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INTRODUCTION AND BACKGROUND 

Traffic fatalities in the US have declined significantly in recent years—from a modern high of 

43,510 in 2005 to 32,719 in 2013. Similar declines have occurred in Iowa, where fatalities have 

declined from 450 to 317 over this same period (NHTSA 2015). These declines are attributable 

to various factors, including enhanced vehicle safety features, targeted safety-related legislation 

and enforcement programs, and the introduction of various engineering countermeasures. 

Intersections and horizontal curves are two high-priority emphasis areas where engineering 

countermeasures are often applied. 

Intersections account for 30 percent of crashes in rural areas and 6 percent of all fatal crashes. 

Motor vehicle crash injury rates are higher in rural areas, due in part to increased emergency 

medical services (EMS) response times, reliance on volunteer EMS, and increased transport 

times (Gonzalez et al. 2009, NHTSA 2006, Zwerling et al. 2005).  

Horizontal curves also present heightened crash rates, as the Fatality Analysis Reporting System 

(FARS) indicates more than 25 percent of fatal crashes in the US occur on horizontal curves 

(NHTSA 2015, FHWA 2011). The percentage of fatal curve-related crashes is higher on rural 

roads due to the predominance of horizontal curves, especially on two-lane roadways in rural 

areas. The average crash rate for horizontal curves is about three times greater than on highway 

tangents (Torbic et al. 2004). 

Consequently, intersections and horizontal curves present two high-priority areas for engineering 

countermeasures. The implementation of countermeasure programs are generally focused on 

high-risk locations, which are identified based on extensive historical traffic safety data (i.e., 

crash history). For example, the Moving Ahead for Progress in the 21st Century (MAP-21) Act 

requires all states to have in place a Highway Safety Improvement Program (HSIP) that 

“emphasizes a data-driven, strategic approach to improving highway safety on all public roads 

that focuses on performance.”  

Unfortunately, the identification of candidate locations for engineering countermeasures is often 

challenging due to the random and rare nature of traffic crashes, as well as related analytical 

issues such as regression-to-the-mean (RTM). These challenges are particularly pronounced on 

rural highways, where many potentially high-risk locations may be difficult to identify given 

lower traffic volumes. 

Given the prevailing focus on safety decisions that are data-driven, much research has focused 

on gaining a more thorough understanding of how various risk factors affect the frequency of 

traffic crashes, injuries, and fatalities at specific roadway sites. The extant research literature has 

shown various factors to affect the frequency of traffic crashes, including traffic volume, 

roadway geometry, type of traffic control, and other factors. Such risk factors are likely to vary 

across different types of road facilities, such as highway segments, intersections, and 

interchanges.  
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Gaining a better understanding of the complex relationships between crash risk and roadway 

geometry provides important information to aid in the development of targeted policies and 

programs to reduce traffic crashes and the resultant injuries and fatalities.  

This study aims to provide assistance in the identification of risk factors for traffic crashes on 

two facility types: intersections and horizontal curves. These risk factors are identified through 

the analysis of a robust database, which combines data from various sources including traffic 

volumes, roadway geometry, and other characteristics. Ultimately, the results of this research 

will allow for more effective network surveillance and identification of high-risk locations. 
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LITERATURE REVIEW 

The identification of candidate sites for the deployment of specific safety treatments is a critical 

aspect of any safety improvement program; however, this process can be costly (Hauer et al. 

2002). The process of identifying sites candidate sites for safety improvements is critical, while 

network-wide implementation of counter-measures is only possible under certain staff and 

budget conditions (Preston et al. 2013a).  

One methodology for traffic safety professionals to utilize to identify sites with the potential for 

safety improvements is to first identify which specific types of crashes need to be mitigated 

based on network-level data, and then screen and prioritize locations across the roadway system. 

Recently, the Federal Highway Administration (FHWA) has developed a Systemic Safety 

Project Selection Tool to aid safety practitioners in the application of this methodology (Preston 

et al. 2013b). The general process for using this tool is shown in Figure 1. 

 
Preston et al. 2013b, FHWA 

Figure 1. FHWA Systemic Safety Project Selection Tool process 

Subsequent research has aimed to apply the tool and other systemic safety tools. Recent research 

in Iowa examined the Minnesota County Road Safety Plan (CRSP) and the FHWA systemic tool 

to prioritize roadway segments, horizontal curve sections, and stop-controlled intersections 
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(Knapp et al. 2014). A similar research project in Kentucky compared the FHWA systemic tool 

to the US Road Assessment Program (usRAP) and traditional road safety audits in terms of site 

prioritization and suggested countermeasures (Harwood et al. 2014). 

The prioritization of specific network locations for safety improvements is determined by the 

frequency and severity of various risk factors that are present at a particular site. Risk factors for 

a particular type of crash or for crashes at a specific facility can be identified for network-

specific crash data using a process similar to that presented in Figure 2, where crashes of a 

particular type are disaggregated into increasingly smaller groups based on certain site 

characteristics. 

 
*All of the cases not at crosswalks 

Copyright © 2010 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved. Gitelman et al. 2012 

Figure 2. Pedestrian fatality patterns in Israel, 2003–2006 

Statistical algorithms, such as regression trees, can also be utilized to classify crashes based on 

driver, vehicle, and site characteristics. One study of rural horizontal curves in Wisconsin 

identified an increase in crash frequency when curve radii are less than 2,500 feet or when traffic 

volumes exceed 1,300 vehicles per day (Khan et al. 2013). In another Wisconsin study, variables 

contributing to cross-median-crash (CMC) severity were identified using discrete outcome 

models (Khan et al. 2015). Regression trees have also been utilized to identify the number of 

lanes as an important factor in crash severity at signalized intersections (Abdel-Aty and Keller 

2005). 

A variety of situations are identified in the extant literature where the systemic approach is taken 

to identify crash types or site characteristics associated with specific crash types. Age-period-

cohort (APC) analysis has been applied to fatal crash data from the US for a 30-year period from 

1980–2010 to assess which age groups were at risk for specific types of crashes, as well as to 

identify specific periods of time during which crash trends may have changed (Macinko et al. 

2015).  
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Recent research projects have addressed solo motorcycle, pedestrian-motorcycle, and vehicle-

motorcycle crashes (Jimenez et al. 2015), as well as to examine the relationship between the 

gender of a crashed motorcyclist and the gender of the motorcycle owner (Keall and Newstead 

2012).  

Two Israeli studies investigated factors contributing to pedestrian crashes. The first study used an 

intuitive process to identify the location of pedestrian crashes in the context of network elements 

(in crosswalk, not at intersection, etc.) (Gitelman et al. 2012), while the second used the neural 

networks to classify pedestrian crashes into clusters sharing similar characteristics (e.g., urban 

crashes involving the elderly) (Prato et al. 2012).  

