at three different compaction energies as summarized in Table 4. Moisture 
and dry unit weight measurements of the samples and CBR results are summarized in Table 4. 
Results indicate that CBR of the subbase material increase with increasing dry unit weight of the 
material.  



18 

w (%)

10 15 20 25 30

 d
 (

pc
f)

90

95

100

105

110

115

120

C
B

R
 (

%
)

0

10

20

30

40

50

 d
 (

kN
/m

3 )

14

15

16

17

18

19
w and d of 

CBR Samples
CBR (%)
ISU Proctor

ZAV line
Gs=2.75

 

Figure 19. Subgrade CBR test results (at 0.1 in penetration) in relationship with moisture 
and dry unit weight measurements and Proctor test results 

 

Table 3. Laboratory CBR test results on subgrade material 

w (%) d (kN/m3) d (pcf) 
CBR at 0.1 in 
penetration 

CBR at 0.2 in 
penetration 

13.8 16.14 102.7 27.7 23.9 
15.3 16.31 103.8 27.6 23.5 
17.4 16.48 104.9 21.3 18.6 
19.9 16.70 106.3 9.6 8.5 
22.1 15.97 101.7 2.9 2.9 
25.7 14.92 95.0 1.3 1.2 

 

Table 4. Laboratory CBR tests on subbase material 

Compaction Effort Substandard* Standard** 
Modified

*** 
Moisture content (%) 3.8 3.7 3.9 3.6 
Dry density (kN/m3) 18.5 19.4 19.3 21.2 
CBR at 0.1 in 21 38 31 108 
CBR at 0.2 in 21 39 34 —
Notes: * Compaction energy = 300 kN-m/m3, **Compaction energy = 600 kN-m/m3, *** Compaction energy 
= 2700 kN-m/m3 
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To characterize the shear strength properties of the compacted subgrade and subbase 
materials, reconstituted samples of materials were compacted and tested in the laboratory using 
UU triaxial test procedures at confining stresses up to 462 kPa (67 psi).  The subgrade samples 
were compacted to a target relative compaction value of about 97% of standard Proctor dmax at a 
moisture content  of about 4.1% wet of standard Proctor wopt. The subbase aggregate was 
compacted at 3.1 to 3.4 percent moisture content to two different target densities – 56% and 93% 
relative density (Dr) to represent different states of compaction in the field.  Results obtained 
from UU triaxial testing on subgrade and subbase materials at different confining stresses are 
presented in Figure 20.    

 
The undrained shear strength for the subgrade material varied from about 115 to 128 kPa  

(2400  to 2600 psf @ 21.3% moisture content).  The shear strength of the subgrade material was 
not sensitive to change in confining stresses. Subbase materials on the other hand were highly 
confining stress dependent – increasing confining stresses increased the shear strength of the 
material. Subbase material samples tested at Dr = 56% relative density exhibited a strain 
hardening response, while the specimens at Dr = 93% exhibited a strain softening response (note 
that the samples were unsaturated).  For both relative density conditions, peak shear strengths 
were  achieved at about 1.5 to 2.5% strain.   
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Figure 20. UU tests results for both subgrade and subbase materials 
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Geosynthetic Materials 

Three geosynthetic materials were used during this investigation. Some physical  
properties of each geosynthetic material are summarized in Table 5.  Each geosynthetic material 
was placed using the same technique whereby the subgrade was moisture conditioned, mixed, 
and rolled prior to rolling out the geosynthetic and pulling the edges tight to eliminate any folds 
in the geosynthetic.  Next the aggregate material was carefully placed over the geosynthetic 
using a skid steer loader whereby the loader did not drive directly over the geosynthetic, but 
rather the aggregate being placed ahead of the machine.   

Table 5. Summary of geosynthetic treatments 

Designation Type Physical Properties 
BX1200 Polypropylene Geogrid Tensile Strength @ 2% strain 6.0 kN/m 

Ultimate Tensile strength 19.2 kN/m 
TX160 Polypropylene Geogrid Radial Stiffness = 300 kN/m @ 0.5% 

strain 
W-PP-GT Polypropylene 14.5 osy 

Geotextile 
Tensile Strength @ 2% strain 14.0 kN/m

Ultimate Tensile Strength 70.0 kN/m 
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EXPERIMENTAL PLAN AND TEST BED CONSTRUCTION 

Table 6 provides a brief summary of the testing schedule and measurements on each test section 
and each layer of material.   
 

Table 6. Summary of test beds and in-situ testing 

Test Sections Date Material 
In-situ Test 

Measurement Comments 
W-PP-GT, 
BX1200, 
Control, TX160 

3/17/2009 Subgrade w, d, CBR, 
ELWD-Z2  

Initial Check 

W-PP-GT, 
BX1200 

3/17/2009 Subgrade w, d, CBR, 
ELWD-Z2 

Moisture Low 

W-PP-GT, 
BX1200, 

Control, TX160 
3/17/2009 Subgrade w, d, CBR, 

ELWD-Z2 
Point measurements on final 

subgrade after 2 Passes 

W-PP-GT, 
BX1200, 

Control, TX160 
3/18/2009 

Subbase  
layer #1 

w, d, CBR, 
ELWD-Z2 

Point measurements after 0, 
1, 2, 4 and 10 roller passes 

W-PP-GT, 
BX1200 

3/18/2009 
Subbase  
layer #1 

Rut depth 
profiles 

Outside and inside wheel 
path longitudinal profiles 
after 4 trafficking passes 

Control, TX160 3/18/2009 
Subbase  
layer #1 

EV1, EV2 
Point measurements at two 

locations after 10 passes  

W-PP-GT, 
BX1200, 

Control, TX160 
3/19/2009 

Subbase 
layer #2 

w, d, CBR, 
ELWD-Z2 

Point measurements after 0, 
1, 2, 4, and 21 roller passes  

W-PP-GT, 
BX1200, 

Control, TX160 
3/19/2009 

Subbase 
layer #2 

EV1, EV2 
Point measurements after 21 

roller passes 

W-PP-GT, 
BX1200, 

Control, TX160 

3/19/2009 
3/20/2009 

Subbase 
layer #2 

Rut depth 
profiles 

 Transverse rut profiles at 
one location in each section 
after 5, 10, 15, 25, 50, 75, 
100, 126, 150 trafficking 
passes, outside and inside 
wheel path longitudinal 
profiles after 75 and 150 

trafficking passes 

W-PP-GT, 
BX1200, 

Control, TX160 
3/20/2009 

Subbase 
layer #2 

CBR 

Point measurements in 
outside and inside wheel 

paths after 150 trafficking 
passes 

W-PP-GT, 
BX1200, 

Control, TX160 
3/20/2009 

Subbase 
layer #2 

CBR, full depth 
cross-section 

Outside and inside wheel 
paths after trafficking passes 
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Note:  w – moisture content, d – dry unit weight, CBR – California bearing ratio determined from dynamic cone penetrometer 
(DCP) test, ELWD-Z2 – elastic modulus determined using Zorn model light weight deflectometer (LWD) with a 200 millimeter 
plate, EV1 and EV2 – initial and reload moduli determined from 300 mm diameter static plate load test (PLT)  

 

Description of Test Sections 

Four test sections with three different layers (subgrade, subbase layer 1, and subbase 
layer 2) were tested during this field study. Figure 21 shows a photograph of the test site and 
labeled test sections. 

Three test sections (W-PP-GT, BX1200, and TX160) consisted of a geosynthetic 
treatment layer at the interface of the subgrade and subbase layer 1, and one test section (control) 
did not have a treatment layer at the interface. A summary of each test bed with material 
conditions and tests performed is provided in Table 6. Figure 22 shows the proximity of the test 
sections and locations of the in-situ point measurements based on RTK-GPS position 
measurements. In-situ point measurements (e.g., w, d, CBR, ELWD-Z2, EV1, EV2) were mostly 
obtained from five test locations along the center lane in each test section. Longitudinal rut depth 
profiles were obtained along the outside and inside wheel paths trafficking lanes (as labeled in 
Figure 22) on subbase layers 1 and 2. Transverse rut depth profiles were obtained from one test 
location (point (3)) in each test section from multiple trafficking passes under outside and inside 
wheel paths.  To assess variability across each test section, additional DCP tests were conducted 
in the outside and inside wheel paths after final trafficking pass on subbase layer 2. Transit 
survey and RTK-GPS survey was performed transversely at each test location on subgrade, 
subbase layer 1, and subbase layer 2 to obtain comparison elevation measurements. These 
measurement locations are shown in Figure 23.  

Rut depth measurements obtained beneath the wheel following trafficking passes are 
presented in this report using the nomenclature – outside and inside wheel paths as indicated in 
Figure 22.  
 

