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EXECUTIVE SUMMARY 

Background 

The ends of prestressed concrete beams located under bridge expansion joints are often exposed 

to extended periods of moisture and chlorides. This exposure can cause the beam ends to 

deteriorate prematurely, corrode the prestressing strands, degrade the surrounding concrete, and 

eventually reduce the capacity of the beam. 

Problem Statement 

Previous research has investigated the use of concrete coatings (silanes, epoxies, etc.) for 

protecting prestressed concrete beam ends, but insufficient laboratory research has evaluated the 

performance of these coatings for this application. 

The Iowa Department of Transportation (DOT) currently specifies coating the ends of exposed 

prestressed concrete beams with Sikagard 62 (a high-build, protective, solvent-free, epoxy 

coating) at the precast plant prior to installation on the bridge. However, no physical testing of 

Sikagard 62 for this application has been completed.  

Meanwhile, the Iowa DOT continues to see deterioration even in beam ends treated with 

Sikagard 62. The Iowa DOT therefore wanted to evaluate several available prestressed beam-end 

treatment alternatives in the laboratory and in the field. 

Research Objectives 

The objectives of this research were to evaluate the performance of several concrete coating 

alternatives based on the American Association of State Highway and Transportation Officials 

(AASHTO) T259-80 chloride ion penetration test and to evaluate them based on their 

performance on in-service bridges. In addition, alternative beam-end forming details were 

developed and evaluated for their potential to mitigate the deterioration caused by corrosion of 

the prestressing strands on prestressed concrete beam ends. 

Key Findings 

 In laboratory testing, the coatings performed similarly on all three concrete slabs, indicating 

that concrete mix design did not significantly affect coating performance. 

 For the most part, the coated slab sections resisted chloride penetration of the concrete much 

better than the uncoated control sections. The only exception was the section coated with 

TEXCOTE XL 70 BRIDGE COTE with Silane. 

 Based on the results of the AASHTO T259-80 chloride penetration test, the coatings showing 

the best to worst performance were as follows: (1) three-way tie between BASF Sonoguard, 

BASF Hydrozo 100, Sikagard 62 – two coats, (2) Viking Aqua Guard Concrete Sealer, (3) 
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Sikagard 62 – one coat, (4) TEXCOTE RAINSTOPPER 140, (5) PAULCO TE-3008-1, (6) 

Evercrete DPS, (7) TEXCOTE XL 70 BRIDGE COTE with Silane. 

 In field testing, the inspection results of the coated beam ends varied from product to product 

and, at times, from one beam to another coated with the same product.  

 In general, the performance of all of the products was excellent. No signs of peeling or 

deterioration of the coating were found on the concrete surfaces. All noticeable problems 

appeared to be at the prestressing strand locations. 

 In the rare case when all prestressing strand ends were covered after the Iowa DOT 

preparation process, the beam end showed no signs of deterioration. However, in most cases 

several of the strand ends were visible and appeared rusted immediately before the coating 

was applied. All visible rust was removed before applying the coatings, but this is believed to 

be more a superficial fix than a long-term maintenance plan. 

 At the precast plant, the strands protruding from the ends of the untrimmed and untreated 

beam ends were found to be heavily rusted. Before treatment, moisture and rust likely 

migrated into the beam end via the strands. 

 The pre-existing moisture and rust on the strands within the beam ends before application of 

the coating likely caused most of the failures found on the coated bridge beams. Some coated 

beam ends only had visible signs of rust on the strand ends, others had visible rust piercing 

the coating, and a few others had the coating peeling off and missing completely from the 

strand ends.  

 All three grout products provided an adequate bond to the existing concrete and were easy to 

mix and apply to the vertical voids. However, all three products exhibited shrinkage cracks 

within a few days of application. 

Implementation Readiness and Benefits 

With the exception of TEXCOTE XL 70 BRIDGE COTE with Silane, the selected coating 

products resisted chloride penetration of the concrete much better than the uncoated concrete. 

Adding a second coat of Sikagard 62 slightly improved chloride ion penetration performance, but 

likely not enough to warrant the extra time and cost involved in the process. 

Single, double, or individual bar blockout are excellent options for separating the face of the 

beam end and the end of the prestressing strand. Viable alternative beam-end fabrication details 

include any of the blockout options: single, double, or individual strand.  

Foam was found to be the best material for creating the voids. Further investigation is warranted 

into potential grout products, epoxy products, or both that can adequately fill voided areas 

without cracking.  

Drilling out the strands after each is flush cut to the beam face was found to be nearly impossible 

and is not considered a viable option. 
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INTRODUCTION 

Like many other state departments of transportation (DOTs), the Iowa Department of 

Transportation is facing the daunting task of maintaining an inventory of aging bridges. After 

experiencing years of cost-effective construction and reduced maintenance costs, many of the 

new structures built in Iowa are prestressed concrete girder bridges, and, when possible, 

expansion joints are eliminated by utilizing integral abutments. However, when integral 

abutments are not feasible, the Iowa DOT is faced with protecting and maintaining a concrete 

superstructure with expansion joints that often expose the ends of the prestressed beams to 

moisture and chlorides. 

Typical prestressed concrete beam construction results in woven prestressing strands protruding 

from the ends of the beams. On bridges with non-integral abutments, these strands are 

subsequently cut off so as to not obstruct the construction of the bridge abutment. Beam-end 

finishing details vary from state to state, some specifying that the strands be simply flush cut and 

left untouched, others requiring that the beam ends be treated with epoxy or silicone sealer after 

the strands are cut. Because beam ends on non-integral abutment bridges are not encased in 

concrete, the final detailing of the beam ends is critical because they are fully exposed to the 

elements, including potential contamination from moisture and chlorides that may penetrate the 

joint. Left unprotected, these exposed strands may begin to corrode, eventually leading to cracks 

and spalling of the concrete. Still, some state DOTs, including Iowa, have found that 

deterioration of beam ends occurs despite their attempts to protect the beam ends with additional 

detailing. 

Currently, the Iowa DOT specifies prestressed concrete beam ends be coated with Sikagard 62 at 

the precast plant, although there has been no laboratory investigation into the effectiveness of the 

coating’s performance in this application. Individual precasters often have their own beam-end 

finishing details in addition to use of the Sikagard 62, although anecdotal evidence suggest that 

not all beams are actually getting the needed finishing prior to application of the coating and 

installation in the field. Furthermore, as mentioned previously, the performance of in-service 

bridge beams that have undergone their detailing process has been found to be highly variable 

and sometimes substandard. Field inspections have found many bridge beams with exposed 

strand ends that are heavily corroded and others with spalling and deterioration of the beam ends, 

resulting in a potential reduction in the bearing capacity of the beam.  

Problem Statement 

The ends of prestressed concrete beams located under bridge expansion joints are often exposed 

to extended periods of moisture and chlorides, which subsequently results in premature 

deterioration of the beam ends. This results in active corrosion of the prestressing strands, which 

can lead to degradation of the surrounding concrete and, eventually, loss of bearing area and a 

general reduction in the capacity of the beam. There exists a need to investigate concrete beam-

end treatments and techniques for mitigating this problem on new structures and improving long-

term beam performance. Although previous research has touched on this topic, insufficient 

research exists related to physically testing the treatment alternatives and evaluating their in-
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service performance. The Iowa DOT wishes to evaluate the prestressed beam-end treatment 

alternatives currently used on its prestressed girder bridges as well as other relevant options 

currently available through evaluation in the laboratory and in the field. 

