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EXECUTIVE SUMMARY 

Major commercial airports rely on multiple parties for safe and efficient operations. Air traffic 

controllers coordinate approaches to the airport, aircraft movements on the ground, and 

departures from the airport. Airline personnel coordinate activities on the parking ramps and at 

passenger gates. Third parties may service aircraft at gates or at designated stations (e.g., for de-

icing). System performance is affected by the concentration of airline flight schedules, activities 

of air express carriers, taxiway and ramp layouts, resources allocated for gate operations, air 

traffic control procedures, adverse weather conditions, and traffic backups at major connecting 

hubs. 

Consolidation of major carriers and concentration of flight activity at a few mega-hubs have put 

some airports under stress while others experience dramatic reductions in flight operations. 

Strategic decision support is needed to provide ways of better utilizing existing assets in some 

environments, intelligently expanding them in others, and selectively removing assets from 

service where costly excess capacity exists.  

For this project, we developed and calibrated a discrete-event simulation model that captures 

essential interactions of “airside” activity at commercial airports. Our model, calibrated with 

detailed flight and gate data for an entire year’s activity at Lambert - St. Louis International 

Airport, represents the interactions of key system components with sufficient granularity to study 

the effects of different planning scenarios and operating rules. 

We modeled airport operations using Arena software by moving simulated aircraft through a 

network of staged queues—some physical, others conceptual.  

Ground movements are controlled by signals and routings that consider capacities of ramps and 

taxiway segments. Aircraft arrivals are generated by a Statistical Analysis System (SAS) pre-

processor and placed in conceptual queues at the final approach fix (FAF) for an active runway. 

Scenarios are defined by active runways for takeoffs and arrivals, weather in airspace sectors 

through which arrivals and departures take place, and conditions at major hub airports. 

Movements of aircraft are simulated using lognormal distributions from point to point until the 

designated flight’s activity at the airport is completed (with termination at the gate, or, if 

continuing to another destination, after turnaround and departure).  

Statistical models for individual airlines are used to set the probability of delay and duration of 

delay at the gate dependent on time of day and whether the flight is originating or continuing. 

Entities for flights that terminate at the airport are removed from the simulation after reaching 

the gate and the gate is then made available for originating flights that are generated by the 

model according to schedule (with random perturbation if desired) or for a new arrival.  

Dispatching strategies are imposed by routing aircraft among staging points on the airport 

surface and releasing them with dynamic priorities that reflect the decision rules in force. 
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Detailed logs are created of each simulated event and statistical analysis and reporting of 

simulated performance are accomplished externally using SAS.  

We demonstrate the application of the model to investigate the effects of different operating 

conditions and dispatching strategies upon delays, ramp time, and taxi time for individual 

airlines. 
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INTRODUCTION 

In recent years, major airlines in the US have altered their route structures and schedules to 

concentrate their flight activity at a few mega-hubs. Consolidation of this sort and hub operations 

of express freight carriers strain some airports while other airports now have excess capacity.  

Airport planners in cities with congested facilities seek ways to better utilize existing assets and 

intelligently expand them. Planners in cities with idle capacity consider how to remove selective 

assets from service to reduce operating costs. In both situations, intelligent decision support can 

help to improve asset utilization. 

Sophisticated simulation models such as Simmod, which the Federal Aviation Administration 

(FAA) maintains, the Total Airspace and Airport Modeller (TAAM),  and the Multi-Agent 

Transport Simulation (MATSim) simulate air traffic with remarkable realism, and have been 

used for decades to study air traffic control procedures and airport capacity (Atkin et al. 2009 

and 2010, Bazargan et al. 2002, Bertino et al. 2011, Offerman , 2001, Brentnall and Cheng 2009, 

Bubalo and Daduna 2011, Capozzi et al. 2013, FAA 1989, Fishburn et al. 1995, Gilbo 1993, 

Gotteland et al. 2001, Wei, G., and Siyuan 2010). These models are excellent for studying 

system behavior in microscopic detail but they carry enormous overhead for studies that are 

more strategic.  

For strategic decision making, mathematical optimizing models have been employed for airport 

activities such as timing pushbacks, sequencing arrivals or departures, performing regular gate 

services, performing special services such as de-icing aircraft, or optimizing flows through the 

network of taxiways (Horstmeier and de Haan 2001, Khadilkar and Balakrishnan 2013, Ravizza 

et al. 2013, Sherali et al. 1992, Yan et al 2002, Herrero et al., 2005). These operational research 

(OR) models, however, tend to ignore stochastic aspects of system behavior or necessary 

interactions with other parts of the system (Bubalo and Daduna 2011, Odoni et al. 1997, 

Snowdon et al. 2000, Zografos and Madas 2014, Norin et al., 2009).  