 

Control

W-PP-GT 

TX160BX1200 
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Figure 21. View of site and test section locations 
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Figure 22. Test section layout and in-situ test locations 
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Figure 23. Transit survey and RTK-GPS survey locations 

 
 

 
Construction/ Testing Process and Photo Log 

Figure 24 through Figure 61 document key features of the construction and testing 
phases. The construction process was initiated by scarifying the clay subgrade material to a 
depth of 150 to 200 mm (6 to 8 inches) using a tiller mounted on a tractor.  Water was added and 
several passes of the tiller were used to arrive at a moisture content that produced a subgrade 
CBR of about 2 to 3. Next the test sections were compacted with two passes of the smooth drum 
roller.  The geosynthetic materials were rolled out and pulled tight.  Boards were positioned 
along the edges of the test sections to contain the subbase layers. Subbase aggregate was then 
placed using a skid steer loader and advancing the aggregate placement ahead of the skid steer to 
avoid driving directly on the subgrade.  Once the first layer of subbase was placed, in-situ testing 
was performed along with several roller passes.   
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Figure 24. View of W-PP-GT and BX1200 sections during subgrade preparation 

 

 

Figure 25. View of control and TX160 sections 
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Figure 26.  Moisture conditioning of W-PP-GT and BX1200 sections 

 

 

Figure 27. Compacting W-PP-GT and BX1200 sections 
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Figure 28. Compacting subgrade in control and TX160 sections 

 

 

Figure 29. W-PP-GT and Tensar BX1200  
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Figure 30. Tensar TX160 and control sections 

 
 

 

Figure 31. Placing subbase layer 1 on BX1200 section 
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Figure 32. Placing subbase layer 1 on Tensar TX160 section 

 

 

Figure 33. Subgrade, Tensar TX160, and subbase layer 1 
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Figure 34. Point testing in W-PP-GT prior to compacting subbase 1 

 

 

Figure 35. Point testing in BX1200 section after roller compaction 
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Figure 36. W-PP-GT and BX1200 sections after roller compaction of subbase 1 

 
 
 
 

 

Figure 37. W-PP-GT and BX1200 subbase 1 after traffic 
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Figure 38. Point testing in TX160 during compaction of subbase 1 

 

 

Figure 39. Point testing in TX160 section during compaction of subbase 1 and plate load 
testing in BX1200 section 
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Figure 40. TX160 and control sections near completion of compaction of subbase 1 

 

 

Figure 41. Traffic on subbase 1 in TX160 section 
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Figure 42. Rut depth measurements on subbase 1 in control section 

 

 

Figure 43. Placing subbase 2 in control section and rut depth measurements on subbase 1 
in control and TX160 sections 

 
 

Control 
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Figure 44. Point testing in W-PP-GT and BX1200 sections during compaction of subbase 2 

 

 

Figure 45. Plate load testing in W-PP-GT section after compaction of subbase 2 
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Figure 46. Initial profiles W-PP-GT and BX1200 sections after compaction of subbase 2 
prior to traffic 

 

 

Figure 47. Initial profiles in section after compaction of subbase 2 prior to traffic  
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Figure 48. Traffic in BX1200 section on subbase 2 

 

 

Figure 49. Traffic in W-PP-GT and BX1200 sections on subbase 2 
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Figure 50. Measuring rut depth 

 
 

 
 

 

Figure 51. W-PP-GT and BX1200 sections subbase 2 during traffic 
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Figure 52. Control and TX sections subbase 2 during traffic 

 
 
 

 

Figure 53. W-PP-GT and BX1200 sections nearing end of traffic 
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Figure 54. Control and TX160 sections nearing end of traffic 

 
 
 
 

 

Figure 55. Control and TX160 sections nearing end of traffic 
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Figure 56. Full depth DCP testing after traffic 

 
 
 

 

Figure 57. Trenching sections after traffic 
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Figure 58. View of deformation after traffic 

 
 
 

 

Figure 59. W-PP-GT after excavation 
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Figure 60. Tensar BX1200 after excavation 

 

 

Figure 61. Tensar TX160 after excavation 
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RESULTS AND DISCUSSION 

In this section of the report, field measurements are presented and discussed.  The detail and 
volume of testing provides new information on the response of these different test sections as a 
function of the number of roller passes applied during the compaction phase of testing and 
during the post compaction trafficking study.   

Table 6 through Table 8 summarize the average CBR values for each of the test layers – 
subgrade, subbase layer 1, and subbase layer 2.  The average CBR of the  subgrade layer CBR 
was about 2, although it was expected to be variable based on observations of equipment 
trafficking during preparation. The average CBRs for subbase layers 1 and 2 were about 10 and 
45 respectively, but were variable between the different test sections. Table 10 summarizes the 
average values for each of the test sections for several different roller passes including CBR, 
ELWD, and Dr.  Results show general trends of increasing values with increasing number of roller 
passes.  An interesting observation for the BX1200 and TX160 sections was that the Dr values 
increased from about 70% to 90% with increasing roller passes from 10 to 21 suggesting a 
suitable platform for compaction and a benefit from high compaction energy. 

 
   

 

Table 7. Average DPI and CBR of test sections after moisture conditioning 

Section Material DPI CBR 

W-PP-GT Subgrade 80.8 2.2 

BX1200 Subgrade 77.5 2.4 

Control Subgrade 87.0 2.0 

TX160 Subgrade 88.9 2.0 

 

Table 8. Average DPI and CBR of test sections after compaction of subbase 1 

Section Material DPI CBR 

W-PP-GT Subbase 1 21.5 9.8 

BX1200 Subbase 1 24.3 8.6 

Control Subbase 1 19.5 10.7 

TX160 Subbase 1 21.3 9.8 
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Table 9. Average DPI and CBR of test sections after trafficking subbase 2 

Section Material DPI CBR 

W-PP-GT 
Subbase1 
Subgrade 

5.7 
77.6 

41.8 
2.4 

BX1200 
Subbase1 
Subgrade 

5.1 
76.6 

47.3 
2.6 

Control 
Subbase1 
Subgrade 

5.4 
63.7 

44.9 
2.9 

TX160 
Subbase1 
Subgrade 

4.9 
64.4 

49.6 
2.9 

1 Subbase includes subbase 1 and subbase 2 as included in depth ranges. 
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 Table 10. Summary of average Dr, ELWD and CBR for each section 

Layers Subbase 1 Subbase 2 

Sections W-PP-
GT 

BX1200 Control TX160 
W-PP-

GT 
BX1200 Control TX160 

P
as

se
s 

0 

Dr 44.1 41.3 42.6 46.9 59.7 57.9 60.4 59.9 

ELWD 

(MPa) 
15.4 13.6 18.5 18.0 27.5 26.7 27.1 25.7 

CBR 6.4 5.1 6.5 7.2 8.7 7.6 11.9 8.8 

1 

Dr 55.3 51.5 49.8 49.4 59.3 56.6 69.9 68.0 

ELWD 

(MPa) 
13.4 14.9 15.7 13.5 23.1 24.3 31.4 27.0 

CBR 5.8 5.0 6.9 6.5 8.7 8.1 11.2 9.5 

2 

Dr 64.5 61.7 57.4 58.6 67.2 62.6 68.9 67.3 
ELWD 

(MPa) 
13.2 13.0 14.7 13.2 23.6 22.9 31.3 26.1 

CBR 8.0 6.1 7.1 7.0 8.9 6.9 10.6 10.1 

4 

Dr 59.3 59.4 60.8 60.6 68.8 67.7 68.6 72.8 
ELWD 

(MPa) 
14.4 13.8 15.2 13.7 24.0 22.9 28.2 24.0 

CBR 7.6 6.7 8.1 8.4 9.6 7.0 12.1 10.4 

10 

Dr 67.5 70.5 67.8 71.5 75.7 70.2 76.9 76.2 
ELWD 

(MPa) 
14.3 15.2 16.1 14.3 23.7 25.2 29.8 25.9 

CBR 9.7 8.5 11.4 9.5 13.7 10.7 14.6 14.6 

21 
Dr  —* — — — 84.5 90.1 90.2 98.5 

ELWD 

(MPa) 
— — — — 31.4 33.8 31.3 28.5 

*Note: — indicates no data 
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Figure 62 through Figure 67 show relationships between the various in-situ 
measurements and number of roller passes for each layer.  On each plot, measurements from the 
subgrade and subbase layers are provided.  The purpose of plotting the data in this manner was 
to identify trends in the measurement values as a function of the number of roller passes and to 
identify reflections in support condition in underlying layers to overlying layers (e.g. weak spot 
in lower layer resulting in poorer compaction in overlying layer, etc.).  Figure 62 and Figure 63 
show in general that the dry unit weight values achieved in subbase layer 1 can be empirically 
correlated to the density values in subbase layer 2 as evidenced by the coefficient of regression 
values, but the data is variable.  Also density increases rapidly for the initial 3 to 4 passes and 
then at a slower rate after that.   
 