Research Goal and Objectives 

The objective of this work is to conduct laboratory testing to evaluate prestressed concrete beam-

end treatment alternatives that will prevent, or at least slow, the deterioration currently occurring 

at beam ends in jointed prestressed concrete girder bridges. In addition, new beam-end 

fabrication/forming details were developed and evaluated for their potential to eliminate/mitigate 

the damage to beam ends that often results from moisture ingress via the exposed strand ends on 

these beams. The tasks completed to meet the project objectives are as follows: 

 Conduct a literature review of the subject 

 Select several beam-end treatment alternatives, including the one currently used/specified by 

the Iowa DOT (i.e., Sikagard 62) 

 Conduct laboratory tests to evaluate beam coating alternatives by employment of the 

AASHTO T259-80 test 

 Apply the selected beam coating alternatives on two prestressed concrete girder bridges and 

monitor for the duration of the project 

 Conduct laboratory tests evaluating alternative beam-end fabrication details 

Research Approach 

This study involved a literature review of the subject, laboratory and field evaluation of several 

beam-end coating alternatives, and development and laboratory testing of several beam-end 

fabrication modifications aimed at reducing strand exposure. The literature review presents 

information on the state of the practice in other states, as well as other research related to the use 

and performance of prestressed beam-end coatings. Laboratory testing was then completed on 

several beam-end coating alternatives according to the AASHTO T259-80 test. Resistance to 

chloride ion penetration is an important criterion for coatings on concrete surfaces, especially 

those beam ends that are exposed on non-integral abutment bridges. Coatings that exhibit good 

resistance to chloride ion penetration will be good candidates for field applications on bridge 

beams in the future. All of the coating alternatives were also applied on separate full-scale 

prestressed beams at the precast plant and installed in two bridges near Des Moines, Iowa, for 

monitoring throughout the duration of the project. Lastly, several beam-end details were 

developed and evaluated for their constructability. These details were developed with the goal of 

reducing or eliminating the exposure of the prestressing strands to the elements. 
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LITERATURE REVIEW 

A search of relevant literature regarding the treatments and products used to address problems 

related to prestressed beam ends being exposed to the elements was conducted, the results of 

which are summarized in this section. One of the more relevant and recent research projects 

conducted on this subject was completed in 2012 by the Pennsylvania Department of 

Transportation (PennDOT) (Radlinska et al. 2012). One of the study’s initial findings was that, 

much like the Iowa DOT has found, there is a lack of available laboratory results that would 

facilitate a direct comparison between the available methods and actual field applications. Based 

on survey data from state DOTs, the study found that most states do nothing to protect their 

concrete beam ends, nor have they conducted research on any coatings or beam-end treatments 

they may utilize. The PennDOT survey also identified coatings and combination systems that 

often provide the best service life and are a good low cost option based on manufacturers’ data. 

The study found sealers (i.e., silane, siloxane, etc.) to be another good alternative, although these 

alternatives are restricted to areas that do not have active corrosion or heavy chloride ion 

concentrations. A third alternative, cathodic systems, were noted to provide the greatest 

protection, but their high cost and need for continuous monitoring typically limit their use. In 

addition to the DOT survey, a survey of concrete manufacturers was also completed and 

indicated that the manufacturers’ suggestion for best corrosion prevention was membranes 

(urethanes, epoxies, etc.) and then sealers. 

The PennDOT research also found that coatings used to protect steel beams are first approved by 

the National Transportation Product Evaluation Program (NTPEP) and subsequently usually 

have good performance. To date, a similar approval process is not in place for concrete coatings. 

Based on the survey data and information collected from various manufacturers related to ease of 

application, frequency of inspection, service life, cure time, etc., the researchers concluded that 

the top three available products for concrete beam-end treatment were Evercrete Deep 

Penetrating Sealer (DPS), water-based asphalt emulsion, and TEXCOTE XL 70 BRIDGE 

COTE. 

In 2004, the Wisconsin Highway Research Program (Tabatabai et al. 2005) conducted an 

extensive experimental study comparing the effectiveness of four different beam-end treatment 

alternatives: (1) carbon fiber-reinforced polymer (FRP) wrap (two REPLARK 30 fabric and resin 

layers, in addition to primer and putty), (2) REPLARK 30 polymer resin coating (no fiber), (3) 

epoxy coating (MASTERSEAL GP epoxy sealer), and (4) sealer (MASTERSEAL SL 40 VOC). 

The research involved subjecting full-scale beam ends treated with each of the alternatives to 

controlled saltwater exposure and wet/dry cycles consisting of four days of “wet” exposure 

followed by three “dry” days. After six months of this alternating wetting and drying, no 

deterioration was evident. Therefore, corrosion was rapidly induced in the specimens by 

subjecting them to cyclic wetting and drying with a 6% chloride solution along with an applied 

constant voltage to the steel. The effectiveness of the coatings was subsequently evaluated based 

on chloride content, extent of cracking, and observed strand corrosion. Of the four alternatives, 

the FRP and polymer resin coatings were the most effective, followed by epoxy and then silane. 

The researchers further concluded that the polymer resin or epoxy coatings were recommended 

because the FRP was not so much more effective as to offset the additional cost of the FRP wrap. 
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Research conducted in 2002 published by the Michigan Department of Transportation (Ahlborn 

et al. 2001) looked at the causes and cures for corrosion-induced deterioration in prestressed 

concrete I-beam ends. The authors evaluated preventative beam-end measures based on meeting 

a predetermined set of technical requirements and concluded that the procedure/product either 

met requirements, did not meet requirements, or no conclusions could be drawn regarding 

meeting the requirements. The research revealed that penetrating and surface sealers did not meet 

the requirements, surface coatings were inconclusive, surface-applied corrosion inhibitors were 

inconclusive, and impressed current cathodic protection met the requirements. Note that nowhere 

in the research was cost of the alternatives considered. 

Much of the research identified in the literature search that was related to concrete coating 

performance was not particularly relevant to this work because the coatings were often utilized in 

a repair situation or applied to concrete structures without protruding prestressing strands (e.g., 

barrier rails). One such research project, conducted by the Kentucky Transportation Center 

(KTC) in 2006 (Palle and Hopwood 2006), evaluated several coating alternatives on a section of 

bridge barrier rail and including subjecting each of the alternatives to several laboratory tests to 

evaluate properties such as adhesion, chloride penetration, and UV degradation.  
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LABORATORY BEAM-END COATING EVALUATION 

Various methodologies exist for attempting to protect concrete beam ends from the damaging 

effects of moisture and chlorides. Products range from penetrating sealers, surface epoxies, 

moisture blockers, etc., to more physical alternatives such as FRP wraps and strip seals. For this 

work, the selection of alternatives for evaluation on laboratory and field specimens began with 

selecting the current concrete coating product outlined for protecting concrete beam ends by the 

Iowa DOT, Sikagard 62 (a high-build, protective, solvent-free, epoxy coating). Additional 

alternatives were then selected based on results from the literature search and input from the 

project’s technical advisory committee (TAC).  

Alternative Selection 

As noted above, the current product listed by the Iowa DOT, Sikagard 62, was an automatic 

selection for evaluation for two main reasons: the Iowa DOT currently has no laboratory-based 

test data for this product in this application and evaluating this product would provide a baseline 

for performance evaluation in testing additional concrete coatings. As noted above, additional 

alternatives were selected based on products found in previous research and then cross-

referenced with a list of currently available products meeting the application criteria. From there, 

guidance and input from the TAC and Iowa DOT staff resulted in the selection of the following 

alternatives for inclusion in the subsequently described experimental evaluation: 

 Sikagard 62 (epoxy) 

 TEXCOTE XL70 BRIDGE COTE with Silane 

 TEXCOTE RAINSTOPPER 140 (40% silane sealer) 

 Viking Aqua Guard Concrete Sealer (2 part – water-based epoxy) 

 PAULCO TE-3008-1 (2 part – solvent-based epoxy) 

 BASF Sonoguard (2 part – polyurethane waterproofer) 

 BASF Hydrozo 100 (100% silane penetrating sealer) 

 Evercrete Deep Penetrating Sealer (DPS) 

Laboratory Ponding Tests and Results 

The method for evaluating the performance of the selected concrete coating alternatives was the 