In developing our models, we strike a balance between these extremes. We capture the essential 

interactions of key system components, represent the system with sufficient granularity, and 

facilitate the efficient conduct of experiments with multiple replications of a wide range of 

planning scenarios and operating rules. To accomplish this, we represent the system as a network 

of staged queues (Gue and Kang 2001, Smith et al. 2011 and 2014). 

For this project, we completed the development of a prototype constructed to represent airline 

movements for the dominant runway usage scenario at Lambert - St. Louis International Airport. 

We developed a new tool for integrating time-stamped data from different sources without a 

common matching key. We validated the simulation model’s performance against historical 

flight activity and we applied the model to several planning and operational scenarios to illustrate 

its potential as a decision support tool for airport asset management. 
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AIRPORT OPERATIONS AS A SYSTEM OF STAGED QUEUES 

Figure 1 represents the domain of our analysis.  

 
FAF*=final approach fix 

Figure 1. Scope of modeled activity for this project 

Aircraft movements are considered from the time that aircraft reach local airspace for landing to 

the time that they depart after takeoff. Movements on the airport surface and turnaround activity 

on ramps and at terminal gates are included.  

We move simulated aircraft through a system of staged queues—some physical, others 

conceptual. Aircraft arrivals are generated according to daily schedules of individual airlines but 

with random deviations appropriate for the scenario being simulated. The scenario is defined by 

local weather conditions, weather in airspace sectors through which arrivals and departures take 

place, and conditions at major hub airports, which may cause bunching of arrivals and traffic 

holds for departures. 

Arriving aircraft are placed in conceptual queues at the final approach fix (FAF) for an active 

runway (Figure 2).  
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Figure 2. Final approach fixes for six arrivals at Lambert - St. Louis International Airport 

Movements of each aircraft are simulated from the FAF until the designated flight’s activity at 

the airport is completed (with termination at the gate, or, if continuing to another destination, 

after turnaround and departure). 

Simulation entities for flights that terminate at the airport are removed from the simulation after 

reaching the gate and the gate is made available for originating flights that are generated by the 

model according to schedule (with random perturbation if desired) or for a new arrival. 

Figure 3 shows the physical layout of runways, taxiways, and ramp areas at Lambert - St. Louis 

International Airport with key intersections that aircraft traverse from the points of touchdown to 

the gates and from the gates to the points of liftoff. 
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Figure 3. Physical layout at Lambert - St. Louis International Airport
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We identify points on the airport surface where aircraft may be staged as they progress from 

runways to gates and vice versa. Routes between staging points across ramps and along taxiways 

are mapped and aircraft are directed to the next staging point depending on which runways are in 

use for landings and takeoffs and which staging points between their current position and airport 

destination (gate or runway) can accommodate them.  

Aircraft may be held at a staging point until the next segment of its route is available to traffic in 

the desired direction. Aircraft cannot enter a segment of a taxiway, for example, earlier than 

when it would be vacated by aircraft currently traversing it in the opposite direction.  

Some staging points may have sufficient maneuvering space to allow re-sequencing of queued 

aircraft for the next segment of their taxi routes; others may require the aircraft to be processed 

in order of their arrival at that point.  

Unlike Simmod and other highly realistic simulators for real-time simulation of ground 

operations, we do not indicate the specific physical locations of each aircraft waiting at staging 

points, nor do we regulate the speed of aircraft to maintain realistic physical separation while 

they are in motion. 

To accommodate airlines’ independent behavior in managing their own resources on the ground 

and dispatching their flights, we designate separate staging areas on the ramp for each airline’s 

arrivals and departures. Arriving aircraft are staged in queues in one area of the ramp pending the 

availability of a gate (and clear path to it). Departing aircraft (which may be held on the ground 

by air traffic control/ATC for either weather or traffic control) are staged at another area if they 

must clear a gate to accommodate arriving aircraft.  

Figure 4 shows the gate staging areas and taxiing routes to the gates for four major airlines at 

Lambert - St. Louis International Airport with gates at Terminals 1 and 2. 
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Figure 4. Staging points on ramps for arrivals and departures of individual airlines 

Areas on the airfield may be designated for spillover when physical capacity is reached at the 

primary ramp locations for staging the airlines’ arrivals and departures. 