Figure 64 and Figure 65 show compaction curves for the light weight deflectometer 
results.  Results show new behavior not previously documented whereby the ELWD values tend to 
decrease with the first few roller passes and then increase with addition roller passes.  This 
behavior needs to be studied further but is likely linked to mobilization of stresses in the 
geosynthetic and surrounding subbase materials.  Results also show that the modulus value 
increase by a factor of about two from the subgrade layer to subbase layer 1 and then double 
again between subbase layer 1 and 2.  
 

Figure 66 and Figure 67 show the CBR values for each layer and each test point as a 
function of the number of roller passes.  Results are similar to the ELWD results, but show 
variability at a given point location.  Figure 68 shows the average values of dry unit weight, 
ELWD, and CBR plotted as a function of roller pass numbers.  Presenting the data as an average 
for each individual test section has the affect of smoothing out variation in the point 
measurement plots and clearly shows repeatable trends in the measurement values.  Here again 
the ELWD values tend to initially decrease for subbase layer 1, while density and CBR tends to 
increase with increasing roller passes. The values measured for all parameter for subbase layer 2 
where higher than subbase layer 1.  Figure 69 shows relationships between the various in-situ 
measurements.  It is interesting to note that as the density increases beyond 18 kN/m3, the 
modulus values increase significantly. A key observation here would be that it might be more 
important to focus on achievement of a target modulus during QC/QA operations than density. 
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Figure 62. Dry unit weight compaction curves for W-PP-GT and BX1200 sections 
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Figure 63. Dry density compaction curves for control and TX160 sections 
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Figure 64. ELWD compaction curves for W-PP-GT and BX1200 sections 
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Figure 65. ELWD compaction curves for control and TX160 section 

 



52 

W-PP-GT
PT1

C
B

R

0

5

10

15

20

25

Subbase 1
Subbase 2
Subgrade

C
B

R

0

5

10

15

20

25

C
B

R

0

5

10

15

20

25

BX1200
PT1

C
B

R

0

5

10

15

20

25

Pass #

0 2 4 6 8 10 12

C
B

R

0

5

10

15

20

25

Pass #

0 2 4 6 8 10 12

W-PP-GT
PT2

W-PP-GT
PT3

W-PP-GT
PT5

W-PP-GT
PT4

BX1200
PT5

BX1200
PT4

BX1200
PT3

BX1200
PT2

 

Figure 66. CBR compaction curves for W-PP-GT and BX1200 sections 
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Figure 67. CBR compaction curves for control and TX160 sections 
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Figure 68. Averaged ELWD, γd and CBR compaction curves for each section 
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Figure 69. Comparison between CBR, γd and ELWD of each layer 

 

 
 
 
 
 
 
 
 
 



56 

Control W-PP-GT BX1200 TX160

A
ve

ra
ge

 E
LW

D
-Z

2
 (

M
P

a
)

0

10

20

30

40
Pass 0
Pass 1
Pass 2
Pass 4
Pass 10
Pass 21

Control W-PP-GT BX1200 TX160

A
ve

ra
ge

 D
r (

%
)

0

20

40

60

80

100 Pass 0
Pass 1
Pass 2
Pass 4
Pass 10
Pass 21

Control W-PP-GT BX1200 TX160

A
ve

ra
ge

 C
B

R
 (

%
)

0

5

10

15

20
Pass 0
Pass 1
Pass 2
Pass 4
Pass 10

Average based on five point measurements for passes 0, 1, 2, 4, 
and 10, and one point measurement for pass 21

Average based on five point measurements 

Average based on five point measurements 

 

Figure 70. Average  in-situ test measurements on subbase layer 2 after 0, 1, 2, 4, 10, and 21 
roller passes (note  data within 3 m from the start and end of each section not included) 

 
Roller-Integrated Measurement Values 

Table 11 and Table 12 summarize the pass numbers and machine operation parameters 
(i.e. vibration amplitude and vibration frequency for each of the four test section and all roller 
passes. Figure 71  through Figure 80 shows MVs as a function of distance or pass number for 
each test bed.  Results are plotted for several roller passes for each of the layers tested – 
subgrade, subbase layer #1, and subbase layer #2.  Key observations from this analysis are that 
the MVs show repeatability between passes and that often the first roller pass yield a higher MV 
than subsequent roller passes.  Further, it is observed that in general the roller MVs are generally 
low and that might be in part due to the roller having a measurement influence depth on the order 
of 0.5 m to 1 m.  Because the roller measurement influence depth in greater than the compacted 
layer thickness of the aggregate layers, the soft subgrade is being reflected in the roller MVs. 
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Table 11. Case/Ammann roller pass summary 

Section 
Pass 

Number 
Amp 
(mm) Freq (Hz) Section 

Pass 
Number 

Amp 
(mm) Freq (Hz) 

Subgrade 
— 1 0.83 28 — 1 0.85 28 

     2 0.83 28 
     3 0.83 28 

Subbase Layer 1 

W-PP-
GT/ 

BX1200 

1 0.69 30 

Control/ 
TX160 

1 0.64 30 
2 0.68 30 2 0.64 30 
3 0.68 30 3 0.64 30 
4 0.67 30 4 0.64 30 
5 0.67 30 5 0.63 30 
6 0.67 30 6 0.63 30 
7 0.67 30 7 0.63 31 
8 No Data 8 0.63 30 
9 0.67 30 9 0.63 31 

10 0.67 30 10 0.63 31 
11 0.67 30 11 0.62 30 
12 0.67 30 12 0.62 30 

Subbase Layer 2 

W-PP-
GT/ 

BX1200 

1 0.64 31 

Control/ 
TX160 

1 0.62 30 
2 0.64 31 2 0.61 30 
3 0.63 30 3 0.61 30 
4 0.62 30 4 0.61 31 
5 0.63 30 5 1.47 30 
6 0.62 30 6 1.48 30 
7 0.62 30 7 0.36 31 
8 0.62 31 8 0.57 30 
9 0.62 30 9 0.71 31 

10 0.62 31 10 0.71 31 
11 0.63 31 11 0.62 31 
12 0.63 31 12 0.61 31 
13 0.99 30     
14 1.29 23     
15 0.64 24     
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Figure 71. Case/Ammann ks results for W-PP-GT and BX1200 sections 
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Figure 72. Case/Ammann average ks (error bar indicates one standard deviation) 
compaction growth with increasing pass for W-PP-GT and BX1200 sections 
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Figure 73. Case/Ammann ks results for control and TX 160 sections 
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Figure 74. Case/Ammann average ks (error bar indicates one standard deviation) 
compaction growth with increasing pass for control and TX160 sections 
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Table 12. Caterpillar roller pass summary 

Section 
Pass 

Number Amp Freq Section 
Pass 

Number Amp Freq 
Subbase Layer 1 
W-PP-GT/ 
BX1200 

1 0.85 31 Control/ 
TX160 

1* 0.85 31 
2 0.85 31 2** No Data 

Subbase Layer 2 

W-PP-GT/ 
BX1200 

1 0.85 31 

Control/ 
TX160 

1 0.85 31 
2 1.70 31 2 0.85 31 
3 1.70 31 3 1.70 31 
4 0.85 31 4 1.70 31 
5 1.70 31 5 0.85 31 
6 0.85 31 6 0.85 31 
   7 1.70 31 
   8 1.70 31 
   9 0.85 31 

*Low GPS accuracy over half of the strip; **Low GPS accuracy 
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Figure 75. Caterpillar CMV results for W-PP-GT and BX1200 sections 
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Figure 76. Caterpillar average CMV (average value shown as circle and error bar indicates 
one standard deviation) compaction growth with increasing pass for W-PP-GT and TX160 
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Figure 77. Caterpillar CMV results for W-PP-GT and TX160 sections 
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Figure 78. Caterpillar average CMV (average value shown as circle and error bar indicates 
one standard deviation) compaction growth with increasing pass for W-PP-GT and TX160 

sections 
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Figure 79. Change in elevation during compaction passes on subbase layer 2 relative to 
pass 1 (note: negative elevation means settlement and +ve elevation means heave) 
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Figure 80. Average change in elevation during compaction on subbase layer 2 (with one 
standard deviation error bars) relative to pass 1 for different sections (note: negative 

elevation means settlement and +ve elevation means heave) 