AASHTO T259-80 test (Standard Method of Test for Resistance of Concrete to Chloride Ion 

Penetration). Laboratory testing of the selected beam-end coating alternatives consisted of first 

casting three concrete ponding slabs, one from each of the three precast facilities located in or 

near Iowa: Coreslab Structures, Omaha, Nebraska; Cretex, Iowa Falls, Iowa; Andrews 

Prestressed Concrete, Mason City, Iowa. (Note: Prior to completion of testing, the Andrews 

facility closed for business.) The purpose of obtaining a ponding slab from each of the three 

precasters was to evaluate if concrete mix design or differences in concrete placement techniques 

had any effect on the performance of the coating alternatives.  
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Each slab was cast on-site at the precast plant and then transported to the Iowa State University 

(ISU) structural engineering laboratory for testing. Illustrated in Figure 1 is a plan view of a 

typical ponding slab; all three slabs were 5 ft by 7 ft in plane and 6 in. thick. The slab dimensions 

allowed for 12 squares per slab for application of the 8 selected alternatives, several control 

(untreated) areas, a ponding barrier, and lifting loops. The dotted lines in Figure 1 denote the 

location of the edge of each coating alternative; the solid lines within the dams designate the 

boundaries of the area from which samples were taken for testing. The buffer area between the 

dotted and solid lines reduces the potential for erroneous readings due to insufficient coverage of 

the concrete at the interface between two coating alternatives. To assist with the referencing of 

the slabs and the applied alternatives, each row of squares on the slab was designated with a 

letter from A to D, and each column was designated with a number from 1 to 3 (see Figure 1). 

 

Figure 1. Dimensions of laboratory slabs for ponding tests 

To simulate application of the coating alternatives on a vertical beam end, the ponding slabs 

were stood on edge and each alternative applied to a designated square on each slab according to 

manufacturer recommendations (see Table 1). Figure 2 shows one slab after application of the 

coating alternatives (all but D3) and prior to ponding; the other two slabs looked very similar and 

are not shown in the interest of brevity.  

6" Typ.
1.5" tall dams

5'

7'

9"

6"

1'

1'

A

B

C

D

1 2 3
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Table 1. Coating alternatives and slab reference IDs 

Coating Slab Reference ID Number of Coats 

TEXCOTE XL70 A1 1 

TEXCOTE RAINSTOPPER A2 1 

Sikagard 62 – one coat A3 1 

Viking Aqua Guard B1 2 

PAULCO TE-3008-1 B2 2 

BASF Sonoguard B3 Base/Top 

Evercrete DPS C1 2 

Blank* C2 1 

Control 1 C3 1 

BASF Hydrozo 100 D1 2 

Control 2 D2 1 

Sikagard 62 – two coats D3 2 

* Square left blank due to B2 coating overrunning onto C2 

 

Figure 2. Typical ponding slab with coating alternatives applied 
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The application of two coats of Sikagard 62 to D3 was at the request of Iowa DOT staff to 

evaluate any potential benefit to using two coats versus the typical one-coat application specified 

by the manufacturer, and both coats were applied after the photo was taken but prior to ponding. 

After the coatings were applied and had been allowed sufficient time to cure, as specified by the 

manufacturers, the slabs were laid horizontally and subjected to continuous ponding with a 3% 

chloride solution to a depth of approximately 0.5 in. for 90 days. Each slab was outfitted with 

aeration tubes to keep the chlorides from settling out of solution and then covered to reduce 

evaporation; additional solution was periodically added when needed to maintain a proper depth 

of chloride solution (see Figure 3).  

 

Figure 3. Laboratory specimens ponded with 3% chloride solution prior to being covered 

After 90 days of ponding, the slabs were drained, lightly brushed, and vacuumed to remove any 

chloride residue prior to extracting the needed powder samples. A small area of each coating was 

then removed, the area was cleaned thoroughly, and then samples were extracted at each location 

at depths of 0.5 in. and 1.0 in. and taken to a materials testing laboratory at ISU for chloride 

analysis. Each of the holes where the samples were taken was then filled with caulk to prevent 

the creation of an alternative entry point for the chloride solution. This process of ponding, 

drying, sampling, and caulking was then repeated two more times. Listed in Table 2, and shown 

in Figures 4 through 6, are the results from the three chloride samplings done on the three slabs. 

The first round of samples from the Cretex slab were unfortunately compromised in the time 

between collecting the samples and testing the samples and are therefore presented as not 

applicable (NA). 
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Table 2. Ponded lab specimens chloride test results (% Cl) 

 Andrews 

Sample\Alt A1 A2 A3 B1 B2 B3 C1 C2* C3** D1 D2*** D3 

1 0.35 0.19 0.13 0.09 0.38 0.07 0.20 NA 0.53 0.05 NA 0.08 

2 0.25 0.08 0.06 0.07 0.06 0.05 0.06 NA 0.14 0.07 0.12 0.06 

3 0.37 0.08 0.06 0.06 0.24 0.06 0.35 NA 0.22 0.05 0.27 0.04 

  
 Core Slab 

Sample\Alt A1 A2 A3 B1 B2 B3 C1 C2* C3 D1 D2*** D3 

1 0.22 0.04 0.03 0.03 0.03 0.03 0.14 NA 0.19 0.03 NA 0.03 

2 0.05 0.04 0.05 0.04 0.03 0.04 0.06 NA 0.05 0.03 0.05 0.03 

3 0.18 0.03 0.02 0.03 0.03 0.02 0.05 NA 0.07 0.03 0.10 0.03 

  
 Cretex 

Sample\Alt A1 A2 A3 B1 B2 B3 C1 C2* C3** D1 D2*** D3 

1 NA NA NA NA NA NA NA NA NA NA NA NA 

2 0.13 0.06 0.07 0.08 0.04 0.04 0.13 NA 0.14 0.05 0.13 0.04 

3 0.19 0.06 0.05 0.03 0.11 0.03 0.08 NA 0.18 0.03 0.20 0.03 

* Square C2 was compromised by application of B2 and therefore not evaluated 

** 1st control square, no treatment applied 

*** 2nd control square, no treatment applied 
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Figure 4. Chloride test results for the Andrews Slab 
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Figure 5. Chloride test results for the Coreslab Slab 
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Figure 6. Chloride test results for the Cretex Slab 

Table 2 and Figures 4 through 6 provide several useful pieces of information. (Recall that 

Andrews is no longer a precast supplier, so the presented data is for informational purposes 

only.) First, in general, all three slabs performed relatively the same, indicating that differences 

between the suppliers do not have a notable effect on the performance of the concrete coating 

alternatives. Additionally, visual inspection throughout the project found there to be no issues 

with adhesion of any of the alternatives to the concrete surfaces provided by all three 

manufacturers throughout the three ponding cycles. Second, if we compare the performance of 

the control squares (C3 and D2) with all the squares that had an applied coating, there is a 

general improvement of the chloride resistance where a coating is used, as expected. The one 

exception to this is the TEXCOTE XL 70 product; based on the results from the laboratory 

ponding tests, this was the only alternative to not perform better than the control. Third, although 

the chloride contents varied up and down slightly from one ponding cycle to the next, the 

variances were relatively small and showed no notable increase in the chloride content of the 

concrete over the course of the three ponding cycles. Lastly, using the numbers in Table 2 or 

Figures 4 through 6 as a guide, the alternatives may be rated as follows in terms of decreasing 

performance to resist chloride penetration into the concrete: (1) tie: BASF Sonoguard, BASF 

Hydrozo 100, Sikagard 62 – two coats, (2) Viking Aqua Guard, (3) Sikagard 62 – one coat, (4) 

TEXCOTE RAINSTOPPER 140, (5) PAULCO TE-3008-1, (6) Evercrete, (7) TEXCOTE XL 

70.   
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FIELD APPLICATION TO BRIDGE GIRDERS 

The initial scope of this work called for only a laboratory investigation of the selected beam-end 

treatment alternatives. However, during the alternative selection process the research team was 

made aware of two prestressed concrete girder bridges scheduled for fabrication/construction 

during the research project timeframe. The TAC suggested including a field component to the 

scope of the project by applying the selected beam-end coating alternatives to the beam ends on 

these two projects and visually monitoring their performance. Subsequently, the research team 

reached out to the precaster to establish a timeline of events (i.e., status of beam fabrication, etc.) 

so that as soon as the beams were cast and had been properly prepared for the coating process the 

research team could be on-site to apply the alternatives prior to the beams being sent out to the 

construction site. Note that Sikagard 62 was not applied to these girders.  