Other areas on the airfield are designated as staging points for departing aircraft when there is a 

backlog for takeoffs, traffic holds due to weather conditions in departure sectors, or holds due to 

weather or congestion at hub destinations. In addition to queues that are associated with physical 

positions on the airport property, aircraft are placed in conceptual queues to control the 

sequences of operations. Aircraft with routes that involve sectors of airspace temporarily 

restricted by severe weather, for example, may be held in a common queue and released in 

sequences determined by the simulated scheduling regime currently in effect. 



7 

PROCESSES FOR MODEL CALIBRATION AND VALIDATION 

Calibration and validation of the model require integration of gate data maintained by individual 

airlines and flight data that are maintained by ATC systems for aircraft that operate under 

instrument flight rules (IFRs). The analytical process is illustrated in Figure 5.  

 

Figure 5. Analytical process flowchart 
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From airline data, we acquire information about aircraft type, origin and destination for the flight 

leg, and the scheduled and actual times of arrival or departure (pushback) at the gate. From ATC 

data, we obtain the time when an arriving flight reached the FAF and when it landed (touched 

down) on the runway. For departing flights, ATC data indicate the takeoff (liftoff) time. Merging 

these data, we are able to determine the itineraries of flights that arrive at the airport with 

continuing legs and generate the files used to activate arrivals and originating flights in the 

simulation model. 

Taxiway routings and staging to coordinate aircraft traffic are directed by ATC ground 

controllers located in the airport control tower.. Direct observation of and interviews with ATC 

controllers were required to understand the combinations of runways, taxiways, and staging 

points used for arrivals and departures under different wind and weather conditions.  

Release of arriving aircraft from the FAF occurs with consideration of the separation required for 

flight safety. Airports at the point of origin for inbound flights and airports at the destination of 

outbound flights are grouped according to ATC sectors. This enables schedule deviations to 

contain systematic elements  related to wind and weather – which affect arrival itineraries and 

runways in use. Weather events at the airport, at connected hubs, and at airports in adjacent ATC 

sectors can be simulated by restricting the traffic flow accordingly.  
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THE DISCRETE EVENT SIMULATION MODEL 

For the discrete-event simulation, we use Arena 14.7 software on a Windows platform. Heuristic 

scheduling and sequencing procedures can be written in C++ or Visual Basic and called by 

“event” blocks when the modeling logic requires them.  

The simulation is run in replicating mode (suppressing animation) to allow statistical tests of the 

effects of factors or strategies covered in the experimental scenarios. Adverse weather conditions 

in airspace sectors and at hub airports that affect traffic movements into and out of the local 

airspace are simulated by blocking aircraft from entering designated sectors (using either user-

defined schedules or exponential probability distributions for successive events and their 

duration) and placing affected aircraft in queues for orderly release when the traffic restrictions 

expire. 

Arrivals for scheduled service in each simulation replication are generated with random variation 

imposed on their scheduled arrival times and stacked at the FAF. The file of arrivals is read by 

Arena, which creates a simulation entity (an aircraft) that progresses through the system 

depending on its scheduled activity and availability of required resources (taxiways, ramps, 

staging points, gates, personnel, and equipment) as simulated events occur.  

Arrivals and departures for other (general aviation) aircraft are generated randomly through the 

day (using exponential distributions at the highest hourly rate and thinned randomly to create 

hourly intensity determined by historical patterns of flight activity or exogenous planning 

assumptions).  

Airport locations (gates) for arrivals and departures of general-aviation aircraft are assigned 

randomly (as each flight is generated) in conformity with levels of activity at the respective 

fixed-base operations. 

A subroutine assigns the aircraft to one of the active runways and the route to be followed from 

the point of landing to an available gate for the airline. Taxi-route segments are defined so that 

they have associated resources with capacity to hold a designated number of aircraft.  

Originating flights (as opposed to continuing flights) are placed at an available gate for the 

airline at the later of its scheduled departure time or the time at which a gate becomes available 

for it (i.e., freed by a terminating flight). We assume that aircraft for originating flights are 

available. (The model, in its present form, does not force a reconciliation of inbound and 

outbound aircraft for each carrier. This could be done by artificially defining every arrival and 

departure as a continuing flight with a unique flight number, such as a combination of the 

inbound and outbound number.) 

Parameters for the simulation model are estimated using logistic and regression models that are 

developed and maintained in the Statistical Analysis System (SAS). Likelihood (and length of) 

of an arrival delay for an airline’s flight might, for example, be stated as a function of scheduled 
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hour of day, total duration of the flight, whether the flight originated at a major hub, and an 

interaction term for arrival sector and runways in use.  