Several studies have examined site-level risk factors for pedestrian and bicycle crashes (Wang et 

al. 2016, Bergh et al. 2015). Additionally, studies of low-volume or rural site types have all 

incorporated a systemic approach to identify crash risk factors (Al-Kaisy et al. 2015, Souleyrette 

et al. 2005, Preston et al. 2015, Khan et al. 2013).  

Collectively, these studies demonstrate the usefulness of the systemic approach to identify 

factors contributing to crash occurrence in situations where exposure data may be limited or in 

situations where crashes are extremely rare. 

Safety at Low-Volume and/or Rural Locations 

The Manual on Uniform Traffic Control Devices (MUTCD) for Streets and Highways defines 

low-volume roads as those located outside of built-up areas with volumes of less than 400 

vehicles per day (vpd) annual average daily traffic (AADT) (FHWA 2012). Safety at low-

volume locations, and rural locations in general, can be difficult to analyze, especially given the 

already random nature of crashes. Crash prediction models, commonly referred to as safety 

performance functions (SPFs), such as those presented in the Highway Safety Manual (HSM) 

(AASHTO 2010), as well as SPFs developed on a project-specific basis, are one type of tool that 

highway agencies often utilize to quantify safety.  

A recent study separately analyzed tangent and curve segments, as well as a combination of two 

segment types, where volumes were less than 1,000 vpd. This study identified isolated sharp 

curves as being associated with higher expected crashes in comparison to stretches of road with a 

series of curves (Avelar et al. 2015).  

The industry standard in the development of SPFs has become the negative binomial model; 

however, a variety of statistical modeling frameworks have been used in SPF estimation for low-

volume roads (Polus and Cohen 2012). 

In addition, difficulties in assessing safety at low-volume locations have given rise to measures 

of safety that do not specifically consider crashes. Instead, these measures consider features that 

are associated with high crash risk, such as the safety risk index (SRI), which uses site 
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characteristics determined from a safety inspection as well as design consistency to assess the 

relative safety of a location (Cafiso et al. 2015). 

A study in Iowa used an extensive set of descriptive statistics to assess rural road safety, 

specifically examining the differences between rural primary and secondary roadways, and 

finding that local roads exhibit a higher frequency of injury crashes than primary roads 

(Souleyrette et al. 2010).  

An Oregon research project attempted to use multivariate linear regression to model the safety 

effects of geometry and other roadway characteristics on the safety of low-volume roads; 

however, the regression analysis did not yield any results significant at the 95% confidence 

interval. To compensate for the shortcomings of the regression analysis, a correlation analysis 

was performed that revealed crash likelihood increased on low-volume roadways with 10-foot 

lanes compared to those with 12-foot lanes, on roadways without shoulders or with narrow 

shoulders compared to those with 4-foot shoulders, and on roadways where the degree of 

curvature is in excess of 30 degrees compared to those with less than 5-degree curvature (Ewan 

et al. 2016).  

An apparently related report from Oregon utilized a systemic approach to crash classification to 

find that roadways with 9-foot lanes experienced a smaller percentage of run-off-road (ROR) 

crashes; however, narrow lanes were associated with higher occurrences of opposite-direction, 

sideswipe, motorcycle, and truck crashes (Al-Kaisy et al. 2015).  

A systemic investigation of rural roadways in Minnesota identified $232 million worth of road 

edge, curve delineation, and intersection safety improvements that would not have been 

identified under traditional site-prioritization methods (Preston et al. 2015). 

A recent Hungarian study developed risk factors for specific combinations of roadway geometry 

and traffic volumes in conjunction with various types of violations as indicated in traffic crash 

reports (Miletics and Koren 2014). Results showed sites with auxiliary 

(acceleration/deceleration) lanes tended to experience crashes where the at-fault driver failed to 

yield or was attempting to pass. Crash rates were also higher at intersections without right turn 

lanes as drivers would attempt to pass using the left turn lane. 

One Iowa study examined criteria for assessing the potential removal of traffic control devices in 

rural areas. This study showed older and younger drivers are both over-represented in crashes at 

stop-controlled and uncontrolled intersections while broadside/right-angle crashes were the most 

prevalent crash type at such locations (Souleyrette et al. 2005). This research also showed that at 

very low-volume intersections (with daily entering volumes less than 150 vehicles), there were 

negligible differences in safety performance between stop-controlled and uncontrolled 

intersections (Souleyrette et al. 2006).  

The aforementioned studies show various examples of how systemic safety approaches can be 

used to assess safety on rural or low-volume roadways and intersections. 
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Safety on Horizontal Curves 

Substantive research has also been done on the factors affecting safety along horizontal curves 

on high-speed roadways. Schneider et al. (2009a) examined horizontal curves on rural two-lane 

highways in Texas and found injuries were more likely to occur on curves with radii between 

500 ft. and 2,800 ft. ROR crashes were particularly hazardous for, most notably collisions with 

roadside objects, on high-speed roads. Khan et al. (2012) evaluated the safety of horizontal 

curves in light of curve geometric characteristics and sign data collected from the Wisconsin 

Department of Transportation (WisDOT). Crashes were found to decrease with curve radius and 

increase with curve length and AADT. Bauer and Harwood (2013) also found crashes to 

decrease with curve radius, in addition to increasing with vertical grade.  

Fitzpatrick et al. (2009) evaluated the safety effects of ramp density and horizontal curvature on 

freeways in Texas. The study examined the safety of horizontal curves, as well as the adjacent 

tangent segments. The entire dataset included 561 curve/tangent pairs for a total of 324.3 miles. 

Crashes on freeway segments were found to increase with average daily traffic (ADT), with on-

ramp density, and with degree of curvature. Crashes were also influenced by median width, 

number of lanes (for urban freeways), and whether the freeway was in an urban area or rural 

area.  

Fitzpatrick et al. (2010) also developed accident modification factors (AMFs) along rural four-

lane highways in Texas. Driveway density was found to have slightly different impacts on 

horizontal curves versus tangents. Fink et al. (1995) analyzed tangent length and sight distance 

effects on crash rates at horizontal curves on rural two-lane highways. The results suggest that 

the effect of long tangents becomes more pronounced on sharper curves, and the analysis of sight 

distance effects suggests that extreme approach conditions (both long and short approach sight 

distance) may contribute to higher crash rates on sharper curves. 

Savolainen et al. (2005) evaluated safety impacts at intersections on super-elevated curved 

segments, focusing on high-speed four-lane divided highways with two-way stop control in 

Indiana. Recommendations were presented for curve radius and super-elevation rate when 

intersections were located on high-speed curves. Results from the same study also indicated that 

intersections on curves experienced higher percentages of right-angle and single-vehicle crashes. 

Khan et al. (2013) used regression tree analysis and identified a curve radius of approximately 

2,500 feet as a significant point below which there is a marked increase in crashes on horizontal 

curves. 