Before outlining the application of the coating alternatives to the bridge beams and discussing 

their field performance in the subsequent section, the research team believes it would be remiss 

to not discuss a couple of details discovered during the literature review and a site visit to the 

precast plant. Results from previous research indicated that silanes should only be applied to 

areas that have no active corrosion or heavy chloride ion concentrations. Initial inspection of the 

19 beam ends reserved for this research found them to have been prepped according to the Iowa 

DOT specifications, although there were numerous prestressing strand ends that were visible and 

showing signs of rust, some significant. A cursory inspection of other beam ends in the precast 

yard found many beams awaiting the precaster’s beam-end finishing process with uncut 

prestressing strands protruding from the beam ends. All of those exposed strands were visibly 

rusted. The potential exists that these exposed strands, which by their very nature have gaps 

created when the individual strands are woven together, could draw moisture into the end of the 

beam by capillary action. When these strands are eventually cut in preparation for beam-end 

treatment, the exposed rusty strands are removed, but the level of corrosion and moisture that has 

migrated down the strand and is encased in concrete is unknown. Any rust and moisture that 

does exist within the concrete is subsequently covered up either by the beam-end treatment 

process and the coating or, in the worst case, by just the coating itself. The presence of moisture 

and pre-existing rust on the strand within the concrete are potentially a significant source, if not 

the source, of the rust that is prematurely degrading the beam-end treatment and coatings. 

Furthermore, most of the coating alternatives, including the DOT-specified Sikagard 62, are 

designed to protect concrete surfaces, not steel surfaces, from moisture/chloride ingress.  

Bridge Girder Treatment 

The two bridges selected for inclusion in this testing are the Interstate 35 Bridge (Bridge BD) 

over E.P. True Parkway in West Des Moines, Iowa, and the US 65 Overflow Bridge (Bridge BC) 

on the southeast side of Des Moines, Iowa. Bridge BD had the abutment ends of all seven 

prestressed girders coated at both the north and south abutments; Bridge BC had all five beam 

ends coated at one abutment. Tables 3 and 4 list the beam numbers and corresponding coatings 

applied to each of Bridge BD and BC’s beams, respectively. 
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Table 3. Bridge BD beam-end coating details 

Bridge ID Location Beam ID Alternative 
Number  

of Coats 

BD S. Abutment BD08501E TEXCOTE XL 70 1 

BD S. Abutment BD08502 TEXCOTE RAINSTOPPER 1 

BD S. Abutment BD08503 BASF Sonoguard Base/Top 

BD S. Abutment BD08504 PAULCO TE-3008-1 2 

BD S. Abutment BD08505 Viking Aqua Gaurd 2 

BD S. Abutment BD08506 BASF Hydrozo 100 2 

BD S. Abutment BD08507 Evercrete DPS 2 

BD N. Abutment BD13522E Viking Aqua Gaurd 2 

BD N. Abutment BD13523 PAULCO TE-3008-1 2 

BD N. Abutment BD13524 BASF Sonoguard Base/Top 

BD N. Abutment BD13525 BASF Hydrozo 100 2 

BD N. Abutment BD13526 TEXCOTE XL 70 1 

BD N. Abutment BD13527 Evercrete DPS 2 

BD N. Abutment BD13528E TEXCOTE RAINSTOPPER 1 

 

Table 4. Bridge BC beam-end coating details 

Bridge ID Location Beam ID Alternative 
Number  

of Coats 

BC N. Abutment BC11526E TEXCOTE RAINSTOPPER 1 

BC N. Abutment BC11527 TEXCOTE XL70 1 

BC N. Abutment BC11528 Viking Aqua Guard 2 

BC N. Abutment BC11529 Evercrete DPS 2 

BC N. Abutment BC11530E BASF Sonoguard Base/Top 

 

Figures 7 through 13 show a representative prestressed concrete beam end after application of 

each of the seven coating alternatives at the precast plant. As noted previously, all of the girders 

were prepared for coating application by the precaster as per their own specifications. In 

addition, immediately prior to application of the coatings, at the recommendation of the Iowa 

DOT, the research team removed any visible surface rust from the prestressing strand ends using 

an angle grinder and removed any dust and visible surface debris.  
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Figure 7. BD08501E – TEXCOTE XL 70 

 

Figure 8. BD08502 – TEXCOTE RAINSTOPPER 140 
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Figure 9. BD08503 – BASF Sonoguard 

 

Figure 10. BD08504 – PAULCO TE-3008-1 
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Figure 11. BD08505 – Viking Aqua Guard 

 

Figure 12. BD08506 – BASF Hydrozo 100 
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Figure 13. BD08507 – Evercrete DPS 

Note that approximately one month after application of the coating alternatives to the Bridge BC 

beams, the precast foreman and the Iowa DOT inspector mentioned that it appeared as though a 

couple of the Bridge BC beams had not had a coating applied, and others were already showing 

visible signs of rusting of the prestressing strand ends. Review of the notes and photos from the 

application date, as well as an on-site visit by the research team, confirmed that all the beams had 

been coated with the appropriate coating alternative. Still, a couple of the beam ends were 

showing signs of rust on the beam ends. This observation may be directly related to the 

previously mentioned condition of the strands prior to treatment of the beam ends, and this 

condition appears to be a significant factor in the performance of the coatings. During the 

inspection visit by the research team, all visible rust was again removed using an angle grinder 

and the appropriate coating reapplied. The beams and respective coatings that were touched up in 

this way were BC11526E TEXCOTE RAINSTOPPER, BC11527 TEXCOTE XL 70 BRIDGE 

COTE, and BC11529 Evercrete DPS. 

Field Investigation Results 

The following outlines the performance of each of the coating alternatives on the bridge girders 

treated with the selected coating alternatives. The notes and photos below are from the inspection 

conducted after nearly 18 months of service in the field. Photos of each beam before and/or 

shortly after applying the coating accompany a photo taken at time of final inspection to clarify 

the notes presented below. Although the entire ends of the beams were treated with each 
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alternative, the field inspection focused on the bottom flanges of the beams because the top 

flanges were often encased in the abutment diaphragm/deck and therefore not visible.  

Overall, the field performance of all the coating alternatives was generally very good on the 

concrete surface of the beam end. As noted previously, many of the beam prestressing strands 

exhibited signs of rusting prior to application of the coatings, and the potential exists that given 

the beam-end preparation procedure some level of rusting/moisture exists on/within the woven 

strands within the concrete. That said, most of the issues identified with the coating alternatives, 

even with Sikagard 62, were found at the locations of the prestressing strand ends. Pre-existing 

rust/moisture on the strands could be the influential factor at play in these failures, although other 

unknown factors may also be contributing. 

TEXCOTE XL 70 BRIDGE COTE with Silane 

This product showed similar levels of performance on the three prestressed beams to which it 

was applied (see Figures 14 through 21).  