SAS is also used to generate the files of arrivals for individual airlines (with some flights 

terminating and others continuing after turnaround at the gate) in conformity with historical 

airline schedules and imposition of random variation. SAS is used similarly to generate the file 

of originating flights for the simulated scenario.  

Scheduled flight activity may be intensified or thinned by inserting new flights (indicating 

airline, flight number, origin, destination, aircraft type and scheduled time) or removing existing 

flights. Randomness in arrivals and departures of scheduled flights is imposed with daily and 

hourly time-varying means and standard deviations determined from historical airline gate data. 

Flows inbound from a sector or hub airport may be adjusted to simulate the effects of unusual 

conditions or events. Flows outbound from the airport may also be regulated to reflect flight 

restrictions in departure sectors or into destination airports. 

We derive flight schedules from historical gate data on days without systematic disruptions. 

When considering scenarios involving greater traffic intensity, we generate new schedules by 

placing the desired number of new flights between existing flights at scheduled times halfway 

between the preceding and succeeding flights. Of course, we can also insert new flights at 

specified times. 
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METRICS FOR SYSTEM PERFORMANCE 

Airport activity varies throughout the day, with a tendency for flights to concentrate during 

popular times. Table 1 shows an example of the statistics for departures that occurred over 364 

consecutive days at Lambert - St. Louis International Airport.  

Table 1. Sample departure delay statistics over 364 days at Lambert - St. Louis 

International Airport 

 

Note how delays propagate through the schedules as the day progresses. Some delays (such as 

weather) are highly correlated among carriers depending on schedules and routes flown (in our 

case, represented by airspace sectors and major connecting hubs). Others (such as equipment 

failure) are random.  
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Our performance statistics of airport activity include the following: 

 Number of arrivals and departures for each hour of the day 

 Distributions of delays (differences between actual and scheduled times for arrivals at the 

gate and departures (pushbacks) from the gate) 

 Percentage of delays that constitute a significantly late arrival or departure (delays in excess 

of 15 minutes) 

 Distributions of time required to taxi from touchdown on the runway to the designated arrival 

gate 

 Distributions of time from pushback at the gate to liftoff 

 Frequencies with which different runways are used for landings and departures 

 Frequency, duration, and timing of ramp and gate holds for weather events 

 Frequency, duration, and timing of ramp and gate holds for traffic congestion at destination 

hubs 

To generate reports of simulation results, we create detailed logs of simulated activity (written to 

flat files) and perform the analysis with SAS. Table 2 illustrates information that is saved for 

individual aircraft.  

Table 2. Excerpt from a simulation event log for aircraft movements 

 

Separating the simulation and analysis in this way, we can use data from multiple replications to 

investigate thoroughly how system performance varies over time. We can also assess the 

differential effects that physical or operational changes have on individual airlines or types of 

aircraft and estimate the extent to which variation is attributable to systematic versus random 

effects.  

Likewise, by recording information as aircraft leave or arrive at key queuing points, we can 

retrospectively deduce the state of the system at any point in simulated time (e.g., gates in use, 

queues at various stages for arriving and departing flights, simulated aircraft in motion on the 

ground, aircraft holding on a ramp or taxiway, and aircraft in the simulated airspace). 
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MODEL CALIBRATION 

In constructing the simulation model, we accommodate normal operating variation by adjusting 

for systematic effects with regression and logistics models (using combinations of indicator 

variables and partitioning of data with separate calibration for factors where there is significant 

interaction and sufficient data), impose randomness to reflect the residual variance, and impose 

further variation by creating disruptive scenarios.  

From the detailed data for individual flight operations at Lambert - St. Louis International 

Airport, we examined the likelihood and length of delays and found, as expected, that delays 

tend to be greatest when traffic is most intense (depending on time of day and day of week), in 

times of inclement weather (depending on month of year), for carriers with flights from major 

hub airports, when direction of landing (into the wind) tends to involve longer approach paths or 

taxiing times for major carriers, or when flights involve busy airspace sectors.  