Findley et al. (2012) studied the spatial relationships among horizontal curves and found that 

more closely spaced curves have fewer crashes than curves that are more distant to each other. 

Hauer (1999) found that, for any given deflection angle, the design with the smaller degree of 

curve (i.e., larger radius) is safer. Results also suggested that the change in crashes is 

proportional to the change in radius length.  

Council (1998) explored differences in the probability of crashes occurring on curve transition 

areas for level, rolling, and mountainous terrain. The research concluded that spirals can be 
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beneficial on curves with a degree of curvature more than 3 for level terrain and less than or 

equal to 8 for rolling terrain. For mountainous areas, it was suggested that spirals should be used 

only on roads with wider lanes and shoulders.  

Persaud et al. (2000) developed an empirical Bayes-based procedure to develop guidelines for 

applying curve-warning treatments. The procedure recognized the high-crash potential for curves 

with a small radius (180 m/591 ft) and relatively large AADT (8,700 vpd).  

Schneider et al. (2009b) developed a crash prediction model for truck crashes on horizontal 

curves and found a positive relationship between crashes, ADT, and curve length, and a negative 

relationship between crashes and curve radius. The radius and length of horizontal curves has 

also been shown to influence the frequency of motorcycle crashes along rural two-lane highways 

(Schneider et al. 2010). 

Although various studies have assessed the safety of horizontal curves, changes in the MUTCD 

with respect to the use of traffic control devices on curves prompts the need for further safety 

evaluations. When the selection of problem curves for safety improvement is based on crash 

records, speed-control measures, such as hazard warnings or automated speed enforcement, can 

be more effective (Persaud et al. 2000). The need exists to examine the effects of other types of 

signs, as well as factors such as cross slope, pavement friction, and advisory speed, date of 

installation, sign material, and size (Khan et al. 2012). These are several of the focus areas that 

are addressed as a part of this study. 
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DATA COLLECTION FOR INTERSECTION RISK FACTORS 

The researchers constructed the intersection risk factor dataset from the following data sources: 

 intersection_points.shp – A geographic information system (GIS) shapefile containing the 

location of 173,233 intersections located in Iowa, with a unique identifier of ID2007. 

 Intersection_General.xlsx – An Excel spreadsheet with intersection-level data, including 

daily entering volume, for the intersection shape file, which could be linked via the ID2007 

field. 

 Intersection_Approach.xlsx – An Excel spreadsheet with approach-level data for the 

intersection shape file, which could be linked via the ID2007 field. 

 Statewide crash database – The statewide crash database is maintained by the Iowa DOT’s 

Motor Vehicle Division. The data comes mainly from law enforcement agencies that report 

at the scene of a crash. A large percentage of these data are collected electronically using the 

Traffic and Criminal System Software (TraCS). For the purposes of the intersection part of 

this study, all crashes occurring at Iowa intersections between January 1, 2009 and December 

31, 2013 (five years) were extracted. 

 Iowa Geographic Information Management System (GIMS) – A series of GIS shapefiles 

outlining Iowa’s roadway network as well as containing geometric and operational 

information. 

First, the researchers imported GIMS and intersection point files into Esri’s ArcGIS (mapping 

software) and selected only the intersections located on the primary roadway network (19,364 

intersections), as illustrated in Figure 3. Note that only one of the intersection streets needed to 

be a primary road to be included. 
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Figure 3. Iowa primary roads and associated intersections 

The researchers exported the attribute table of the selected primary road intersections as a 

database file and joined the table with the Intersection_General and Intersection_Approach files 

using Microsoft Access, as shown in Figure 4. 

 

Figure 4. Linking of the intersection data sources 
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The approach file contained multiple entries for each intersection (one entry per intersection 

approach). The researchers collected these data manually using Google Earth aerial imagery and 

Google Streetview imagery. The Intersection_General file includes the 10 data fields shown in 

Table 1, while the Intersection_Approach file includes the 22 fields shown in Table 2. 

Table 1. Intersection characteristic fields 

 Number of Legs 

 Intersection Geometry 

 School Zone 

 Intersection Angle 

 Lighting conditions 

 Traffic Control 

 Signal Type 

 Offset Distance 

 Intersection Type 

 Comments 

 

Table 2. Approach characteristic fields 

 Traffic Mode 

 Pavement Surface type 

 One- or two-way 

 Number of bike lanes 

 Access points within 75 ft 

 Left-turn type 

 Left-turn bay length 

 Number of exclusive LT lanes 

 Left-turn offset 

 Right-turn channelization 

 Number of exclusive right-turn lanes 

 Traffic control exclusive right-turn 

 Right-turn offset 

 Median type 

 Traffic Control 

 Crosswalk type 

 Transverse Rumble Strips 

 Comments 

 

To accommodate analysis at an intersection level, the researchers reformatted the original 

approach file into a series of files, with each file containing information on up to one approach of 

an intersection (intersections were found to have between 0 and 8 approaches, where locations 

with 0 approaches were generally points that were misidentified as intersections, such as 

overpasses, while a higher number of approaches was rare and generally indicative of a complex 

intersection). The ID2007 field is unique for each intersection and, as Figure 4 illustrates, the 

researchers used the ID2007 field to link each of the separate intersection information files. 

The researchers exported the linked intersection files from Access into a single Excel 

spreadsheet. Further quality assurance/quality control (QA/QC) resulted in the removal of 

duplicate intersections (40 sites) and of intersections with no general data, and therefore no 

volume data (4,204 sites). After completion of this QA/QC process, 15,120 intersections were 

left in the dataset. 

Finally, the researchers used ArcGIS to spatially query and join crashes that occurred within 250 

feet of one of the 15,120 intersections to the nearest intersection (for the years 2009 through 

2013). The spatial query process is illustrated in Figure 5.  
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Figure 5. Spatial query of crash data 

Using Excel, the researchers manipulated the exported crash data using pivot tables. For each of 

the five years of data, the researchers created a separate pivot table. They created binary 

variables for crash severity from the CSSEVERITY field. The researchers excluded crashes that 

were specifically coded as non-intersection in the crash database, based on the Non-Intersection 

Roadway Junction/Feature Type codes 01 through 08 (shown in Figure 6). 

 

Figure 6. Roadway Junction/Feature Type codes from Iowa DOT Investigating Officer’s 

Report of Motor Vehicle Accident Code Sheet 
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PRELIMINARY ANALYSIS FOR INTERSECTIONS 

The procedures described in the last chapter resulted in a dataset consisting of 15,120 

intersections, which collectively experienced 29,645 crashes over the five-year study period. 

After removing intersections with more than four legs (30 intersections), the dataset was reduced 

to 8,006 three-leg intersections and 7,084 four-leg intersections, which experienced 7,120 and 

22,140 crashes, respectively. 