 
Rut Depth Measurements 

Longitudinal rut depth profiles along W-PP-GT and BX1200 sections on subbase layer 1 after 4 
truck passes are presented in Figure 81. Longitudinal rut depth profiles on all four sections on 
subbase layer 2 after 75 and 150 trafficking passes are presented in Figure 82 and Figure 83. 
Also presented in Figure 82 and Figure 83 are the thickness of the subbase layers and CBR of the 
subgrade layers to interpret the influence of the variability support conditions on the surface rut 
depths. Subgrade CBR values are presented as an average of the top 300 mm of the subgrade 
layer (denoted as CBR0-300) and CBR of the weakest zone that is at least 50 to 100 mm thick 
within in the top 300 mm of the subgrade (denoted as CBR*). Rut depth variability is primarily 
attributed to spatial variation in the subgrade moisture content and CBR values. 
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Figure 81. W-PP-GT and BX1200 section subbase 1 longitudinal rut depth after 4 
trafficking passes  
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Figure 82. W-PP-GT and BX1200 sections subbase 2 longitudinal rut depth after 75 and 
150 truck passes, subbase layer depths (interpreted from DCP profiles) after 150 

trafficking passes, and CBR of the subgrade layer  
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Figure 83. Control and TX160 sections subbase 2 longitudinal rut depth after 75 and 150 
truck passes and subbase layer depths (interpreted from DCP profiles) after 150 

trafficking passes, and CBR of the subgrade layer 
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Bar charts of average rut depth measurements obtained on subbase layer 2 after 75 and 
150 trafficking passes are presented in Figure 84.  The average rut depth was calculated based on 
measurements obtained from each test section on outside and inside wheel paths. The results are 
presented herein as an average given the variability of the measurements within individual test 
sections and between the outside and inside wheel paths. The number of test measurement 
locations for each test section varied from 66 to 71. Average Dr of the subbase material (based 
on five measurements per test section) after the final compaction pass on each test section is also 
presented on Figure 84. The average rut depth was comparatively higher in the control section 
and lower in the TX160 test section. Compaction measurements show that the average Dr was 
98% for the TX160 section and 90% for the control and BX1200 sections at the completion of 
testing.  The relative density was lowest for the W-PP-GT section at 84%, while the BX1200 
section was similar to the control section at 90%.  
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inside wheel paths is averaged. 

 

Figure 84. Bar chart comparing average longitudinal rut depth after 75 and 150 truck 
passes on subbase layer 2 

Earth Pressure Cell Measurements 

An example of dynamic vertical and horizontal total stress measurements obtained from 
the TX160 test section under a trafficking pass on subbase layer 2 is presented in Figure 93 
through Figure 97. The stresses as presented represent the change in ground stresses minus the 
initial geostatic (overburden) stresses. In Figure 97 two peaks are observed under the trafficking 
pass due to the influence of front and rear tires. As expected, higher stresses are recorded under 
the dual rear-tire loaded axle. Stress measurements in Figure 86 indicate that the stresses before 
and after the trafficking pass were in the range of 15 to 20 kPa. These stresses are a result of 
“locked-in” stresses and principal stress rotation from prior compaction and trafficking passes. 
These “locked-in” stress values and the peak stress (under the rear tire) values were recorded for 
each roller and trafficking pass for each test section, and are presented in Figure 85 to Figure 90.  
 
 The results presented herein demonstrate performance differences between the four test 
sections from rut depth and compaction measurements, and that the inclusion of geosynthetic 
material at the interface of soft subgrade and subbase layers affects the development of the 
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“locked-in” horizontal stress following loading. Development of “locked-in” horizontal stresses 
in the subgrade and subbase layers gives a direct indication of the lateral restraint reinforcement 
mechanism.  

 
Lateral stress ratio (K) (calculated as the ratio of total horizontal and total vertical 

stresses) plots for subgrade and subbase layers following roller and trafficking passes and for 
peak values under the roller and trafficking passes are presented in Figure 91 and Figure 92, 
respectively. The calculated K values from Figure 92 show that during trafficking (i.e., under 
peak loading), the K values are about 0.3 to 0.7 for the subgrade and 0.5 to 0.7 for the subbase 
for all test sections. However, the K values based on the “locked-in” stresses following 
trafficking passes from Figure 91 vary significantly between the different test sections. Table 12 
summarizes the K values after 75 trafficking passes on subbase layer 2 (i.e., after 112 cumulative 
roller + truck passes). Results show buildup of horizontal stresses with relatively high K values 
in the control section subgrade layer compared to the geogrid (i.e., BX1200 and TX160) 
reinforced sections. The K values in the subbase were comparatively higher in the TX160 
section compared to the control and BX1200 sections. The W-PP-GT section produced the 
highest K values in the subgrade and subbase layers.  
 

Further examination of horizontal stress measurements and rut depth measurements show 
that the ratio of the “locked-in” horizontal stress in the subgrade to the “locked-in” horizontal 
stress in the subbase (lateral reinforcement ratio) provides an indication of the performance of 
the section. As shown in Table 12, rut depth measurements generally decreased as the 
reinforcement ratio increases. This approach although limited to these site conditions and 
materials, suggests that the reinforcement ratio value could be a useful indicator to performance 
and warrants further study. For the site and material conditions in this study, the results also 
suggest that the TX160 with its unique equilateral triangular shaped apertures provides 
comparatively higher reinforcement ratio than the other geosynthetics used in this study. 
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Figure 85.  Total vertical stress at interface between geosynthetic and subgrade after roller 
compaction and test vehicle passes 
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Figure 86.  Total horizontal stress below geosynthetic in subgrade layer after roller 
compaction and test vehicle passes 
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Figure 87.  Total horizontal stress above geosynthetic in subbase layer after roller 
compaction and test vehicle passes 
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Figure 88.  Maximum total vertical stress at interface between geosynthetic and subgrade 
during roller compaction and test vehicle passes 
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Figure 89.  Maximum total horizontal stress below geosynthetic in subgrade layer during 
roller compaction and test vehicle passes 
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Figure 90.  Maximum total horizontal stress above geosynthetic in subbase layer during 
roller compaction and test vehicle passes 
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Figure 91.  Lateral stress ratio (ratio of horizontal and vertical stresses) in subgrade and 
subbase layers after roller and test truck trafficking passes 
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Figure 92.  Lateral stress ratio (ratio of horizontal and vertical stresses) under roller drum 
and test truck wheel loading in subgrade and subbase layers 
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Figure 93.  Total stress at interface between geosynthetic and subgrade and horizontal 
stress in subbase during Case roller pass number 4 (W-PP-GT treatment) 
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Figure 94.  Total stress at interface between geosynthetic and subgrade and horizontal 
stress in subbase during Case roller pass number 4 (BX1200 treatment) 
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Figure 95.  Total stress at interface between geosynthetic and subgrade and horizontal 
stress in subbase during Case roller pass number 4 (Control treatment) 
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Figure 96.  Total stress at interface between geosynthetic and subgrade and horizontal 
stress in subbase during Case roller pass number 4 (TX160 treatment) 
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Figure 97. Example dynamic EPC measurements on TX160 section (under a trafficking 
pass on subbase layer 2) 

 

Table 13. Performance comparison between test sections 

Section KSubgrade KSubbase 

Reinforcemen
t Ratio* 

Average Rut Depth after 75 
trafficking passes on subbase 

layer 2 (mm) 
Control 3.2 1.2 0.4 50 

W-PP-GT 4.3 3.7 0.8 47 

BX1200 1.8 1.8 1.0 48 

TX160 1 3.2 3.3 32 
*calculated as the ratio of horizontal “locked-in” stresses in subbase and subgrade 
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SUMMARY AND CONCLUSIONS 

Results from a controlled field study comparing performance of three geosynthetic 
materials (TX160 geogrid, BX1200 geogrid, and W-PP-GT woven geotextile) and a control 
section with no reinforcement are described in this report.  The geosynthetic materials were 
placed on top of the soft clay subgrade layer prior to compacting two overlying layers of crushed 
limestone. Rut depth measurements under trafficking from a heavy vehicle, compaction 
measurements on the subbase layer, and in-ground stress measurements under compaction and 
trafficking passes provide information on the reinforcing effects provided by the different 
geosynthetics.  Results between the different test sections were compared to document 
differences in performance. Key findings from this study are as follows: 
 

 Average CBR values for the subgrade, subbase layer 1, and subbase layer 2, were 2, 10, 
and 45, respectively. Comparison of CBR values between the different test sections was 
variable. Laboratory test showed that the CBR values were sensitive to moisture content. 

 Average elastic modulus values from LWD measurements showed that the modulus 
values initially decreased for the first few roller passes and then increase thereafter. 
Modulus values increased by a factor of about two between the first subbase layer and 
the second subbase layer.  This increase was more that for CBR or dry unit weight. 

 Roller-integrated compaction measurement values showed that results were repeatable 
between passes, but primarily reflected the conditions of the underlying weak subgrade 
due to the high compaction stresses and the one-dimensional nature of the test strips. 
Future application for this technology should focus on large test areas. 

 Rut depth and compaction measurements were variably within test sections, but showed 
less overall rutting in the TX160 geogrid section compared to other test sections.   

 In-ground stress cell measurements showed that the “locked-in” horizontal stress in the 
subgrade after trafficking was lower in the TX160 section compared to other test 
sections. 

 Higher “locked-in” horizontal stresses were measured in subbase layer of the TX160 
section compared to the other test sections.  