 

Figure 14. TEXCOTE XL 70 application at plant on BD13526 
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Figure 15. TEXCOTE XL 70 field condition on BD13526  

 

Figure 16. BD08501E prior to application of TEXCOTE XL 70 
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Figure 17. TEXCOTE XL 70 applied on BD08501E 

 

Figure 18. TEXCOTE XL 70 field performance on BD08501E 
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Figure 19. BC11527 prior to application of TEXCOTE XL 70 

 

Figure 20. TEXCOTE XL 70 applied on BC11527 
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Figure 21. TEXCOTE XL 70 field performance on BC11527 

Field inspection of beams BD13526 and BD8501E revealed several strand ends where the 

coating has peeled off completely, exposing the rusty end of the strand. Beam BD8501E had four 

or five strand ends exposed and showing significant signs of rusting (see Figure 18). On beam 

BC11527, the precaster noted that within a couple weeks of application several of the strand ends 

were showing signs of rust. The rusty areas were removed with an angle grinder by the research 

team and the entire end of the beam recoated with TEXCOTE XL 70. Upon inspection after 

nearly a year and a half in service, beam BC11527 showed signs of rust appearing through the 

coating at several strand end locations similar to what was found after the first application, but 

no chipping or peeling of the coating was evident (see Figure 21).  

TEXCOTE RAINSTOPPER 140 

All three beams (BD13528, BD08502, and BC11526E) coated with this product showed similar 

levels of performance. There were numerous strand ends exposed and covered with rust (see 

Figures 22 through 30).  
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Figure 22. BD13528 prior to application of TEXCOTE RAINSTOPPER 140 

 

Figure 23. TEXCOTE RAINSTOPPER 140 applied to BD13528 
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Figure 24. TEXCOTE RAINSTOPPER 140 field performance on BD13528 

 

Figure 25. BD08502 prior to application of TEXCOTE RAINSTOPPER 140 
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Figure 26. TEXCOTE RAINSTOPPER 140 applied to BD08502 

 

Figure 27. TEXCOTE RAINSTOPPER 140 field performance on BD08502 
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Figure 28. BC11526E prior to application of TEXCOTE RAINSTOPPER 140 

 

Figure 29. TEXCOTE RAINSTOPPER 140 applied to BC11526E 
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Figure 30. TEXCOTE RAINSTOPPER 140 field performance on BC11526E 

Recall that beam BC11526E had a second coating applied at the plant. Visual inspection by both 

the plant foreman and the research team revealed that the rust had not penetrated the coating yet, 

but rust was visible through the coating. The rusty areas were then removed using an angle 

grinder and the entire surface of the beam retreated with the TEXCOTE RAINSTOPPER 140. 

Eighteen months after being in service, the most recent field inspection of BC11526E found the 

strand ends again to be visible and rusty, and in some locations the rust was piercing the coating.  

Evercrete DPS 

All three beams (BD13527, BD08507, and BC11529) coated with this product showed similar 

levels of performance and performed similarly to the RAINSTOPPER product. There were 

numerous strand ends exposed and covered with rust (see Figures 31 through 39).  
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Figure 31. BD13527 prior to application of Evercrete DPS 

 

Figure 32. Evercrete DPS applied to BD13527 
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Figure 33. Evercrete DPS field performance on BD13527 

 

Figure 34. BD08507 prior to application of Evercrete DPS 
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Figure 35. Evercrete DPS applied to BD08507 

 

Figure 36. Evercrete DPS field performance on BD08507 
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Figure 37. BC11529 before application of Evercrete DPS 

 

Figure 38. Evercrete DPS applied to BC11529 
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Figure 39. Evercrete DPS field performance on BC11529 

Recall that beam BC11529 had a second coating applied at the plant. Visual inspection by both 

the plant foreman and research team revealed that the rust had not penetrated the coating yet, but 

rust was visible through the coating. The rusty areas were then removed using an angle grinder 

and the entire surface of the beam retreated with Evercrete DPS. During the most recent field 

inspection of BC11529, several strand ends were again found to be visible and rusty, and in some 

locations the rust was piercing the coating.  

BASF Sonoguard 

Figures 40 through 48 illustrate the condition of the beams (BD13524, BD08503, BC11530E) 

coated with BASF Sonoguard. In all cases, except one localized spot on BD13524 that appeared 

to have one strand end with the coating peeling off, the coating appeared to be performing 

effectively. The one strand end where the coating was peeling off is likely a result of pre-existing 

rust within the strand prior to application of the beam-end treatment and coating. Progression of 

the rust likely resulted in the puncturing of the coating. All other areas on BD13524 and the other 

two beams exhibited no signs of deterioration of the Sonoguard coating.  
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Figure 40. BD13524 before application of BASF Sonoguard 

 

Figure 41. BASF Sonoguard applied to BD13524 
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Figure 42. BASF Sonoguard field performance on BD13524 

 

Figure 43. BD08503 before application of BASF Sonoguard 
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Figure 44. BASF Sonoguard applied to BD08503  

 

Figure 45. BASF Sonoguard field performance on BD08503 
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Figure 46. BC11530E before application of BASF Sonoguard 

 

Figure 47. BASF Sonoguard applied to BC11530E 
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Figure 48. BASF Sonoguard field performance on BC11530E 

BASF Hydrozo 100 

There were two beams coated with the BASF Hydrozo 100 product, beams BD13525 and 

BD08506. As can be seen in Figures 49 through 54, both beams have numerous strand ends that 

are visible with significant rust penetrating the coating. 
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Figure 49. BD13525 before application of BASF Hydrozo 100 

 

Figure 50. BASF Hydrozo 100 applied to BD13525 
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Figure 51. BASF Hydrozo 100 field performance on BD13525 

 

Figure 52. BD08506 before application of BASF Hydrozo 100 
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Figure 53. BD08525 applied to BASF Hydrozo 100 

 

Figure 54. BASF Hydrozo 100 field performance on BD08525 

Viking Aqua Guard 

All three beams coated with Viking Aqua Guard (BD13522E, BD08505, and BC11528) 

performed similarly upon field inspection, and the coating on all accounts is holding up 

adequately (see Figures 55 through 63). The only notable element on all three beam ends was the 

evidence of some visible rust on a few of the strand ends, although no rust was found to have 

penetrated the coating to date. 
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Figure 55. BD13522E before application of Viking Aqua Guard 

 

Figure 56. Viking Aqua Guard applied to BD13522E 
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Figure 57. Viking Aqua Guard field performance on BD13522E 

 

Figure 58. BD08505 before application of Viking Aqua Guard 
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Figure 59. Viking Aqua Guard applied to BD08505 

 

Figure 60. Viking Aqua Guard field performance on BD08505 
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Figure 61. BC11528 before application of Viking Aqua Guard 

 

Figure 62. Viking Aqua Guard applied to BC11528 
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Figure 63. Viking Aqua Guard field performance on BC11528 

PAULCO TE-3008-1 

During field inspection, this coating alternative showed no signs of deterioration or problematic 

areas on either of the two beams (BD13523 and BD08504) to which it was applied (see Figures 

64 through 69). For both beams, all areas of concrete and the few exposed strand ends appeared 

to be still well protected, with very little to no rust evident on the strands and no rust penetrating 

the coating. 
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Figure 64. BD13523 before application of PAULCO TE-3008-1 

 

Figure 65. PAULCO TE-3008-1 applied to BD13523 
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Figure 66. PAULCO TE-3008-1 field performance on BD13523 

 

Figure 67. BD08504 before application of PAULCO TE-3008-1 
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Figure 68. PAULCO TE-3008-1 applied to BD08504 

 

Figure 69. PAULCO TE-3008-1 field performance on BD08504 

Sikagard 62 

Although no particular bridge beams were coated with Sikagard 62 for this project, there were 

several beams at the precast plant at the time the research team was installing the other coating 

alternatives that had been previously coated with Sikagard 62. Figure 70 shows one example.  
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Figure 70. Beam end coated with Sikagard 62 at precast plant 

Note that Figure 70 was taken at the precast plant, not in the field, and the beam was already 

showing signs of rust penetrating through the coating. In addition, during the field inspection of 

the other beams detailed above, there were other beams on Bridge BD found to be coated with 