In Table 3, we present results of fitting logistic regression models for the likelihood of departure 

delays considering time of day, month of year, and runway in use.  
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Table 3. Factors affecting the likelihood of Lambert - St. Louis International Airport flight 

delays  

Logistic  

Variable df 

Parameter 

Estimate Std. Error Chi-Square P > Chisq 

Intercept 1 -2.5905 0.0673 1480.35 <.0001 

Hourbef6 1 -1.0051 0.4241 5.6167 .0178 

Hour6to8 1 -1.0904 0.1225 79.259 <.0001 

Hour10to12 1 0.3371 0.0748 20.337 <.0001 

Hour12to14 1 0.8410 0.0668 158.54 <.0001 

Hour14to16 1 1.3742 0.0651 445.52 <.0001 

Hour16to18 1 1.5742 0.0657 573.65 <.0001 

Hour18to20 1 1.8975 0.0616 949.32 <.0001 

Hour20to22 1 2.3613 0.0647 1331.3 <.0001 

Houraft22 1 2.2326 0.7162 9.7180 .0018 

January 1 0.2136 0.0625 11.690 0.0006 

March 1 0.4805 0.0587 67.108 <.0001 

April 1 0.3558 0.0646 30.324 <.0001 

May 1 0.7305 0.0628 135.50 <.0001 

June 1 0.7807 0.0641 148.52 <.0001 

July 1 0.6103 0.0649 88.511 <.0001 

August 1 0.7671 0.0656 136.80 <.0001 

December 1 0.5861 0.0579 102.31 <.0001 

RWY12L 1 -0.1837 0.0503 13.352 .0003 

Rwy29 1 0.2785 0.0912 9.3373 0.0022 

Rwy30L 1 0.1902 0.0517 13.553 0.0002 

 

Each of these factors is highly statistically significant. The effects of these factors and others can 

vary among airlines. The factors are affected further by the scheduling practices of individual 

airlines, the physical resources that each airline employs, and the concentration of activity at 

each airline’s airport location. Some factors are interdependent (e.g., fleet mix, scheduled 

activity, and connecting cities for an airline). Hence, caution is always required when 

interpreting the coefficients of individual variables in logistics and regression models for delays. 

Challenges include screening out exceptional cases when fitting the multivariate models, creating 

parameters for elemental operations (such as preparing a plane for departure or taxiing on a 

taxiway segment) that result in appropriate behavior cumulatively, and validating the model’s 

behavior under realistic scenarios (and overall) using higher-level statistics available from 

operating data. An iterative analytical process is required. This process involves continuous 

looping through the stages represented previously in Figure 5.  

Constructing regression models from the simulated data and comparing their structure with those 

derived from historical data (for the base set of operating assumptions) helps to ensure that 

relevant factors are considered and that their influence is consistent with theory and operational 

history.  
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We encountered a particular challenge of matching time-stamped data with some missing 

observations and lack of a matching key for information maintained by different information 

systems.  
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A TOOL FOR MATCHING TIME-STAMPED DATA WITH MISSING ELEMENTS 

For one regional carrier, we had to deal with the use of an identifier for the airplane in the flight 

plan (the source of information for the FAA data) instead of the published flight number (the 

practice of most major airlines). The gate data used the flight number. Many hours of manual 

review were required to match these data manually and attempts at matching them heuristically 

produced mixed results. To facilitate the matching of such data as new data became available 

each week, we developed a mixed integer programming (MIP) model. We report it here because 

we believe that the procedure has value for other data-cleansing applications. Table 4 illustrates 

the problem for activity on a particular day.  