 The reinforcement ratio calculated as the ratio of horizontal “locked-in” stresses in the 
subbase and subgrade layers provides an indication of rut performance and warrants 
further research. 
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APPENDIX A.  IN-SITU DATA 

Table 14. Summary of point test data – subgrade 

Section 
Roller 
Passes 

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR 
(%) γdry 

(kN/m3) 
Moistur
e (%) 

Initial Test --- 17.2 20.4 3.49 --- ---  
Initial Test --- 17.6 18.6 3.91 --- ---  

W-PP-GT 

2 17.7 18.5 5.41 --- ---  
2 17.6 18.7 5.78 --- ---  
2 16.6 20.2 4.99 --- ---  
2 17.5 19.2 3.90 --- ---  
2 17.0 20.5 4.09 --- ---  

BX1200 

2 17.3 19.1 4.97 --- ---  
2 16.9 19.6 4.53 --- ---  
2 17.0 19.7 4.34 --- ---  
2 17.2 19.4 4.38 --- ---  
2 16.5 20.7 4.95 --- ---  

Sections W-PP-GT and BX1200 moisture conditioned, processed and recompacted with 
two passes 

W-PP-GT 

2 17.0 20.3 5.02 --- --- 3.0 
2 18.3 15.8 5.74 --- --- 4.9 
2 17.2 20.2 4.73 --- --- 2.7 
2 17.4 20.8 3.50 --- --- 5.6 
2 16.6 22.4 2.67 --- --- 2.1 

BX1200 

2 17.1 19.8 4.33 --- --- 1.8 
2 16.7 19.8 3.95 --- --- 2.0 
2 16.9 20.8 4.28 --- --- 3.6 
2 16.7 19.9 4.54 --- --- 4.7 
2 17.1 19.4 4.29 --- --- 5.0 
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Table 15. Summary of point test data – subbase 1 

Section 
Roller 
Passes 

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR 
(%) γdry 

(kN/m3) 
Moisture 

(%) 

W-PP-GT 

0 18.4 3.2 15.92  --- 7.2 
0 19.1 3.3 22.03  --- 7.1 
0 19.1 2.8 15.88  --- 7.0 
0 19.2 3.2 13.51  --- 5.3 
0 18.2 2.9 9.72  --- 5.3 

BX1200 

0 18.4 3.6 13.11  --- 4.9 
0 18.5 3.7 11.85  --- 7.2 
0 19.1 2.8 16.58  --- 4.8 
0 17.8 3.4 10.61  --- 2.8 
0 19.5 3.5 15.82  --- 5.8 

W-PP-GT 

1 19.4 3.0 15.68  --- 7.0 
1 19.7 3.5 17.51  --- 4.9 
1 19.7 3.0 14.76  --- 5.8 
1 19.7 3.1 10.46  --- 7.7 
1 18.6 2.8 8.55  --- 3.6 

BX1200 

1 19.1 3.3 12.95  --- 5.5 
1 19.0 3.6 16.26  --- 4.7 
1 19.3 2.8 14.20  --- 4.2 
1 19.1 2.8 14.88  --- 4.5 
1 19.5 3.7 15.98  --- 5.9 

W-PP-GT 

2 19.9 3.2 16.88  --- 9.0 
2 20.1 3.2 15.24  --- 8.0 
2 20.2 2.7 14.17  --- 7.6 
2 19.9 3.6 10.90  --- 9.7 
2 19.6 3.3 8.68  --- 5.7 

BX1200 

2 19.6 2.9 12.14  --- 4.8 
2 19.9 3.4 11.43  --- 5.7 
2 19.9 3.5 11.06  --- 6.3 
2 19.3 2.9 14.79  --- 6.5 
2 20.2 3.4 15.52  --- 7.2 

W-PP-GT 

4 19.0 3.2 19.82  --- 7.9 
4 19.9 3.2 15.78  --- 8.1 
4 20.1 3.0 15.43  --- 9.9 
4 19.9 3.4 10.90  --- 5.4 
4 19.3 2.6 9.95  --- 6.6 

BX1200 

4 19.7 2.9 13.46  --- 6.1 
4 19.5 3.6 12.34  --- 6.8 
4 19.2 3.5 12.93  --- 5.7 
4 19.6 3.5 16.26  --- 6.3 
4 20.2 3.9 13.76  --- 8.5 
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Table 15. Summary of point test data – subbase 1 (Cont.) 

Section 
Roller 
Passes 

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR 
(%) γdry 

(kN/m3) 
Moisture 

(%) 

W-PP-GT 

10 20.1 3.1 20.75 --- --- 11.6 
10 20.4 2.8 15.72 19.4 56.9 11.2 
10 20.3 3.2 15.21 17.5 50.8 8.6 
10 20.1 3.4 10.90 10.4 31.5 10.3 
10 19.8 2.5 9.01 --- --- 6.9 

BX1200 

10 20.0 3.0 12.34 --- --- 6.0 
10 20.0 3.1 18.78 --- --- 8.1 
10 20.4 3.1 12.44 --- --- 8.3 
10 20.3 3.2 16.73 --- --- 8.8 
10 20.9 4.0 15.52 --- --- 11.5 
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Table 16. Summary of point test data – subbase 2 

Section 
Roller 
Passes

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR base2 γdry 

(kN/m3) 
Moistur
e (%) 

W-PP-GT 

0 19.1 3.0 23.93 --- --- 8.1 
0 19.6 3.6 31.04 --- --- 8.5 
0 19.7 4.1 30.92 --- --- 8.9 
0 20.1 3.4 25.04 --- --- 10.3 
0 19.9 3.3 26.55 --- --- 7.7 

BX1200 

0 19.3 3.8 25.91 --- --- 6.8 
0 19.7 3.2 27.93 --- --- 9.5 
0 19.5 3.8 27.32 --- --- 6.4 
0 19.7 3.7 26.18 --- --- 6.5 
0 19.6 3.6 26.27 --- --- 8.6 

W-PP-GT 

1 19.2 3.5 20.36 --- --- 8.0 
1 19.8 3.8 26.27 --- --- 7.1 
1 19.8 3.8 28.57 --- --- 10.9 
1 19.9 3.7 21.28 --- --- 11.2 
1 19.6 3.5 18.88 --- --- 6.3 

BX1200 

1 19.3 3.8 26.00 --- --- 9.5 
1 19.5 3.7 23.26 --- --- 6.1 
1 19.3 3.6 22.97 --- --- 7.7 
1 19.8 3.5 25.64 --- --- 9.6 
1 19.5 4.2 23.62 --- --- 7.4 

W-PP-GT 

2 19.8 3.6 22.36 --- --- 8.7 
2 20.2 4.1 24.39 --- --- 6.7 
2 20.0 3.7 25.55 --- --- 9.7 
2 20.3 3.7 22.23 --- --- 10.6 
2 20.3 4.2 23.55 --- --- 8.6 

BX1200 

2 19.7 3.3 20.81 --- --- 7.0 
2 20.2 3.4 25.21 --- --- 6.2 
2 19.9 3.4 22.90 --- --- 7.8 
2 19.4 4.0 23.26 --- --- 6.4 
2 19.9 3.3 22.29 --- --- 6.9 

W-PP-GT 

4 20.2 3.6 30.92 --- --- 11.5 
4 20.3 3.7 26.64 --- --- 9.8 
4 20.1 3.4 22.83 --- --- 8.4 
4 20.0 3.7 20.70 --- --- 10.0 
4 20.4 3.1 18.97 --- --- 8.3 

BX1200 

4 20.1 3.3 20.09 --- --- 6.9 
4 20.2 3.6 21.97 --- --- 7.5 
4 20.4 3.3 24.00 --- --- 8.8 
4 20.0 3.7 26.36 --- --- 4.3 
4 20.0 4.0 22.29 --- --- 7.6 
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Table 16. Summary of point test data – subbase 2 (Cont.) 