Sikagard 62. A cursory inspection of several of those beams was also conducted, some showing 

no signs of distress of the coating, as shown in Figure 71; others were found to have the coating 

beginning to peel off the strand ends and exposing the rusted strands, as shown in Figure 72. 
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Figure 71. Good field performance of Sikagard 62 on bridge beams 

 

Figure 72. Poor field performance of Sikagard 62 on bridge beams  
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ALTERNATIVE BEAM-END DETAIL INVESTIGATION 

The current specified preparation technique for prestressed concrete beams fabricated for use on 

Iowa DOT bridges with expansion joints is to flush cut the strands at the beam ends and 

subsequently apply the Sikagard 62 to the entire beam-end face, covering the exposed concrete 

and cut-off strand ends. This procedure is similar to that specified by a few other states, while 

most others choose to do nothing after flush cutting the strands. The main objective in coating 

the beam ends is to prevent exposure of the beam ends to the elements. Another option for 

protection of the prestressed beam ends and exposed strand ends is modification of the beam-end 

detail during the fabrication process. The main goal of the modification would be to reduce the 

exposure of the strand ends to the elements as much as possible, more so than with just an epoxy 

or sealant. 

Alternative Selection, Details, and Results 

Prior to and during the development of these alternative beam-end details, input was sought from 

the precaster’s perspective so as not to develop a forming alternative that was too complicated or 

expensive to fabricate and utilize on a repeated basis. Based on input and recommendations from 

the precasters and the TAC, the following beam-end alternatives were developed for evaluation: 

 Single Blockout – The region around the lower cluster of prestressing strands is blocked out, 

thus creating a large void when the forms/foam are removed, then the blockout is filled with 

grout or similar material. 

 Double Blockout – This detail is similar to the single blockout, except the blockout is split 

into two smaller blockouts, one encompassing each strand cluster at the base of the beam. 

The blockouts are filled with grout or similar material. 

 Bar Knockout (Burn Back and Patch) – Each strand is individually wrapped with a piece of 

foam such that when the forms and foam are removed there is a pocket around each strand. 

The strands within the pocket are cut off and/or burned back, and voids are filled with grout 

or similar material. Note that this method has been utilized by the prestressing industry in the 

past. 

 Drill Out Strands – The strand ends are flush cut and then 1 to 2 in. of the strands are drilled 

out into the concrete. 

All of these alternatives were only evaluated on the bottom flange of a standard Iowa DOT 

prestressed concrete T-section to reduce the size of the laboratory specimens and improve 

handling during testing. Figure 73 illustrates the lab specimen formwork prior to the concrete 

pour. For the termination of the strand ends on these specimens, most were flush cut with a cut-

off wheel on the specimens with the larger blockouts; for the Bar Knockout specimen, the 

strands were first flush cut with a cut-off wheel and then burned back into the recess using a 

torch.  
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Figure 73. Formwork for laboratory beam-end specimens 

Single Blockout 

This beam-end forming alternative involves creating a blockout in the area surrounding the 

cluster of prestressing strands such that when the forms and blockout material are removed the 

area around the strands is recessed from the face of the girder a predetermined distance. This 

recess allows for the strands to be cut off back from the face of the girder and covered for 

protection. Three different blockout options were evaluated for the Single Blockout alternative: 

(1) 1 in. thick foam blockout, (2) 2 in. thick foam blockout, and (3) ¾ in. plywood blockout with 

chamfered edges. Figures 74 through 76 illustrate the three Single Blockout alternative 

specimens, both prior to and after concrete placement. 

The foam blockout was very simple to fabricate and did not result in any complications when 

passing the prestressing strands through the ends of the formwork. Two methods were 

investigated for creating the holes in the foam for passage of the strands: drilling out the foam 

through the form end with a drill bit and marking the location of each strand on the inside of the 

foam and simply pushing the strand through the foam and formwork. Both methods worked 

adequately, although the first option was slightly more construction friendly because the strands 

slid through much easier with the hole already in place in the foam. On these specimens, the 

foam was attached to the formwork using a basic spray-on adhesive and presented no issues.  

As can be seen in Figures 74 through 76, none of the blockouts created using foam had 

chamfered edges.  
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Figure 74. Single Blockout formed with 1 in. foam 

  

Figure 75. Single Blockout formed with 2 in. foam 

  

Figure 76. Single Blockout formed with ¾ in. plywood with chamfered edges 
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When foam is used for this type of blockout, there is no need to chamfer the edges because 

removal of the end formwork is similar to a standard beam casting. The foam, which typically 

remains encased in the blockout around the strands, is then simply blasted or picked out quite 

easily. Note that the strands located in the corners of the blockouts were difficult to remove and 

cut completely flush with the concrete due to the tight radius of the blockout. In addition, on the 

2 in. thick blockout the cluster of strands on the right side was cut flush to the concrete, whereas 

the strands in the left-hand cluster were cut off at approximately 1 in. to evaluate whether this 

had an effect on constructability, as well as what effect it may have on the bonding of the grout. 

Constructability was slightly improved by only cutting off half of the protruding strand length 

rather than flush cutting the strands in the blockout. 

When the blockout was created using plywood or another stiff forming material (i.e., steel), 

removal of the end formwork became extremely difficult, if not impossible, with some form of 

damage being done to the formwork, without the chamfers around the edges of the blockout. 

Even with the chamfer, removal of the formwork was problematic and cumbersome because both 

the end form and the blockout must be slid over the numerous protruding strands simultaneously. 

Lastly, it is worth noting that the chamfer in the blockout did facilitate easier cutting/removal of 

the prestressing strands in the corners of the blockouts. However, further investigation may be 

necessary to see what long-term effects the chamfer may have on the bond of the grout because 

any cracking at the interface between the grout and the existing concrete could subsequently 

funnel moisture (possibly containing chlorides) into the blockout and to the strand ends. 

Double Blockout 

This blockout alternative is a derivative of the Single Blockout alternative, in that two individual 

blockouts are created around the main clusters of strands and separated along the vertical 

centerline of the beam (see Figure 77).  

  

Figure 77. Double Blockout formed with 1 in. foam 

This blockout alternative was only evaluated using 1 in. foam for the construction method, and 

the strands were all flush cut. Much like the Single Blockout alternative, the strands in the four 
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corners of the blockout were extremely problematic to cut given the blockout geometry. 

Therefore, a slight revision of the blockout geometry may be necessary if used in the future. On 

the positive side, this alternative has its advantages when applying the grout because there is less 

of a void to fill, which in vertical applications like this can be an important aspect. 

Bar Knockout (Burn Back and Patch) 

As noted previously, this method has been used previously by the precaster in limited 

applications. For this testing, the individual bar knockouts were created using ¾ in. self-sealing 

tubular foam pipe insulation (see Figure 78).  

  

Figure 78. Bar knockout using pipe insulation cut to 2 in. lengths 

The tubing was first cut into 2 in. long pieces and then trimmed slightly along its length to create 

a tight fit around the 0.6 in. diameter prestressing strands. In most cases, the self-sealing 

adhesive was not sufficient to affix the foam to the strands and was therefore lightly taped closed 

to keep the foam on the strand during concrete placement. For future applications, an un-slit 

foam with an inside diameter more closely matching the diameter of the strands would be a more 

construction friendly alternative. Even so, fabrication of this specimen was very construction 

friendly and produced great results when the formwork and foam were removed.  