Table 4. Sequences of touchdowns and arrivals with missing data 

Touch-down ID Sequence Gate Arrival Flight 

05SEP13:06:25:03 KAP770 1 05SEP13:06:29:00 8341 

05SEP13:06:31:03 KAP421 2 05SEP13:06:39:00 8302 

05SEP13:06:44:34 KAP3212 3 05SEP13:06:46:00 8323 

05SEP13:06:53:08 KAP721 4 05SEP13:07:01:00 8335 

05SEP13:07:00:08 KAP280 5 05SEP13:07:19:00 8356 

05SEP13:08:58:58 KAP310 6 05SEP13:08:55:00 8314 

05SEP13:09:20:56 KAP421 7 05SEP13:09:31:00 8306 

05SEP13:09:29:27 KAP16 8 05SEP13:09:34:00 8326 

05SEP13:11:21:21 KAP3212 9 05SEP13:11:26:00 8327 

05SEP13:11:30:13 KAP310 10 05SEP13:11:39:00 8350 

05SEP13:11:35:55 KAP770 11 05SEP13:11:40:00 8316 

05SEP13:11:41:55 KAP247 12 05SEP13:12:39:00 8308 

05SEP13:12:29:54 KAP421 13 05SEP13:13:29:00 8337 

05SEP13:13:24:39 KAP165 14 05SEP13:13:39:00 8358 

05SEP13:13:30:40 KAP701 15 05SEP13:14:07:00 8329 

05SEP13:14:05:07 KAP757 16 05SEP13:14:19:00 8320 

05SEP13:14:09:23 KAP83 17 05SEP13:14:54:00 8352 

05SEP13:14:47:45 KAP307 18 05SEP13:15:07:00 8310 

05SEP13:14:49:11 KAP609 19 05SEP13:16:11:00 8332 

05SEP13:15:07:55 KAP31 20 05SEP13:16:58:00 8321 

05SEP13:16:06:18 KAP3212 21 05SEP13:17:03:00 8340 

05SEP13:16:52:47 KAP701 22 05SEP13:17:42:00 8311 

05SEP13:16:56:36 KAP165 23 05SEP13:17:49:00 8353 

05SEP13:17:42:09 KAP307 24 05SEP13:18:00:00 8361 

05SEP13:17:43:59 KAP609 25 05SEP13:18:21:00 8334 

05SEP13:17:46:57 KAP31 26 05SEP13:20:50:00 8313 

05SEP13:17:52:23 KAP83 27 . . 

05SEP13:18:13:03 KAP757 28 . . 

05SEP13:20:55:06 KAP31 29 . . 
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Note how individual aircraft made several loops over the day for different scheduled flights.  

In the MIP model, we use subscript i to represent the sequence of touchdowns for the airline. We 

use subscript j to represent the sequence of arrivals at the gate. There may be missing values for 

either. I=Max{i} may be larger or smaller than J=max{j}. The model is structured as follows.  

Xij = 1 if touchdown of flight i is matched to gate arrival j for the airplane 

 = 0 otherwise 

ti  = time recorded for touchdown i by the airline 

gj  = time recorded for gate arrival j by the airline 

IBTU  = upper bound on inbound taxi time (gj - ti) for an inferred match 

IBTL = lower bound on inbound taxi time for an inferred match 

ij

11

X


J

j

I

i

Max = MAXMATCHES 

Subject to the following: 

We can match no more in total than maximum of total touchdowns or gate arrivals. 




ij

11

X
J

j

I

i

 Min {I,J} 

Each touchdown can be assigned to at most one gate arrival: 




ij

1

X
J

j

 1 for each i (1) 

Each gate arrival can be assigned to at most one touchdown: 




ij

1

X
I

i

 1 for each j (2) 

(gj - ti ) Xij ≤ IBTU  (3) 

(gj - ti ) Xij ≥ IBTL (4) 

Xij = (0,1) (5) 

This formulation maximizes the number of matches while maintaining tolerance for each match.  
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Frequently, there are alternative solutions with the same number of “feasible” matches. In the 

next stage, we therefore minimize the sums (and average) of absolute deviations of (gj - ti ) from 

the “target” value for taxi time while achieving the previously derived number of feasible 

matches. In a second stage we therefore: 

ij ij

11

X   |  target-  t- g|  


J

j

I

i

Min

 

Subject to the following: 

ij

11

X


J

j

I

i

 = MAXMATCHES (6) 

and impose each of the other constraints as before. 

Evolution of the matches is illustrated in Tables 5 and 6 with choices of (-5,15) for (IBTL, 

IBTU).  



19 

Table 5. Sample matches from the first phase of the optimal matching procedure 

 
24 matches for 29 recorded touchdowns and 25 recorded gate arrivals with average deviation = 0.42 minutes and 

average absolute deviation = 3.0 minutes from 5 minute target 
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Table 6. Sample matches from the second phase of the optimal matching procedure 

 
24 matches for 29 recorded touchdowns and 25 recorded gate arrivals with average deviation = 0.14 minutes and 

average absolute deviation = 2.7 minutes from 5 minute target 

In Table 5, we see the matches from the first phase of the optimizing process. This solution 

indicates it is possible to match 24 touchdowns and gate arrivals within the stipulated limits for 

imputed taxi times. In the second phase , the matches are refined (Table 6) and reduce the 

average absolute deviation from the target time of 5 minutes to 2.7 minutes from the 3.0 minutes 

in the first phase.  
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The matrix generator is written in a SAS data step. We impose the upper and lower bounds in 

times (groups of constraints 3 and 4) implicitly by defining variables for combinations of i and j 

only if they satisfy the constraints. The result is effectively a pair of assignment problems for 

which integer solutions emerge immediately. The SAS solution engine is used (Proc LP) and the 

results are merged with the original data to provide the incidental information in Tables 5 and 6. 
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MODEL VALIDATION 

To show the correspondence between historical delays and those generated by the model for the 

most frequent operating practice, we present statistics for 364 days of actual airport activity in 

Table 7 and statistics for 100 days of simulated activity in Table 8. 