Section 
Roller 
Passes 

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR base 

2 γdry 
(kN/m3) 

Moisture 
(%) 

W-PP-GT 

10 20.5 3.8 26.64 --- --- 13.2 
10 20.8 4.0 27.52 --- --- 11.5 
10 20.4 3.5 25.91 --- --- 15.8 
10 21.1 3.9 22.63 --- --- 16.2 
10 20.5 3.9 15.95 --- --- 11.9 

BX1200 

10 20.2 3.4 24.71 --- --- 7.7 
10 19.9 4.3 23.70 --- --- 10.2 
10 20.9 3.4 25.91 --- --- 11.3 
10 20.0 3.6 26.83 --- --- 13.3 
10 20.6 3.6 24.88 --- --- 10.9 

W-PP-GT 

21 --- --- 35.27 71.7 137.8 --- 
21 --- --- 34.46 54.4 120.3 --- 
21 21.2 3.3 33.54 61.1 123.9 --- 
21 --- --- 27.42 31.2 65.7 --- 
21 --- --- 26.36 25.6 57.4 --- 

BX1200 

21 --- --- 30.05 27.9 56.7 --- 
21 --- --- 34.15 37.4 77.1 --- 
21 21.6 3.2 32.81 43.0 93.1 --- 
21 --- --- 39.13 78.9 142.7 --- 
21 --- --- 32.95 --- --- --- 
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Table 17. Summary of point test data – subgrade 

Section 
Roller 
Passes 

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR 
(%) γdry 

(kN/m3) 
Moistur
e (%) 

Initial Test --- 16.2 21.3 5.42 --- ---  
Initial Test --- 16.3 23.2 4.24 --- ---  

Control 

2 16.8 21.5 4.59 6.4 19.1 2.9 
2 16.5 21.3 4.03 3.6 12.2 4.3 
2 17.0 20.9 4.24 --- --- 5.2 
2 17.1 19.7 4.65 --- --- 4.1 
2 17.0 19.9 4.63 --- --- 3.9 

TX160 

2 16.9 18.6 6.02 --- --- 5.3 
2 16.7 21.8 3.94 --- --- 4.1 
2 16.5 20.8 4.07 --- --- 2.1 
2 15.8 24.0 5.31 --- --- 3.0 
2 16.3 20.8 4.18 --- --- 4.5 
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Table 18. Summary of point test data – subbase 1 

Section 
Roller 
Passes 

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR 
(%) γdry 

(kN/m3) 
Moisture 

(%) 

Control 

0 19.5 3.1 20.03 --- --- 7.5 
0 18.9 3.1 20.99 --- --- 9.3 
0 18.6 2.9 20.14 --- --- 5.9 
0 18.5 2.9 16.58 --- --- 5.4 
0 18.1 2.3 14.76 --- --- 4.5 

TX160 

0 18.7 2.6 16.58 --- --- 6.2 
0 18.4 3.2 15.78 --- --- 5.2 
0 18.6 2.3 17.35 --- --- 6.5 
0 18.9 3.3 24.39 --- --- 6.8 
0 20.3 2.8 15.95 --- --- 11.2 

Control 

1 20.1 3.0 17.00 --- --- 8.6 
1 19.6 3.0 16.05 --- --- 9.5 
1 19.0 2.5 17.07 --- --- 6.4 
1 18.9 3.1 15.49 --- --- 4.6 
1 17.9 2.5 12.91 --- --- 5.4 

TX160 

1 19.0 3.0 14.50 --- --- 5.3 
1 18.6 2.6 10.11 --- --- 6.3 
1 19.2 2.9 11.03 --- --- 5.8 
1 19.0 3.3 17.11 --- --- 8.4 
1 19.6 2.8 14.79 --- --- 6.7 

Control 

2 19.5 3.2 14.73 --- --- 9.5 
2 19.7 3.1 15.52 --- --- 8.2 
2 19.8 2.4 16.30 --- --- 7.8 
2 19.2 2.8 13.76 --- --- 4.9 
2 19.3 2.1 13.11 --- --- 5.2 

TX160 

2 19.6 3.0 13.37 --- --- 6.3 
2 19.4 3.1 11.42 --- --- 7.2 
2 19.6 2.7 11.45 --- --- 4.8 
2 19.5 3.2 15.39 --- --- 8.0 
2 19.9 3.5 14.17 --- --- 8.5 

Control 

4 19.8 3.0 13.49 --- --- 8.5 
4 19.9 3.1 18.60 --- --- 6.8 
4 19.7 3.0 14.82 --- --- 10.5 
4 19.5 2.8 15.15 --- --- 7.1 
4 19.7 2.5 14.10 --- --- 7.6 

TX160 

4 19.6 3.3 14.53 --- --- 9.6 
4 19.4 3.2 12.40 --- --- 7.1 
4 19.2 2.2 10.69 --- --- 7.9 
4 19.9 3.0 15.59 --- --- 8.6 
4 20.5 3.0 15.21 --- --- 8.8 
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Table 18. Summary of point test data – subbase 1 (Cont.) 

Section 
Roller 
Passes 

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR 
(%) γdry 

(kN/m3) 
Moistur
e (%) 

Control 

10 20.4 3.0 13.73 15.3 43.8 12.5 
10 20.2 2.7 19.17 15.4 44.7 12.3 
10 20.0 2.8 17.47 11.3 38.7 9.4 
10 19.9 3.2 15.43 10.9 71.1 11.5 
10 20.2 2.2 14.79 14.4 44.2 11.1 

TX160 

10 20.2 3.0 14.02 22.3 55.8 10.3 
10 20.7 2.9 13.37 19.2 46.7 10.1 
10 20.3 2.9 13.27 15.3 33.6 7.3 
10 20.4 3.0 16.62 28.9 65.5 9.0 
10 20.3 3.3 14.23 --- --- 10.6 
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Table 19. Summary of point test data – subbase 2 

Section 
Roller 
Passes 

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR 

base 2 γdry 
(kN/m3)

Moistur
e (%) 

Control 

0 20.2 3.5 30.66 --- --- 12.0 
0 19.6 3.8 20.93 --- --- 12.7 
0 19.5 3.7 29.46 --- --- 12.9 
0 19.6 3.9 28.89 --- --- 11.9 
0 19.6 3.8 25.38 --- --- 9.8 

TX160 

0 19.1 4.1 23.19 --- --- 7.3 
0 19.7 4.6 25.38 --- --- 10.1 
0 19.8 4.3 28.03 --- --- 9.4 
0 19.6 4.0 24.16 --- --- 8.5 
0 20.1 4.2 27.52 --- --- 8.9 

Control 

1 20.1 3.7 27.52 --- --- 12.3 
1 20.3 3.3 26.27 --- --- 10.3 
1 20.6 3.6 32.38 --- --- 13.4 
1 20.5 3.3 37.94 --- --- 10.6 
1 20.0 3.3 32.95 --- --- 9.4 

TX160 

1 20.0 3.7 23.93 --- --- 7.0 
1 20.6 4.2 23.19 --- --- 8.5 
1 19.9 3.6 25.21 --- --- 10.6 
1 20.1 4.1 33.10 --- --- 9.0 
1 20.2 4.3 29.46 --- --- 12.6 

Control 

2 20.3 3.8 33.84 --- --- 10.8 
2 20.5 3.2 27.42 --- --- 10.7 
2 19.7 3.7 34.46 --- --- 9.9 
2 20.3 3.5 29.01 --- --- 11.2 
2 20.2 3.0 31.70 --- --- 10.5 

TX160 

2 19.8 3.8 25.04 --- --- 12.0 
2 20.3 3.7 24.71 --- --- 6.3 
2 20.1 3.4 24.00 --- --- 10.4 
2 20.6 3.6 29.46 --- --- 11.0 
2 19.9 4.4 27.42 --- --- 10.6 

Control 

4 20.2 3.9 26.45 --- --- 9.1 
4 20.3 3.4 29.35 --- --- 13.2 
4 19.6 3.8 28.57 --- --- 11.7 
4 20.5 3.4 29.46 --- --- 11.6 
4 20.5 3.3 27.12 --- --- 14.9 

TX160 

4 20.2 3.8 24.08 --- --- 5.6 
4 20.5 3.8 22.49 --- --- 16.9 
4 20.6 3.4 21.53 --- --- 13.0 
4 20.4 4.0 26.45 --- --- 6.0 
4 20.6 4.2 25.64 --- --- 10.7 
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Table 19. Summary of point test data – subbase 2 (Cont.) 

Section 
Roller 
Passes 

Nuclear Density 
EZ200 

(MPa) 
EV1 

(MPa) 
EV2 

(MPa) 
CBR 

base 2 γdry 
(kN/m3)

Moistur
e (%) 

Control 

10 20.8 4.2 30.54 --- --- 15.9 
10 20.4 3.3 32.24 --- --- 13.7 
10 20.5 3.8 30.17 --- --- 13.1 
10 21.0 3.4 28.14 --- --- 16.3 
10 21.1 3.4 28.03 --- --- 13.8 

TX160 

10 20.3 3.9 28.03 --- --- 16.0 
10 20.6 3.7 23.12 --- --- 13.1 
10 20.9 3.6 26.00 --- --- 14.7 
10 21.0 3.6 29.01 --- --- 13.5 
10 20.6 4.1 23.48 --- --- 15.5 

Control 

21 --- --- 34.15 51.0 119.4 --- 
21 --- --- 34.30 41.4 101.8 --- 
21 21.6 2.9 31.97 37.3 95.5 --- 
21 --- --- 25.30 26.9 83.0 --- 
21 --- --- 30.92 40.6 91.2 --- 