Crash Trees 

Preliminary risk factor analyses were conducted on all three- and four-leg intersections located 

on the primary (state-maintained) roadway network. As noted previously, for each intersection 

included in the study, five years (2009–2013) of crash data were obtained from the statewide 

crash database. Using ArcGIS, the researchers identified crashes located within 250 feet of an 

intersection. The team constructed a series of crash trees to examine general trends in traffic 

crashes and injuries/fatalities by intersection type. This process involved aggregating the sites 

into homogeneous subgroups based on the following screening criteria: 

 Number of intersection legs (3 versus 4) 

 Injury severity categories (fatal/injury versus property damage only) 

 Average daily traffic (based upon quartiles of total daily entering volume) 

 Type of traffic control present at the intersection (signalized, stop-control, other) 

Figures 7–11 illustrate how many crashes occurred within each of these subcategories. Figure 7 

provides a general overview of crashes among three- and four-leg intersections. 

 

Figure 7. Three- versus four-leg intersections by crash injury severity 

Figures 8 and 9 provide further details for the three-leg locations and Figures 10 and 11 detail 

four-leg intersections. 

Total Intersection 
Crashes (n=29,350) 

3-Leg Intersection 
Crashes (n=7,210) 

Fatal/Injury Crashes 
(n=2,092) 

PDO Crashes  
(n=5,118) 

4-Leg Intersection 
Crashes (n=22,140) 

Fatal/Injury Crashes 
(n=7,419) 

PDO Crashes 
(n=14,721) 
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DEV=daily entering vehicles 

Figure 8. Three-leg intersection fatal/injury crashes 

3-Leg Intersection 
Fatal/Injury Crashes 

(n=2,092) 

DEV<1,795 (n=100) Stop Sign (n=100) 

1,795≤DEV<3,010 
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Other (n=4) 

Signal (n=105) 

Stop Sign (n=248) 

3,010≤DEV<5,825 
(n=460) 

Other (n=5) 

Signal (n=82) 

Stop Sign (n=373) 

DEV≥5,825  
(n=1,175) 

Other (n=12) 

Signal (n=274) 

Stop Sign (n=889) 
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PDO=property damage only, DEV=daily entering vehicles 

Figure 9. Three-leg intersection PDO crashes 

3-Leg Intersection 
PDO Crashes 
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Stop Sign (n=244) 

1,795≤DEV<3,010 
(n=992) 

Other (n=11) 

Signal (n=211) 

Stop Sign (n=770) 

3,010≤DEV<5,825 
(n=1,061) 

Other (n=19) 

Signal (n=201) 

Stop Sign (n=841) 

DEV≥5,825  
(n=2,818) 

Other (n=34) 

Signal (n=605) 

Stop Sign (n=2,179) 
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DEV=daily entering vehicles 

Figure 10. Four-leg intersection fatal/injury crashes 

 

4-Leg Intersection Fatal 
and Injury Crashes 

(n=7,419) 
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(n=187) 

Stop Sign (n=187) 

Signal (n=0) 

Other (n=0) 
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Signal (n=4,176) 

Other (n=0) 
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PDO=property damage only, DEV=daily entering vehicles 

Figure 11. Four-leg intersection PDO crashes 

When examining these figures, each box indicates a sample size (denoted by n=), which details 

how many crashes occurred within each site type. These results generally show that the majority 

of the crashes occurred at stop-controlled intersections.  

4-Leg Intersection 
PDO Crashes 
(n=14,721) 
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Stop Sign (n=339) 

Signal (n=0) 

Other (n=1) 
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Stop Sign (n=781) 

Signal (n=1) 

Other (n=0) 

3,535≤DEV<7,381 

(n=1,924) 

Stop Sign (n=1,744) 

Signal (n=180) 

Other (n=0) 

DEV≥7,381 
(n=11,675) 

Stop Sign (n=2,899) 

Signal (n=8,776) 

Other (n=0) 
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While stop-controlled locations comprise the majority of these intersection crashes, note that the 

annual number of crashes on a per site basis tends to be relatively low due to lower traffic 

volumes. Consequently, these types of locations provide good candidates for large-scale 

systemic safety analyses. 

Regression Models 

In addition to the crash trees, a series of basic crash prediction models were estimated from a 

subset of the original 15,120 intersections. After removing intersections with more than four legs 

(30 intersections), as well as those with missing traffic volume or crash data (258 intersections), 

14,832 intersections remained in the analysis dataset. Summary statistics for the 3-leg and 4-leg 

intersections within this sample are provided in Tables 3 and 4. 

Table 3. Primary three-leg intersection summary statistics 

Variable Min Max Mean Std Dev 

Daily Entering Vehicles 45 37,776 4,899 5,200.7 

Total Annual Crashes 0 72 0.348 5.0 

Annual Fatal/Injury Crashes 0 17 0.102 1.3 

Annual PDO Crashes 0 57 0.246 3.8 

 

Table 4. Primary four-leg intersection summary statistics 

Variable Min Max Mean Std Dev 

Daily Entering Vehicles 100 49,250 5,874 6,288.3 

Total Annual Crashes 0 145 0.298 11.0 

Annual Fatal/Injury Crashes 0 55 0.098 3.5 

Annual PDO Crashes 0 96 0.201 7.9 

 

Figures 12 and 13 provide the following information for various site type categories: 

 The number of intersections within that site type 

 The number of crashes within that site type 

 Crash prediction model results, including parameter estimates for the constant term, as well 

as the major and minor road traffic volumes 

Models were estimated for all site types with a minimum of 30 intersections. The ADT values 

were transformed by the natural logarithm function. As such, these results provide elasticities; 

that is, the coefficient reflects the percent increase in crashes associated with a 1 percent increase 

in ADT on the major or minor road.  
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Figure 12. Parameter crash estimates for urban intersections 
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Figure 13. Parameter crash estimates for rural intersections 
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The number of intersections in rural and urban areas along primary roads in Iowa are 

approximately equal. However, urban intersections account for 75 percent of all crashes, which 

is largely reflective of the traffic volume at these intersections. Note that crashes also tended to 

increase at a higher rate at urban intersections as compared to rural intersections. This may 

suggest greater caution on the part of motorists at rural intersections, or it may reflect general 

differences in the geometry at such locations. Note that this is somewhat in contrast with the 

broader research literature, which suggests the effects of volume tend to be dampened at higher 

volumes.  

Turning to traffic control type, differences were significant with respect to volume trends among 

signalized and stop-controlled intersections. In general, the ADT for the major (i.e., higher-

volume) roads tended to have a more pronounced impact than the ADT of the minor roads at 

stop-controlled intersections. The differences in model results across various intersection facility 

types provides motivation for a more detailed investigation of specific risk factors. 