Table 7. Actual delays computed from 364 days of gate activity 

 
AA=American, CP=Cape Air, DL=Delta, UA=United, US=US Air, WN=Southwest 

Table 8. Delays computed from 100 days of simulated activity 

 
GA=Garuda Indonesia 
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This simulation scenario is a base case involving the use of these two runways: RWY 30R for 

arrivals and RWY 30L for departures. The assumed level of general aviation activity is similar to 

recent months. The average delay statistic in Table 7 includes negative values (early arrivals and 

departures). The truncated delays are computed by treating an early arrival or departure as 

having a delay = 0. 

For this base case, we placed scheduled airline flights at their FAFs with random deviations 

based on a regression fitted with historical data. Deviations from schedule for gate arrivals are 

shifted back to the FAFs using average approach and taxi times for the runway in use. We 

defined 0-1 indicator variables for each hour of the day and used the resulting regression models 

to generate flight delays for each airline. For example, the equation for arrival delays of one 

airline took the following form:  

expminutesdelay = 8.0 - 15.6 × hour7 - 7.8 × hour8 -5.8 × hour9 - 5.7 × hour11 + 8.1  

× hour16 + 10.0 × hour17 + 14.6 × hour18 + 3.6 × hour19 + 13.4 × hour20 + 3.5  

× hour21 + 11.8 × hour22 + 2.2 × nesector - 4.4 × swsector 

The residual standard error for that regression model was 36.0 minutes. The deviation from 

schedule for that airline’s individual flights was set at max{-20,int(expminutesdelay + 36.0 × 

(standard normal deviate))}. In contrast, for general aviation, we generate arrivals and flight 

originations used exponential inter-arrival times at the highest hourly rate for the day and “thin” 

them to create the expected time-of-day variation. 

Departure delays in the simulated activity for scheduled flights were the result of a two-step 

process involving pairs of logistic and regression models that were fitted separately for 

continuing flights and originating flights of individual carriers. For the former, we used a logistic 

regression model such as the following to determine the probability of a delay for an airline’s 

flight: 

probpbdelay = 1 ÷ (1 + exp ( 0.54 + 1.48 × hour6 + 1.18 × hour7 + 1.11 × hour8 + 1.04  

× hour9 + 0.89 × hour10 + 0.58 × hour11 + 0.34 × hour15 + 0.37 hour18 + 0.83  

× hour20 - 0.28 × nesector - 0.49 × swsector + 0.84 × sesector)) 

We then used regression equations calibrated with cases that experienced delays to estimate the 

lengths of delays, given they occur. 
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DEMONSTRATION SCENARIOS  

Strategies for dealing with weather interruptions are employed by both airline operations and 

ATC. Our modeling framework readily allows an exploration of alternative actions from 

individual airlines, on one hand, and from ATC ground control on the other hand, if flights to 

some destinations need to be held. Ground controllers may hold an aircraft at the gate or direct it 

to a staging position elsewhere on the field if its departure would be delayed by weather or traffic 

on its planned route.  

Given that delays are calculated as deviations from scheduled pushback rather than liftoff, the 

staged queuing strategy to cope with traffic holds have a significant impact on actual and 

reported performance for an airline. Moving an aircraft to free a gate may make it possible for an 

airline to accommodate incoming traffic without interruption and enable an “on-time” departure, 

but it may also create congestion elsewhere on the ground that interferes with other departures. 

To distinguish random from systematic variation when comparing scenarios and procedures, we 

perform 100 replications of a day’s activity and employ analysis of variance (for continuous 

performance measures). To perform 100 replications of a day’s schedule with simple scheduling 

rules (first-come, first-served except for aircraft subject to gate and ramp holds) and pre-

designated taxiing routes for active runways, less than two minutes of central processing unit 

(CPU) time were required on a workstation with an Intel Core2 Duo CPU E8400 processor at 3.0 

gigahertz (GHz) and 3.5 gigabytes (GB) of random access memory (RAM). 

To illustrate the process, we offer the results from a test of the effects of gate holds and ramp 

holds imposed in St. Louis for flights destined to Chicago airports because of severe weather. 