TX160 

21 --- --- 31.83 46.9 103.0 --- 
21 --- --- 26.18 46.3 91.5 --- 
21 22.2 4.0 31.30 37.3 86.2 --- 
21 --- --- 27.42 60.8 131.2 --- 
21 --- --- 25.73 54.1 112.8 --- 
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Figure 98. DCP profiles for W-PP-GT and BX1200 sections 
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Figure 99. DCP profiles for W-PP-GT and BX1200 sections – subbase layer 1 
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Figure 100. DCP profiles for W-PP-GT and BX1200 section – subbase layer 2 
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Figure 101. DCP profiles for W-PP-GT and BX1200 sections – final full depth test 
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Figure 102. DCP profiles for control and TX160 sections 
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Figure 103. DCP profiles for control and TX160 sections – subbase layer 1 
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Figure 104. DCP profiles for control and TX160 sections – subbase layer 2 
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Figure 105. DCP profiles for control and TX160 sections – final full depth test 
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Figure 106. CBR profiles for subgrade layer for W-PP-GT and BX1200 sections  
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Figure 107. CBR profiles for subgrade layer for control and TX160 sections 
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Figure 108. CBR profiles for W-PP-GT and BX1200 sections – subbase layer 1 
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Figure 109. CBR profiles for W-PP-GT and BX1200 sections – subbase layer 2 
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Figure 110. CBR profiles for W-PP-GT and BX1200 sections – final full depth test 
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Figure 111. CBR profiles for control and TX160 sections – subbase layer 1 
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Figure 112. CBR profiles for control and TX160 sections – subbase layer 2 
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Figure 113. CBR profiles for control and TX160 sections – final full depth test 

 



A-23 

Table 20. Summary of DCP testing on subgrade 

Section Point Material 
Depth Range 

(mm) 
DPI CBR 

W-PP-GT 1 Subgrade 0 – 571 71.4 2.5 

W-PP-GT 2 Subgrade 0 – 442 73.7 2.4 

W-PP-GT 3 Subgrade 0 – 615 76.9 2.3 

W-PP-GT 4 Subgrade 0 – 435 87.0 2.0 

W-PP-GT 5 Subgrade 0 – 570 95.0 1.8 

BX1200 1 Subgrade 0 – 620 103.3 1.6 

BX1200 2 Subgrade 0 – 552 78.9 2.2 

BX1200 3 Subgrade 0 – 490 70.0 2.5 

BX1200 4 Subgrade 0 – 580 82.9 2.1 

BX1200 5 Subgrade 0 – 575 52.3 3.6 

Control 1 Subgrade 0 – 623 77.9 2.2 

Control 2 Subgrade 0 – 641 91.6 1.9 

Control 3 Subgrade 0 – 535 76.4 2.3 

Control 4 Subgrade 0 – 592 98.7 1.7 

Control 5 Subgrade 0 – 633 90.4 1.9 

TX160 1 Subgrade 0 – 580 72.5 2.4 

TX160 2 Subgrade 0 – 613 76.6 2.3 

TX160 3 Subgrade 0 – 628 125.6 1.3 

TX160 4 Subgrade 0 – 584 73.0 2.4 

TX160 5 Subgrade 0 – 582 97.0 1.7 
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Table 21. Summary of DCP testing on subbase 1 

Section 
Poin

t 
Material 

Depth Range 
(mm) 

DPI CBR 

W-PP-GT 1 Subbase 1 0 – 193 17.5 11.8 

W-PP-GT 2 Subbase 1 0 – 203 18.5 11.2 

W-PP-GT 3 Subbase 1 0 – 212 23.6 8.5 

W-PP-GT 4 Subbase 1 0 – 210 19.1 10.7 

W-PP-GT 5 Subbase 1 0 – 202 28.9 6.8 

BX1200 1 Subbase 1 0 – 225 32.1 6.0 

BX1200 2 Subbase 1 0 – 218 24.2 8.2 

BX1200 3 Subbase 1 0 – 215 23.9 8.4 

BX1200 4 Subbase 1 0 – 208 23.1 8.7 

BX1200 5 Subbase 1 0 – 215 17.9 11.5 

Control 1 Subbase 1 0 – 209 16.1 13.0 

Control 2 Subbase 1 0 – 204 18.5 11.1 

Control 3 Subbase 1 0 – 216 21.6 9.3 

Control 4 Subbase 1 0 – 204 22.7 8.9 

Control 5 Subbase 1 0 – 240 18.5 11.1 

TX160 1 Subbase 1 0 – 222 18.5 11.1 

TX160 2 Subbase 1 0 – 203 20.3 10.0 

TX160 3 Subbase 1 0 – 199 28.4 6.9 

TX160 4 Subbase 1 0 – 210 21.0 9.6 

TX160 5 Subbase 1 0 – 220 18.3 11.2 
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Table 22. Summary of DCP testing on W-PP-GT and BX sections after trafficking subbase 
2 

Section Point Material 
Depth Range 

(mm) 
DPI CBR 

W-PP-GT 1L 
Subbase1 
Subgrade 

0 – 409 
409 – 875 

5.8 
77.7 

41.1 
2.2 

W-PP-GT 1R 
Subbase1 
Subgrade 

0 – 389 
448 – 846 

6.7 
99.5 

34.6 
1.7 

W-PP-GT 2L 
Subbase1 
Subgrade 

0 – 404 
480 – 874 

6.1 
65.7 

38.4 
2.7 

W-PP-GT 2R 
Subbase1 
Subgrade 

0 – 419 
499 – 854 

5.3 
71.0 

45.1 
2.5 

W-PP-GT 3L 
Subbase1 
Subgrade 

0 – 403 
515 – 821 

5.0 
76.5 

48.4 
2.3 

W-PP-GT 3R 
Subbase1 
Subgrade 

0 – 416 
497 – 767 

5.0 
45.0 

48.0 
4.1 

W-PP-GT 4L 
Subbase1 
Subgrade 

0 – 361 
466 – 824 

5.6 
71.6 

42.8 
2.4 

W-PP-GT 4R 
Subbase1 
Subgrade 

0 – 331 
529 – 887 

6.6 
71.6 

35.2 
2.4 

W-PP-GT 5L 
Subbase1 
Subgrade 

0 – 369 
496 – 933 

5.7 
109.3 

41.8 
1.5 

W-PP-GT 5R 
Subbase1 
Subgrade 

0 – 389 
513 – 864 

5.6 
87.8 

42.8 
1.9 

BX1200 1L 
Subbase1 
Subgrade 

0 – 367 
497 – 932 

5.8 
108.8 

40.6 
1.5 

BX1200 1R 
Subbase1 
Subgrade 

0 – 408 
574 – 958 

5.1 
48.0 

47.1 
3.8 

BX1200 2L 
Subbase1 
Subgrade 

0 – 375 
437 – 907 

4.7 
67.1 

51.8 
2.6 

BX1200 2R 
Subbase1 
Subgrade 

0 – 401 
574 – 885 

5.7 
90.5 

41.3 
2.3 

BX1200 3L 
Subbase1 
Subgrade 

0 – 383 
478 – 865 

5.3 
81.4 

44.9 
3.7 

BX1200 3R 
Subbase1 
Subgrade 

0 – 365 
641 – 982 

5.2 
82.0 

45.9 
2.2 

BX1200 4L 
Subbase1 
Subgrade 

0 – 429 
511 – 906 

5.0 
39.5 

47.6 
4.8 

BX1200 4R 
Subbase1 
Subgrade 

0 – 413 
490 – 851 

5.3 
72.2 

45.2 
2.4 

BX1200 5L 
Subbase1 
Subgrade 

0 – 363 
421 – 844 

3.8 
84.6 

65.1 
2.0 

BX1200 5R 
Subbase1 
Subgrade 

0 – 434 
484 – 963 

5.4 
59.9 

43.9 
3.0 

                1 Subbase includes subbase 1 and subbase 2 as included in depth ranges. 
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Table 23. Summary of DCP testing on control and TX sections after trafficking subbase 2 