Exploratory Visual Analytics of Intersection Crash Data 

In addition to the more traditional methods described previously, this research also sought to 

conduct exploratory visual analytics of Iowa’s intersection crash data over this same 5-year 

period (2009–2013). The researchers used Tableau (software) as a visual analytics tool to filter, 

highlight, cross-filter, and visualize the datasets with relative ease. (Visual exploratory analysis 

helps researchers to design and execute queries on the fly, thus leading to an organic exploration 

of datasets as the interesting facts are uncovered. This is in contrast to the data graphing 

techniques that are usually used where the graphs are plotted from pre-defined hypotheses and 

are usually static.) 

The researchers conducted a spatial correlation analysis prior to visualization. The aim of this 

analysis was to find any spatial clusters in the crash data. The intersections were classified as 

five clusters: 

1. High-High (HH) cluster denotes an intersection with a high number of crashes surrounded by 

other intersections with a high number of crashes. Such clusters are expected around urban 

areas. 

2. High-Low (HL) cluster denotes a high-crash intersection surrounded by low-crash 

intersections. These clusters may represent locations that would be good candidates for site-

specific safety improvements. 

3. Low-High (LH) cluster denotes a low-crash intersection surrounded by high-crash 

intersections. 

4. Low-Low (LL) cluster denotes a low-crash intersection surrounded by low-crash 

intersections. Such a cluster might exist in low exposure areas. 

5. None denotes a cluster of intersections where no significant correlation was found spatially. 
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Methodology  

The researchers analyzed the spatial autocorrelation of traffic crashes using the Local Moran’s I 

method, which is also called Anselin Local Moran’s I, or local indicators of spatial association 

(LISA). Given a set of weighted features, the LISA method is used to identify spatial clusters of 

features with attribute values that are similar in magnitude. The method is also used to identify 

spatial outliers. To realize this, LISA calculates a Local Moran’s I value, a z-score, a p-value, 

and a code representing the cluster type for each observation. Based on these parameters, spatial 

clusters or outliers can be identified. The equation for calculating the Local Moran’s I value of 

each observation is shown in Equation 1: 

𝐼𝑖 =
𝑥𝑖−�̅�

𝑆𝑖
2 ∑ 𝑤𝑖,𝑗(𝑥𝑖 − �̅�)𝑛

𝑗=1,𝑗≠𝑖  (1) 

where 𝐼𝑖 is local Moran’s I index, 𝑥𝑖 is the observation i, �̅� is the mean of the observations, 𝑤𝑖,𝑗is 

the spatial weight between feature i and j, n is the total number of observations, and,  

𝑆𝑖
2 =

∑ 𝑤𝑖,𝑗
𝑛
𝑗=1,𝑗≠𝑖

𝑛−1
− �̅�2 (2) 

Based on the calculated parameters, the Local Moran’s I method classified observations into the 

five categories: HH, HL, LH, LL, and insignificant data. 

After identifying the clusters, the researchers visualized the data as shown in Figure 14. Chart A 

in Figure 14 shows squares with each representing a single intersection with the size of each 

proportional to the crash rate at the intersection, in proportion to the surrogate crash rate (total 

crashes/approach volume). Chart B in Figure 14 is a bubble chart with each bubble representing 

an intersection with the size of each proportional to the total number of crashes during the study 

period. Chart C shows the scatter plot between surrogate crash rate and total crashes. Chart D 

presents the geospatial locations of the intersections on the map of Iowa.  

Also, Tableau provides an ability to filter and explore the data in multiple ways. The selection 

can be made either geographically, by selecting the area of interest on the map, or by checking 

the filters on the side panel on or off. 

Figure 15 shows all of the clusters identified using LISA. It shows that HH clusters, despite their 

high crash numbers, have relatively lower crash rates compared to the HL clusters. This implies 

HH clusters are usually high-volume intersections. Figure 16 exclusively shows the HH clusters. 

These clusters are primarily concentrated in the metropolitan areas of Iowa. LH clusters 

representing both low crash numbers as well as very low crash rates are shown in Figure 17. 

These represent intersections with a low number of crashes surrounded by high-crash locations. 

Further exploration of these sites will elucidate the characteristics of sites that make them safer 

even with higher exposure rates. HL clusters are high-crash locations surrounded by low-crash 

locations, as shown in Figure 18. These sites show high crashes despite low exposure. 
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Figure 14. Graphical exploration of intersection crashes 
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Figure 15. Significant clusters in intersection crash dataset 
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Figure 16. HH cluster representation 
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Figure 17. LH cluster representation 
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Figure 18. HL cluster representation
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INVESTIGATION OF INTERSECTION SKEW ANGLE, HEAVY-TRUCK VOLUME, 

AND LIGHTING 

Ideally, intersections are oriented such that roadways intersect at a 90-degree angle where 

possible. However, due to existing road alignments, location and right-of-way constraints, and 

various other factors, intersections cannot always be designed to this preferred configuration, 

resulting in a skewed intersection.  

A Policy on Geometric Design of Streets and Highways recommends that four-legged, rural 

intersection angles “should not be more than 30 degrees from perpendicular” (i.e., should not be 

less than 60 degrees or more than 120 degrees) (AASHTO 2011). The Highway Safety Manual 

highlights the impact of road design on drivers, citing that “improper lookout” is the greatest 

human factor for crashes at intersections (AASHTO 2010). In fact, 74 percent of crashes at 

intersections are caused by this particular issue. With the additional burden of an unusual angle 

for a driver to see around, this may cause additional risk. 

As a part of this study, an investigation was conducted to assess the effects of skew angle and 

other factors associated with the safety performance of rural intersections in Iowa. The scope 

was limited to intersections located on high-speed (speed limit of 45 mph or higher), rural, two-

lane roadways. This analysis provides important results that reinforce the extant research 

literature as to the relationship between intersection skew angle and crash frequency. 

Skew-Angle Research Literature 

“Skewness” or skew angle is defined as the angle at which an intersection diverges from 90 

degrees. It is widely agreed upon in the highway design field that intersections should be aligned 

at a 90-degree angle, resulting in a skew angle of zero degrees. However, due to physical 

constraints, this is not always possible (Harkey 2013).  

Geometrically, skewed intersection designs have longer curb lines and larger intersection areas. 

A vehicle traveling at an angle travels a longer distance with a longer travel time than one 

traveling perpendicularly through the intersection. Having a larger intersection area results in a 

larger conflict area, which reduces the safety of the intersection (Kaluva 2013). Keeping in mind 

this geometric characteristic, drivers are required to fully scan an intersection in a generally short 

amount of time, and must decide how to maneuver. With limited time and a large number of 

factors to consider, drivers are less likely to see or judge oncoming traffic in situations where the 

intersection is difficult to scan (Harkey 2013).  