Flights to Chicago O'Hare International Airport  (ORD) (served by American Airlines and 

United Airlines) and to Chicago Midway International Airport (MDW) (served by Southwest 

Airlines) were affected.  

As ramp and taxiway capacities allowed, flights to other destinations were permitted. Random 

delays were imposed at departure gates using lognormal distributions with means and standard 

deviations determined from historical data considering time of day and whether the flight was 

continuing or originating. Other activity times (for taxiing, etc.) were generated using lognormal 

distributions with a 20% coefficient of variation. Arrivals were assumed to accrue at the FAF 

according to schedule (with no random variation).  

Table 9 shows the simulated performance for a simulated extreme weather event that results in 

gate holds and ramp holds for flights in the morning between Lambert - St. Louis International 

Airport (STL) and ORD and MDW in Chicago.  



25 

Table 9. Stochastic simulation with 100 replications of severe weather scenario at major 

destination hub and affected aircraft held at gate and ramp 

 

Table 10 reflects the results of the same weather scenario without gate holds but imposition of 

holds on a ramp when the ramp capacity for flights staged for departure was reduced.  

Table 10. Results of stochastic simulation with 100 replications for severe weather event 

with ramp hold, restricted ramp capacity, and no gate hold 
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In the latter case, aircraft were pushed back when ready for departure but they were held at the 

staged queuing area on the ramp until the holds on flights to Chicago were lifted. The result is 

fewer flights registering pushback delays (i.e., better “on-time performance”) but longer resulting 

waits on taxiways and ramps (with higher fuel burn and emissions). Also, with reduced space for 

staging flights near the departure end of the runway, flights released from the gate cause 

interference with departures of airlines not destined to Chicago and the latter suffer delays that 

did not occur when the Chicago-bound flights were held at the gate. Without the reductions in 

ramp capacity, the flights not destined to Chicago did not suffer delays.  

These results were generated using preliminary parameters estimated from the 364-day history 

and would not reflect actual experience over a year of flight activity. They simply verified that 

the modeled performance behaved as expected when the experimental changes to dispatching 

practices were imposed. 
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CONCLUSIONS AND FUTURE RESEARCH 

Our simulation prototype was created to facilitate the analysis of airport ground operations with 

due consideration of the major intersecting spheres of activity and responsibility. It captures 

essential characteristics of the system in each operational sphere and links them with staged 

queues at the interfaces.  

Optimizing heuristics may be embedded in portions of the Arena simulation model and the 

effects of their solutions may be tested with consideration of stochastic system behavior. 

Solutions from deterministic optimizing models may also be driven through the model to see 

their effects on other aspects of the operation and to examine whether promised gains from their 

use are achievable in a stochastic environment. 

The simulation prototype was originally constructed to represent traffic in the dominant 

operating environment at Lambert - St. Louis International Airport (using runways 30L and 30R 

for departures and arrivals) and behavior was validated using complementary flight data for just 

a few weather scenarios.   In the course of this project, the model was extended and calibrated for 

opposite traffic flows (using runways 12L and 12R), occasional traffic on runway 06-24 when 

strong crosswinds require such use, and use of runway 11-29 for occasional westerly departures 

from Terminal 1 and occasional easterly arrivals to Terminal 1. With these enhancements, we 

were able to address questions about the possible effects of using runways differently—namely 

segregating propeller traffic from turbine traffic for arrivals and directing the former to runway 

06-24 while utilizing runway 11-29 for departures. This alternative was simulated while air 

traffic controllers experimented with these strategies in the actual operating environment.  

Continued streaming of data for flight operations to the university and further experimentation 

with the model will enable us to estimate the effects of other changes to airport operations and to 

compare actual effects on performance with those predicted by the simulation model. 

Models for fuel burn considering taxi time and idle times under power could be appended to the 

report generators to estimate fuel burned and emissions generated under alternative airport 

configurations and operating practices. Further refinements estimating stop-and-go behavior on 

runways and taxiways, depending on congestion levels, could provide better estimates. 

In sum, our modeling approach provides a balance between the highly detailed engineering 

simulations of airspace and airports with microscopic detail, on one hand, and operations 

research models designed for strategic optimization of parts of the system, on the other hand. It 

incorporates necessary details of the operating environment and avoids the “flaw of averages” 

when studying system behavior.  With extensions to the model, we can include complementary 

groundside operations (such as crossdocking facilities for cargo carriers).  It is also possible to 

add details of flight activity at connected hub airports to examine the consequences of airline 

scheduling practices on individual airlines.
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