Section Point Material 
Depth Range 

(mm) 
DPI CBR 

Control 1L 
Subbase1 
Subgrade 

0 – 421 
489 – 824 

4.4 
55.8 

55.1 
3.2 

Control 1R 
Subbase1 
Subgrade 

0 – 405 
503 – 927 

5.1 
45.8 

47.5 
7.0 

Control 2L 
Subbase1 
Subgrade 

0 – 442 
493 – 855 

4.6 
51.7 

53.4 
3.5 

Control 2R 
Subbase1 
Subgrade 

0 – 443 
512 – 930 

6.4 
69.7 

36.4 
2.5 

Control 3L 
Subbase1 
Subgrade 

0 – 485 
485 – 854 

6.1 
73.8 

38.8 
2.4 

Control 3R 
Subbase1 
Subgrade 

0 – 407 
534 – 957 

5.1 
42.3 

47.2 
4.4 

Control 4L 
Subbase1 
Subgrade 

0 – 414 
528 – 967 

5.2 
62.7 

46.3 
2.8 

Control 4R 
Subbase1 
Subgrade 

0 – 410 
516 – 924 

5.9 
81.6 

40.3 
2.1 

Control 5L 
Subbase1 
Subgrade 

0 – 430 
488 – 907 

5.7 
52.4 

41.3 
3.5 

Control 5R 
Subbase1 
Subgrade 

0 – 450 
529 – 876 

5.6 
86.8 

42.2 
2.0 

TX160 1L 
Subbase1 
Subgrade 

0 – 389 
439 – 911 

4.9 
52.4 

49.7 
3.5 

TX160 1R 
Subbase1 
Subgrade 

0 – 442 
542 – 906 

5.5 
91.0 

43.0 
1.9 

TX160 2L 
Subbase1 
Subgrade 

0 – 338 
516 – 896 

4.5 
47.5 

54.1 
3.9 

TX160 2R 
Subbase1 
Subgrade 

0 – 423 
483 – 978 

6.0 
82.5 

38.9 
2.1 

TX160 3L 
Subbase1 
Subgrade 

0 – 335 
484 – 875 

5.2 
48.9 

46.5 
3.7 

TX160 3R 
Subbase1 
Subgrade 

0 – 482 
482 – 888 

4.8 
58.0 

50.2 
3.1 

TX160 4L 
Subbase1 
Subgrade 

0 – 376 
572 – 952 

4.2 
54.3 

58.9 
3.3 

TX160 4R 
Subbase1 
Subgrade 

0 – 392 
454 – 825 

4.9 
74.2 

49.2 
2.3 

TX160 5L 
Subbase1 
Subgrade 

0 – 391 
468 – 920 

4.6 
64.6 

52.9 
2.7 

TX160 5R 
Subbase1 
Subgrade 

0 – 416 
465 - 956 

4.6 
70.1 

52.6 
2.5 

               1 Subbase includes subbase 1 and subbase 2 as included in depth ranges. 
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Figure 114. Plate load test results on control section – Subgrade 
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Figure 115. Plate load test results for section W-PP-GT – subbase 1 
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Figure 116. Plate load test results on section W-PP-GT – subbase 2 
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Figure 117. Plate load test results for BX1200 section – subbase 2 
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Figure 118. Plate load test results for control section – subbase 1 
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Figure 119. Plate load test results for TX160 section – subbase 1 
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Figure 120. Plate load test results for control section – subbase 2 
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Figure 121. Plate load test results for TX160 section – subbase 2 
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Table 24. Summary of plate load tests results 

Sections Points 
Subgrade Subbase 1 Subbase 2 

EV1 
(MPa) 

EV2 
(MPa) 

EV1 
(MPa) 

EV2 
(MPa) 

EV1 
(MPa) 

EV2 
(MPa) 

W-PP-GT 

1 — — — — 71.7 137.8 

2 — — 19.4 56.9 54.4 120.3 

3 — — 17.5 50.8 61.1 123.9 

4 — — 10.4 31.5 31.2 65.7 

5 — — — — 25.6 57.4 

BX1200 

1 — — — — 27.9 56.7 

2 — — — — 37.4 77.1 

3 — — — — 43.0 93.1 

4 — — — — 78.9 142.7 

Control 

1 6.4 19.1 15.3 43.8 51.0 119.4 

2 3.6 12.2 15.0 44.7 41.4 101.8 

3 — — 11.3 38.7 37.3 95.5 

4 — — 10.9 71.1 26.9 83.0 

5 — — 14.4 44.2 40.6 91.2 

TX160 

1 — — 22.3 55.8 46.9 103.0 

2 — — 19.2 46.7 46.3 91.5 

3 — — 15.3 33.6 37.3 86.2 

4 — — 28.9 65.5 60.8 131.2 

5 — — — — 54.1 112.8 
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APPENDIX B. EARTH PRESSURE CELL DATA 
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Figure 122.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data at 0 passes 
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Figure 123.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 2 
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Figure 124.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 3 
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Figure 125.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 4 
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Figure 126.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass  
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Figure 127.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller 10 
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Figure 128.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller 12 
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Figure 129.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data truck traffic pass 1 
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Figure 130.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data truck traffic pass 2 
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Figure 131.  Earth pressure cell W-PP-GT and BX1200 sections layer 1 vertical (left) and 
horizontal (right) stress data truck traffic pass 3 
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Figure 132.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data pass 0 
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Figure 133.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 1 
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Figure 134.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 2 
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Figure 135.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 3 

 



B-6 

Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
Control
TX160

 Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
Control Subgrade
Control Subbase
TX160 Subgrade
TX160 Subbase

 

Figure 136.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 4 
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Figure 137.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 5 
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Figure 138.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 6 
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Figure 139.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 7 
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Figure 140.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 8 
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Figure 141.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data Case roller pass 10 
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Figure 142.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data CAT roller pass 12 
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Figure 143.  Earth pressure cell Control and TX160 sections layer 1  vertical (left) and 
horizontal (right) stress data truck traffic pass 1 

Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
Control
TX160

 Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
Control Subgrade
Control Subbase
TX160 Subgrade
TX160 Subbase

 

Figure 144.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data truck traffic pass 2 
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Figure 145.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data truck traffic pass 3 
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Figure 146.  Earth pressure cell Control and TX160 sections layer 1 vertical (left) and 
horizontal (right) stress data truck traffic pass 4 
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Figure 147.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 1 
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Figure 148.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 2 
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Figure 149.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 3 
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Figure 150.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 4 
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Figure 151.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 12 
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Figure 152.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller high amplitude pass 13 
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Figure 153.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller high amplitude pass 14 
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Figure 154.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller pass 16 
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Figure 155.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller high amplitude pass 17 
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Figure 156.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller high amplitude pass 18 
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Figure 157.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller pass 19 
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Figure 158.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller high amplitude pass 20 
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Figure 159.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller pass 21 
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Figure 160.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller static pass 22 
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Figure 161.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 1 
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Figure 162.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 2 
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Figure 163.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 3 
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Figure 164.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 4 

Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
W-PP-GT
BX1200

 Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
W-PP-GT Subgrade
W-PP-GT Subbase
BX1200 Subgrade
BX1200 Subbase

 

Figure 165.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 5 
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Figure 166.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 10 
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Figure 167.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 15 
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Figure 168.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 35 
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Figure 169.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 45 
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Figure 170.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 50 
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Figure 171.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 60 
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Figure 172.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 75 
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Figure 173.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 100 
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Figure 174.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 126 
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Figure 175.  Earth pressure cell W-PP-GT and BX1200 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 150 
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Figure 176.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 4 
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Figure 177.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller high amplitude pass 5 
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Figure 178.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller high amplitude pass 6 
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Figure 179.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 7 
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Figure 180.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 8 
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Figure 181.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 9 
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Figure 182.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data Case roller pass 10 
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Figure 183.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller pass 13 
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Figure 184.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller pass 14 
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Figure 185.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller high amplitude pass 15 

Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
Control
TX160

 Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
Control Subgrade
Control Subbase
TX160 Subgrade
TX160 Subbase

 

Figure 186.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller high amplitude pass 16 
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Figure 187.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller pass 17 
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Figure 188.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller pass 18 
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Figure 189.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller high amplitude pass 19 
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Figure 190.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data CAT roller static pass 20 
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Figure 191.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 1 
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Figure 192.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 5 
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Figure 193.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 10 
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Figure 194.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 15 
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Figure 195.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 35 
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Figure 196.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 45 

Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
Control
TX160

 Time (sec)

0 5 10 15 20 25 30

S
tr

es
s 

(k
P

a)

0

50

100

150

200
Control Subgrade
Control Subbase
TX160 Subgrade
TX160 Subbase

 

Figure 197.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 50 
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Figure 198.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 60 
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Figure 199.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 75 
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Figure 200.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 100 
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Figure 201.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 126 
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Figure 202.  Earth pressure cell Control and TX160 sections layer 2 vertical (left) and 
horizontal (right) stress data truck traffic pass 150
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Figure 203.  Cross section profiles, W-PP-GT section, points A1, A2 and A3 
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Figure 204.  Cross section profiles W-PP-GT section, points A4 and A5 
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Figure 205.  Cross section profiles BX1200 section, points A6, A7 and A8 
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Figure 206.  Cross section profiles BX1200 section, points A9 and A10 
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Figure 207.  Cross section profiles control section, points B1, B2 and B3 
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Figure 208.  Cross section profiles control section, points B4 and B5 
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Figure 209.  Cross section profiles TX160 section, points B6, B7 and B8 
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Figure 210.  Cross section profiles TX160 section, points B9 and B10
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Figure 211.  W-PP-GT and BX1200 sections subgrade DPI histogram 
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Figure 212.  W-PP-GT and BX1200 sections subbase 1 DPI histogram 
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Figure 213.  W-PP-GT and BX1200 sections subbase 2 DPI histogram 
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Figure 214.  Control and TX160 sections subgrade DPI histogram 
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Figure 215.  Control and TX160 sections subbase 1 DPI histogram 
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Figure 216.  Control and TX160 sections subbase 2 DPI histogram 
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Figure 217.  Combined sections subbase 2 modulus histogram 

 

  

 