Skew may also introduce issues for traffic operations as traffic flow can be disrupted when 

approaches to an intersection are skewed. When the right-turn intersection angle is less than 90 

degrees, drivers travel through the intersection slower than normal. The same happens for drivers 

of left-turning vehicles when the left intersection angle is acute. Conversely, turns made on 

obtuse intersection angles tend to be made at higher speeds (AASHTO 2011). 
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According to Kaluva (2013), skewed intersections are considered to have two main safety issues: 

a large conflict area and poor sight distance. As stated previously, a skewed intersection has a 

larger intersection area, which increases the conflict area. As a result, vehicles are exposed to 

conflicting traffic for a longer span of time (Kaluva 2013, Neuman 1985, Gattis and Low 1997, 

Walker 1993). A driver’s sight distance may be reduced due to the skew of the intersection 

(Kaluva 2013). At skewed intersections, a driver’s lateral sight distance may be reduced due to 

difficulty in a driver’s ability to turn their head to completely view a conflicting approach. 

Drivers have an approximate field of vision of 220 degrees, which means that blind spots may 

exist for drivers who are stopped at either right- or left-skewed intersections. These issues 

become more severe for older drivers, or drivers with physical limitations who commonly have 

issues with turning their heads adequately enough at a skewed intersection (Kaluva 2013, García 

and Belda-Esplugues 2007).  

At intersections with a smaller right-turn angle, drivers making right turns might intrude into the 

oncoming lane of traffic in an effort to see conflicting traffic. Whereas, at intersections with 

smaller left-turn angles, drivers making left turns may speed up and use unsafe gaps in turning 

(Gattis and Low 1997).  

Drivers have also been shown to react differently to skewed intersections compared to right-

angle intersections. Lack of familiarity in driving through skewed intersections may result in 

driver confusion (Kaluva 2013). In a 2007 study by Libreros and García (2007), recording 

devices were used to study driver behavior as drivers were approaching a skewed intersection to 

make a right turn. The study found that drivers approach the skewed intersection in various 

ways, which may include remaining in the center of the travel lane, hugging the centerline of the 

road, cutting across the right shoulder, or approaching as close to perpendicular as possible to the 

crossroad. 

Historically, sight distances have been addressed as an intersection safety consideration. David 

and Norman (1975) found sight distance obstruction as one of the six intersection design features 

that affect crashes. Hanna et al. (1976) investigated characteristics of intersection accidents in 

rural municipalities and concluded that intersections with poor driver sight distance on one or 

more traffic approaches tend to have a higher than normal crash rate.  

Harwood et al. (2000) found that a skew angle diverting 10 degrees from the typical 90-degree 

orientation showed a 4 percent increase in crash frequency, and a 45-degree diversion increased 

the number of crashes by 20 percent at three-leg stop-controlled intersections. A higher increase 

in crash frequency was seen for four-leg stop-controlled locations, where a 10-degree skew angle 

result in a 5.4 percent higher frequency, and a 45-degree skew was associated with a 28 percent 

increase. The findings of this study are used in the current edition of the Highway Safety Manual 

(HSM) as the coefficients in skewed intersection crash modification factors (CMFs) (AASHTO 

2010).  

Haleem and Abdel-Aty (2010) used discrete outcome models to analyze data from three- and 

four-leg unsignalized intersections in Florida. One of several factors affecting crash severity was 

the intersection angle being less than or equal to 75 degrees, which increased fatal injury 
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probability by 0.4 percent compared to intersection angles greater than 75 degrees at four-leg 

intersections.  

Oh et al. (2004) developed macro-level crash prediction models for signalized intersections and 

multi-lane stop-controlled intersections in rural areas. Negative binomial regression models were 

fit to intersection crash data from California, Georgia, and Michigan, with the results showing 

that an intersection angle that departs from a 90-degree angle is, in accordance with expectation, 

detrimental to safety at three-leg stop-controlled multi-lane intersections. The results also 

showed that intersection angle has a relatively smaller effect at signalized intersections as 

compared to stop-controlled locations. This is due to the traffic signal managing conflicting 

vehicles, limiting the amount of decision-making the driver must perform. The lessened 

influence of roadway geometry at signalized intersections compared to stop-controlled 

intersections has been seen in other studies, as well (Oh et al. 2004, Hutton et al. 2015). 

Statistical Methods 

To ascertain the effects of skew angle and other pertinent factors, a series of safety performance 

functions (SPFs) were estimated as a part of this study. The HSM provides a series of SPFs for 

intersections located along rural two-lane highways (AASHTO 2010). These SPFs can be used to 

predict average annual crash frequencies based on AADT on the major and minor roads under 

base conditions. These base conditions include a skew angle of zero, no left-turn or right-turn 

lanes on the stop-controlled approaches, and no lighting. For instances where these base 

conditions are not met, the basic SPF can be adjusted using CMFs (AASHTO 2010). Within the 

context of this study, the research team estimated SPFs in consideration of each of these base 

conditions. 

Consistent with the state-of-the-art research literature, the researchers estimated SPFs following 

a count data framework. As a starting point, a Poisson regression model was estimated, wherein 

the probability of intersection i experiencing yi crashes during the five-year analysis period is: 

𝑃(𝑦𝑖) =
𝐸𝑋𝑃(−𝜆𝑖)𝜆

𝑖

𝑦𝑖

𝑦𝑖!
 (3) 

where λi is the Poisson parameter for intersection i, which is equal to the expected number of 

crashes at that intersection during the analysis period, E[yi]. Poisson regression models are 

estimated by specifying the Poisson parameter λi as a function of explanatory variables, with the 

most common functional form being: 

λi = EXP(βXi) (4) 

where Xi is a vector of explanatory variables and β is a vector of estimable parameters (e.g., 

AADT, skew angle, presence of lighting and turn lanes). To account for the fact that crash data 

tend to be overdispersed (i.e., the variance of crash counts is generally greater than the mean), 

the negative binomial model has emerged as a preferred alternative to the Poisson model. The 
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negative binomial model is derived by rewriting this Poisson parameter for each segment i as 

follows: 

λi = EXP(βXi + εi) (5) 

where EXP(εi) is a gamma-distributed error term with mean of one and variance α. The α term is 

also known as the over-dispersion parameter, which is reflective of the additional variation in 

crash counts beyond the Poisson model (where α is assumed to equal zero). The addition of this 

term allows the variance to differ from the mean as follows: 

VAR[yi] = E[yi] + αE[yi]2  (6) 

Intersection Investigation Results and Discussion 

The researchers conducted separate analyses for three-leg and four-leg intersections. While the 

extant research literature has generally examined total crashes, an additional model was 

developed for broadside and angle crashes at four-leg intersections. Results of the negative 

binomial model for three-leg intersections are shown in Table 5, while Table 6 presents model 

results for total crashes and broadside/angle crashes at four-leg intersections. Each table provides 

parameter estimates, standard errors, and p-values for each variable, along with goodness-of-fit 

statistics. 