Once the concrete was poured and the end formwork was removed, the foam was easily removed 

from around the strands. The strands were then cut off nearly flush with the beam-end face using 

a cut-off wheel and then burned back into the pockets using a torch. Burning back of the strands 

did produce some slag on the insides of the pockets. However, this was easily removed with 

either a pick or by sandblasting. It is worth noting that sandblasting the slag out created an 

attractive roughed concrete surface for bonding of the grout material. 
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Drill Out Strands 

The objective of this alternative was to avoid the necessity for any blockouts in the formwork but 

still allow for the ends of the prestressing strands to be recessed, covered, and protected from 

exposure to the elements at the ends of the beam. The basic procedure was to flush cut the 

prestressing strands with the end of the beam and then, utilizing a drill bit, drill out 1–2 in. of the 

prestressing strand into the concrete. Once the strand was drilled out, the void was filled with 

grout. 

Expectations were high for this method to be a viable beam-end detailing option. However, 

shortly after the first drill attempt it was clear the simplicity of this method ended in the concept. 

Numerous attempts were made, varying the procedure from attempting to drill a starter/pilot hole 

with a smaller bit then switching to a larger bit, to center punching and beginning with the end 

diameter (~0.5 in.) bit, then varying the drill bit material type, and even varying drill speed and 

lubrication. Throughout the investigation, the best outcome was a 1/8 in. deep pilot hole using a 

1/8 in. bit. On the laboratory specimen, which had untensioned strands, the individual strands 

that form the woven strand were not tight enough against one another, resulting in a significant 

amount of vibration during drilling. It is unknown if this issue would be resolved with a 

tensioned strand. Regardless of this fact, no measurable amount of strand was successfully 

drilled out using any method or drill bit type. Furthermore, it is believe that with the high cost of 

the drill bits required for this type of application and the sheer number of them that would be 

required (many drill bits would likely be required for just one beam-end treatment), this would 

not be a construction friendly nor cost-effective option. 

Beam-End Grouting Investigation 

Although the main focus was to develop the beam-end forming alternatives for reducing 

exposure of the strand ends to the elements, several non-shrink grouts were also evaluated for 

their ability to fill the voids and encase the strand ends. Given project time limitations, only a 

short-term evaluation of the performance (ability to apply to vertical surface, bond, etc.) of the 

grout alternatives in the patch areas was feasible. Selection of the grouts for inclusion in this 

testing was based on the following two main criteria: the material must be non-shrink and the 

material must not require formwork and must be able to be applied in overhead or vertical 

applications. Subsequently, three alternative grout products were selected: Sikacrete 211 SCC 

Plus, Garon TIGERCRETE SP, and UNIQUE Overhead and Vertical Repair. 

Application, Constructability, and Performance 

All three grout products were mixed according to manufacturer specifications with a batch size 

of approximately 0.5 cu ft using a 5-gallon bucket and paddle mixer and hand drill. The three 

alternatives were evaluated either in the Single Blockout or Double Blockout configuration 

because these larger voids were believed to be the worst case scenario in terms of 

constructability in placement and performance of the grout. Both the Sikacrete 211 SCC Plus and 

Garon TIGERCRETE SP products were evaluated on the Double Blockout configuration, one 

alternative in each individual blockout on the beam end. For the UNIQUE Overhead and Vertical 
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Repair, the manufacturer provided four different mixes of the same product in an attempt to best 

match the grout performance with the application. Therefore, each of the four UNIQUE mixes 

was evaluated on either a 1 in. or 2 in. thick single blockout. 

The beam-end specimens were all sand blasted prior to grouting to create an adequate bonding 

surface and remove any rust/residue from the strand ends and then conditioned to saturated 

surface dry (SSD) immediately prior to installing the grouts. Placement of the grout patches, for 

both the Sikacrete 211 SCC Plus and Garon TIGERCRETE SP as well as the last three mixes 

from UNIQUE, began with first scrubbing the void area to be filled with a slurry coat of the 

respective grout mix using a stiff brush. After letting the slurry coat set for approximately one 

minute, the remainder of the void was filled with the grout using a basic hand trowel. The void 

was packed and troweled until the entire void was full and relatively flush with the face of the 

beam end. In total, the grouting process took approximately five to eight minutes from the 

beginning of the slurry coat to the final troweling of the grout patch.  

From a constructability standpoint, all the grout products were easy to mix and were easily 

placed into the vertical voids using a basic hand trowel, as previously mentioned. Given the 

relatively short set time of these types of products, it seems unlikely that a batch much bigger 

than that required for two to three beam ends, which ideally would be seated adjacent to each 

other in the precast yard, could be managed without several skilled laborers on hand to quickly 

place the grout. As for short-term performance (i.e., days and weeks), performance of the three 

grout products was pretty even across the board, with all of them developing some level of 

cracking within and/or around the patch area (see Figures 79 through 81).  

 

Figure 79. UNIQUE Overhead and Vertical Repair 
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Figure 80. Sikacrete 211 SCC Plus 

 

Figure 81. Garon TIGERCRETE SP 
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Typically, the cracks were first visible within a few days of grout placement and after a week or 

so ceased progression. These cracks are believed to be shrinkage cracks, although the possibility 

exists that microcracking could have existed in the beam-end specimens and reflected through 

the grout patches.  

In addition to the grout application evaluation, each grout patch alternative was allowed to cure 

for 28 days and was then evaluated for bond performance by attempting to remove the grout 

patch with an electric impact chisel. The results are described below.  

For the UNIQUE product’s bond performance, recall that in the application of the first batch of 

the UNIQUE Overhead and Vertical Repair the slurry coat step was mistakenly skipped. 

Removal of this patch was subsequently found to be quite simple because little to no bond 

between the existing concrete and the grout existed (see Figure 82).  

 

Figure 82. UNIQUE Overhead and Vertical Repair – Batch 1 bond performance 

The bond performance of the UNIQUE Overhead and Vertical Repair then began to improve 

slightly throughout the mix progression. The second batch was found to have a good bond 

between the slurry coat and the existing concrete but very little bond between the grout and the 

slurry coat (Figure 83).  
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Figure 83. UNIQUE Overhead and Vertical Repair – Batch 2 bond performance 

The third batch also had a good bond between the slurry coat and existing concrete, as well as a 

better bond between the slurry and grout than the second batch (Figure 84).  
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Figure 84. UNIQUE Overhead and Vertical Repair – Batch 3 bond performance 

The final batch of the UNIQUE Overhead and Vertical Repair had the best performance in terms 

of bond, with good bond performance all around (Figure 85).  
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Figure 85. UNIQUE Overhead and Vertical Repair – Batch 4 bond performance 

The bond performance of both the Sikacrete 211 SCC Plus and Garon TIGERCRETE SP 

products, shown in Figures 86 and 87, respectively, was much like that of the last batch of the 

UNIQUE Overhead and Vertical Repair. Slurry coats on both applications bonded well to the 

existing concrete, and the grout exhibited good bond performance to the slurry coats. 
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Figure 86. Sikacrete SCC 211 Plus bond performance 

 

Figure 87. Garon TIGERCRETE SP bond performance 
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CONCLUSIONS AND RECOMMENDATIONS 

Currently, the Iowa DOT specifies that the ends of precast, prestressed concrete beams used in 

bridges constructed with expansion joints be finished at the precast plant according to the 

precaster’s specified beam-end finishing procedures, and subsequently have a coating of 

Sikagard 62 applied to the end of each beam. Although Sikagard 62 has been used by the Iowa 

DOT as a beam-end coating product for years, no laboratory investigation related to the 

effectiveness of this detail had been conducted, while anecdotally the performance of in-service 

bridge beams that have undergone this end treatment process has been found to be highly 

variable and substandard. Field inspections have found many bridge beams with rusty strand 

ends exposed, others with spalling and deterioration of the beam ends. 

The scope of work for this project incorporated a literature search of the current state of the art 

and state of the practice, a laboratory evaluation of different concrete coating products utilizing 

ponded concrete slabs and the AASHTO T259-80 test, and the development of several 

experimental beam-end detailing alternatives. In addition, beam ends for two Iowa DOT bridges 

planned for construction near the beginning of the project were also treated with the beam-end 

coating alternatives evaluated on the ponding slabs and were visually monitored for the duration 

of the project.  

Previous research related to the performance of concrete beam-end treatments found that many 

state DOTs do not treat the ends of their prestressed concrete beam ends, some do specify beam-

end treatment procedures, and a select few specify coating alternatives, although many if not all 

of the procedures and products that were specified had little to no laboratory or field testing data 

related to their use in these specific applications. Ultimately, previous research indicated that 

further laboratory testing was warranted into this subject. 

Laboratory ponding tests were conducted on eight different concrete treatment products that 

were selected based on previous research, current product availability, and TAC 

recommendations. The eight treatment products selected for evaluation were the following: 

Sikagard 62, Evercrete DPS, TEXCOTE XL 70 BRIDGE COTE, TEXCOTE RAINSTOPPER 

140, BASF Sonoguard, BASF Hydrozo 100, Viking Agua Guard, and PAULCO TE-3008-1. The 

alternatives were applied to a designated reference square on three separate concrete slabs, each 

cast at a different precast plant near central Iowa so that the effect of different concrete mixes 

could also be evaluated. The ponding slabs were evaluated using the AASHTO T259-80 chloride 

penetration test, and throughout the project all three slabs were subjected to a 90-day ponding 

cycle, the slabs were then dried, and samples were taken. The process was repeated two more 

times. In general, over the course of the three ponding cycles there was little to no difference 

found in the chloride content test results for any of the alternatives; thus, no significant benefit or 

detriment to the coating’s performance was evidenced due to the mix design of the concrete. 

Comparison of the test data from the sections of the slab with applied coating alternatives to two 

slab sections left uncovered, i.e., control sections, revealed a marked improvement in the 

resistance to chloride penetration of the concrete, which was expected; the one exception was the 

TEXCOTE XL 70 BRIDGE COTE, which the test data indicated did not improve the chloride 

penetration resistance of the concrete compared to the control sections. The chloride ion 
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penetration performance of all the alternatives were then compared to one another and the 

coating alternatives ranked in order from best to worst performance based on the ponding data: 

(1) three-way tie: BASF Sonoguard, BASF Hydrozo 100, Sikagard 62 – two coats, (2) Viking 

Aqua Guard Concrete Sealer, (3) Sikagard 62 – one coat, (4) TEXCOTE RAINSTOPPER 140, 

(5) PAULCO TE-3008-1, (6) Evercrete DPS, (7) TEXCOTE XL 70 BRIDGE COTE with 

Silane. Note that the Iowa DOT currently specifies application of one coat of Sikagard 62, per 

the manufacturer’s recommendations. Addition of another coat of Sikagard 62 did slightly 

improve the chloride ion penetration performance but likely not enough to warrant the extra time 

and cost involved in the process. 

A total of 19 bridge beam ends were treated with the concrete coating alternatives. Each beam 

end was prepared according to the precaster’s specifications and then the alternative coating 

applied according to the manufacturers’ recommendations. Approximately 18 months after the 

beam ends had been treated and installed, field inspections were conducted to evaluate their 

short-term performance. Inspection results from the beam ends treated with the coating 

alternatives varied not only from product to product, but at times even from one beam to another 

coated with the same alternative. In general, the performance of all of the alternatives on the 

concrete surfaces of the beam ends was excellent. There were no signs of peeling or deterioration 

of the coating on the concrete surfaces. All of the problems found during the field inspection 

appeared to be centered in the areas of the prestressing strand locations. In the rare case where 

there was a beam end that had all the prestressing strand ends covered as a result of the beam-end 

preparation process and then having the coating applied, the beam end showed no signs of 

deterioration. However, it was rarely the case that all the strand ends were covered after 

completion of the preparation process. In most cases, several of the strand ends, and sometimes 

numerous strand ends, were visible and found to be rusted immediately prior to the coating 

alternative being applied. Note that all visible rust was removed prior to application of all coating 

alternatives, although this is believed to be more a superficial fix than a long-term maintenance 

plan. Further inspection of untrimmed and untreated beam ends at the precast plant found the 

strands protruding from the ends of the beams to be heavily rusted, and because they are 

uncovered and exposed to the elements it is highly likely that moisture (and subsequently rust) 

migrated into the end of the beam end via the strands prior to any beam-end treatment. Possible 

evidence of this is that there were three beam ends that were treated at the precast plan and less 

than a week later had to be treated again because the precaster noted that they appeared to be 

untreated and that there were visible signs of rust on the strand ends under the coatings. 

Inspection by the research team found that they were treated properly the first time; still, rust had 

developed and was visible. Subsequently, the strand ends were cleaned of rust and retreated a 

second time prior to being installed in the field. The moisture and rust that is pre-existing within 

the beam ends on the strands prior to application of the coating alternative is likely to blame for 

most of the failures found on the bridge beams treated with the coatings evaluated for this work. 

Some of the alternatives only had visible signs of rust on the strand ends, with no rust piercing 

the coating, others had visible rust piercing the coating, and a few others had the coating peeling 

off and missing completely from the strand ends.  

Ultimately, the objective of treating the ends of prestressed concrete beams is to protect the 

exposed concrete and strands at the end of the beam from exposure to moisture and chlorides, 

which may penetrate the expansion joint and wreak havoc on the beam ends. In addition to 
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evaluating the coating alternatives, several beam-end forming details were also developed and 

evaluated for their potential to mitigate this problem. In general, the solutions all centered around 

creating a void, whether it be an individual void around each strand or a large void around a 

cluster of strands, such that when the prestressing strands are cut back their ends are behind the 

vertical face of the beam end. Each of the voids could then be grouted to cover and protect the 

strand ends and the beam end treated in its traditional manner as a belts and suspenders solution. 

Creation of the voids must be simple and meet constructability requirements for this type of 

beam-end detail to ultimately be viable; the process must also not significantly increase the 

workload during beam fabrication, or a precaster will lose interest or significantly raise costs. In 

addition, if the detail is too elaborate and requires expensive form modifications, the precaster 

might resist this option or force the buyer to forgo it due to the increased cost of the end product. 

Based on these criteria, four alternative beam-end details were evaluated for this work: (1) single 

beam-end knockout around the entire cluster of strands in the bottom flange of the beam, (2) 

double beam-end knockout around the two clusters of strands in the bottom flange of the beam, 

(3) individual strand knockouts around each strand in the bottom flange of the beam, and (4) 

drilling out the strands. 

Drilling out the strands after each is flush cut to the beam face was found to be a nearly 

impossible process, which, if the process were to be successful, would require lots of labor and 

expensive drill bits. Therefore, this alternative is not considered a viable option. However, any of 

the blockout options—single, double, or individual bar—are all excellent options for creating a 

separation from the face of the beam end and the end of the prestressing strand. Foam was found 

to be the material of choice for creation of the voids because it allowed for easy installation of 

both the void blockout and the strands, which could be easily pushed through the foam or 

through predrilled holes in the foam. Once the forms are removed, the foam is easily removed 

and the strands may then be cut back to any depth within the exterior face of the beam. Creation 

of the blockout using plywood, or using metal via modification of a preexisting metal form, 

would likely require that the outer boundaries of the blockout be chamfered to facilitate easy 

removal of the forms without damaging the concrete beam end. The final step in the process was 

to fill the blockouts with a non-shrink grout to protect the ends of the strands. Several grout 

products were evaluated for this project, including Sikacrete SCC Plus, Garon TIGERCRETE, 

and UNIQUE Paving Overhead and Vertical Repair. All three products provided an adequate 

bond to the existing concrete and were easy to mix and apply into the vertical voids regardless of 

their depth or size. However, even though all products are “non-shrink” grouts, each of the three 

products developed shrinkage cracks both within the boundaries of the voids and at the perimeter 

of the voids within a few days of application. Further investigation into potential grout products 

and/or epoxy products that can adequately fill the voided areas without cracking is warranted. 
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