Table 5. Negative binomial model results for three-leg intersections 

Parameter 

Coefficient  

(Std Error) p-value 

Intercept -6.626 (0.170) <0.001 

LN(Major Road AADT) 0.681(0.023) <0.001 

LN(Minor Road AADT) 0.311 (0.014) <0.001 

Skewness 0.003 (0.001) <0.001 

Heavy-vehicle AADT percentage -0.012 (0.002) <0.001 

Three paved approaches Base condition N/A 

Overdispersion parameter 0.539 (0.044) <0.001 

Goodness of Fit   

Sample size 9711 

Log-likelihood -7687.876 

AIC 15387.752 

N/A=not applicable, AIC=Akaike’s Information Criterion 
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Table 6. Negative binomial model results for four-leg intersections by crash type subset 

Parameter 

Total Crashes Broadside and Angle Crashes 

Coefficient 

(Std Error) p-value 

Coefficient 

(Std Error) p-value 

Intercept -7.575 (0.1941) <0.001 -7.924(.302) <0.001 

LN(Major Road AADT) 0.663 (0.0233) <0.001 .320(.042) <0.001 

LN(Minor Road AADT) 0.555 (0.0248) <0.001 0.939(0.043) <0.001 

Skewness 0.004 (0.002) 0.010 0.005(.0029) 0.073 

Heavy-vehicle AADT percentage -0.009(0.002) <0.001 -0.009(0.0033) 0.006 

No lighting present 0.090 (0.0538) 0.125 N/S N/S 

Two paved approaches -0.105 (0.0678) 0.122 -0.306(0.110) 0.005 

Three paved approaches -0.268 (0.053) <0.001 -0.532(0.080) <0.001 

Four paved approaches Base -  - 

Goodness of Fit   

Overdispersion parameter 0.246 0.412 

Sample size 8344 8344 

Log-likelihood -6805.504 -3177.384 

AIC 13629.008 6370.769 

AIC=Akaike’s Information Criterion 

In each analysis, crashes were found to increase consistently with traffic volumes on both the 

major and minor roads. In general, the effect of major road AADT was quite consistent across 

the two samples, while minor road AADT was found to exhibit a larger influence among four-leg 

intersections. 

Turning to the primary factor of interest, crashes were shown to increase with skew angle at both 

three-leg and four-leg intersections. These results are generally consistent with the estimates 

provided in the HSM (AASHTO 2010), although the effects are slightly less pronounced for the 

Iowa intersections in both instances, as shown in Figure 19. 
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Three-leg intersections 

 
Four-leg intersections 

Figure 19. CMFs by skew angle for three-leg (top) and four-leg (bottom) intersections in 

Iowa versus the HSM 

For three-leg intersections, if the skew angle were to be 10 degrees from 90, the overall effect 

would be an increase of 3 percent in crashes. For four-leg intersections, a skew angle of 10 

degrees would result in a 4 percent increase. This more pronounced effect is reasonable as the 

number of conflict points increases at four-leg locations, requiring drivers to more extensively 

scan the intersection.  
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𝐶𝑀𝐹 = 𝑒0.003∗ 𝑠𝑘𝑒𝑤 𝐶𝑀𝐹 = 𝑒0.004∗ 𝑠𝑘𝑒𝑤 

𝐶𝑀𝐹 = 𝑒0.004∗ 𝑠𝑘𝑒𝑤 𝐶𝑀𝐹 = 𝑒0.0054∗ 𝑠𝑘𝑒𝑤 
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Continuing on this point, crashes were less frequent if one or more of the intersection approaches 

were unpaved at four-leg intersections. This is likely a reflection of the disaggregate-level 

turning movement counts at these intersections. When the minor roadway is paved, the number 

of left-turn movements from the major road is likely to be greater, as well as the number of 

crossing movements, because paved approaches generally have higher traffic volumes (larger 

AADT). For this study, average AADT for three-leg intersections was 45 vpd for minor unpaved 

roads and 337 vpd for three-leg intersections with all approaches paved. 

Interestingly, crashes were less frequent at intersections where heavy-truck volumes were higher. 

This finding may be due, in part, to the fact that those highways with larger heavy-truck volumes 

tend to be of a higher functional class, which would be correlated with other roadway features. In 

general, heavy-truck volumes are significantly higher on roadways of higher functional 

classification. Such roadways generally have wider lanes and shoulders, larger clear zones, and 

other higher design standards that may lead to fewer crashes than similar, lower functional class 

facilities. Continuing on this point, during preliminary investigations of the three-leg intersection 

dataset, the presence of lighting and the number of paved approach surfaces were both found to 

have a statistically significant association with fewer crashes. However, when the heavy-truck 

percentage variable was added, neither factor was found to be significant. 

The presence of intersection lighting was also shown to be associated with fewer crashes at four-

leg intersections, although the effect was not statistically significant for four-leg intersections. 

This finding is also consistent with prior research, such as a study by Kim and Washington 

(2006) of 155 rural intersections on two-lane highways in Georgia. Sasidharan and Donnell 

(2013) found the presence of roadway lighting resulted in 6 percent fewer nighttime crashes. 

According to the HSM, intersections with lighting would decrease the crashes depending on the 

proportion of total crashes for unlighted intersections that occur at night (AASHTO 2010). 
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DATA COLLECTION FOR HORIZONTAL CURVE RISK FACTORS 

The researchers used the following data sources for this part of the project to study horizontal 

curve risk factors in Iowa.  

 Two-lane horizontal paved curves dataset (developed by researchers at InTrans) 

 Primary curves dataset (provided by the Iowa DOT) 

 Iowa GIMS database (provided by the Iowa DOT) 

 Sign inventory dataset (provided by the Iowa DOT) 

 Driveways dataset (developed and provided by InTrans) 

 Intersection database (developed by InTrans) 

 Statewide crash database (provided by the Iowa DOT Motor Vehicle Division) 

Two-Lane Horizontal Paved Curves Dataset 

Researchers from the Institute of Transportation (InTrans) at Iowa State University developed a 

database detailing horizontal curves along paved, two-lane highways in Iowa. This dataset 

provided information about 11,748 curves. The dataset included information on curve locations, 

as well as other key characteristics such as curve radius, curve length, and degree of curve. 

Curves for which radius was not available (94) were excluded from the analyses, resulting in the 

remaining 11,654 curves on two-lane roads. 

Primary Curves Dataset 

Two inventory databases were created detailing the locations and characteristics of horizontal 

curves on the primary and secondary roadway networks throughout the state. These databases 

were developed in collaboration with researchers from the Wisconsin Traffic Operations and 

Safety (TOPS) Laboratory. This study utilized the database created for the primary routes. 

The researchers used Curve Finder to extract curve information for Iowa. Curve Finder is a tool 

that the Wisconsin TOPS Laboratory developed to automatically extract horizontal curve 

location and geometric information from GIS roadway maps. It is a fully automated method for 

extraction of horizontal curve data that the researchers implemented as a customized add-in tool 

in Esri’s ArcMap. In addition, the length, radius, and central angle of the curves were 

automatically computed at the same time in the dataset. Figure 20 shows a graphical overview of 

the research team’s implementation of Curve Finder.
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Figure 20. Curve Finder implementation
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This research has been some of the first to make use of the Curve Finder data, which is still 

undergoing a thorough vetting process by researchers at InTrans. Prior to utilizing the curve 

database for this research, several QA/QC measures were taken to maximize the usefulness of 

the data. A team of undergraduate researchers at InTrans combed through the entire primary 

network and identified roadway segments coded as curves that were not actually curves. Several 

other issues with the data have been identified, which, although believed to have a minimal 

effect on the curve data for the primary network, may affect the results of this research: 

 Tangent sections included as a portion of curves 

 Single curves split into multiple shorter curves 

 Reverse curves indicated, when a tangent section exists between curves 

 Over- and under-estimation of curve radius 

Efforts are currently underway to assess the extent to which these issues are present in the data; 

however, that work has not been completed at the time of this publication. 

The Curve Finder tool was implemented on a route basis (e.g., I-80, US 30) providing coverage 

over the entire primary and secondary network; however, due to the frequency of concurrent 

routes (e.g., I-80 and I-35 in the Des Moines metro area), there were several redundancies in the 

dataset. The researchers used Microsoft Excel to apply logic functions to sort the data by latitude 

and longitude and remove the duplicates. 

GIMS Database 

The curves dataset contained spatial locations that did not always correspond well to data from 

the GIMS. Curves were mapped to the extent possible using the 2014 GIMS database. The 

researchers extracted volume and other characteristics. A study period of five years (2010–2014) 

was selected for the purposes of the risk factor analysis for horizontal curves. When assembling 

the database, the researchers extracted AADT for the middle year (2012) of the study period. 

Since the curves dataset did not correspond exactly with the GIMS segments, the researchers 

used the near table function of Esri’s ArcGIS to create a NEAR_FID column in the curves 

dataset for each of the curves, and, then, used the FID column in the GIMS database to join the 

traffic-volume data. The researchers found that 93 sites were devoid of AADT information, and 

they deleted these curves from the curves dataset leaving 11,561 curves in the dataset. Summary 

statistics for the curves dataset are provided in Table 7. 
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Table 7. Summary statistics for horizontal curve segments 

Statistic AADT Radius Length 

Mean 870 1,297 631 

Min 2.00 51.75 68 

Max 95,500 10,146.79 3,818 

Std Dev 1,744 939.27 403.69 

1stQ 120.00 690.39 360.01 

2ndQ 390.00 1,046.16 522.84 

3rdQ 1,000.00 1,670.56 788.7 

 

The GIMS database provided characteristics such as number of lanes, median type, median 

width, functional class, access control, and whether the location was in a rural or urban area. 

Only 1,019 curves of the 11,561 curves were in urban areas, which means about 91 percent of 

the curves were classified as rural.  

The researchers used the direct lane dataset of the GIMS data to obtain information about most 

of the geometric and cross-sectional characteristics of each of the curves. Unlike the other GIMS 

datasets, the direct lane fields provide details separately for each direction of travel. Thus, the 

attributes in the direct lane dataset were for each direction bound (northbound, eastbound, etc.), 

but the other GIMS datasets had attribute values that were the total for all directions bound 

together.  

In order to join other GIMS datasets to the direct lane dataset, the numerical attributes for both 

bounds in the direct lane dataset were either averaged or summed with the categorical attributes 

concatenated (so that categories for each bound could be identified later) using Excel, as shown 

in Table 8. Table 8 also provides summary statistics for the GIMS dataset that the researchers 

created. 
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Table 8. Summary statistics for GIMS segments 

Attribute  

Name 

Description (codes  

in GIMS manual) 

Operation to  

combine bounds Mean Min Max 

Std  

Dev 

SURFWIDTH Total width of road surface Average 23.21 16 80 3.03 

SURFTYPE Type of surface Concatenate 63.19 0 92 13.53 

SHDTYPER Right shoulder type Concatenate 2.00 0 9 1.94 

SHDWIDTHR Right shoulder width Average 4.84 0 28 2.81 

RUMBLER Presence of rumble strips Concatenate 0.02 0 1 0.14 

CURBEDR Whether right side has a curb Concatenate 0.01 0 1 0.12 

SHDTYPEL Left shoulder type Concatenate 1.99 0 9 1.94 

SHDWIDTHL Left shoulder width Average 4.82 0 17 2.79 

RUMBLEL Presence of rumble strips Concatenate 0.02 0 1 0.13 

CURBEDL Whether left side has a curb Concatenate 0.01 0 1 0.11 

LIMITMPH Speed limit Average 52.64 15 55 6.30 

 

Sign Inventory Dataset 

The Iowa DOT developed a sign dataset that provided locations of various signs on the study 

curves. The researchers created a query in ArcGIS to spatially select the curves that contained 

chevron alignment signs (W1-8). They also created an attribute with the counts of chevrons on 

those curves. Similarly, the researchers selected other alignment signs (W1-1 and W13, shown in 

Figure 21) to incorporate related data in this study.  

 
FHWA 2012 

Figure 21. Curve sign images 

A total of 144 curves in the dataset had chevron installations. To ascertain the relationship of 

radius and spacing and quantity of chevrons on any curve, the researchers plotted number of 

chevrons against radius of curves (as shown in the Figure 22). The researchers noted that sharper 

curves had more chevrons with shorter spacing between them. W1-1 and W1-3 signs were found 

on 21 and 17 curves, respectively. 
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Figure 22. Chevrons versus curve radius 

Driveways Dataset 

InTrans researchers created a driveways dataset. Due to the incomplete nature of the public road 

crossing (PRC) information in the access management file and the inconsistent identification and 

categorization of PRCs, as well as the availability of PRC information via the 

prelim_intersection_database_20150608.mdb file, the research team removed PRCs contained 

within the access point dataset (using a two-step process). Ultimately, the PRC information was 

redundant with the intersection database described subsequently. 

First, driveways labeled as being PRCs were removed. After this process, it was clear that 

intersection points were still present in the driveway data but misidentified as driveways, so a 

second step was used to remove the intersections. The researchers used ArcGIS to identify and 

remove driveway points located within 5 feet of an intersection in the 

prelim_intersection_database_20150608.mdb file. This process removed additional intersections 

from the driveways dataset. The researchers used the final dataset that had all of the PRCs 

removed to spatially locate the curves that contained driveways on them. Then, they did a spatial 

join to calculate the number of driveways on each of the curves. This information was stored as a 

separate attribute. 

RLC_FT 

5

10

15

20

25

30

35

0

5000 10000 150000

C
H

EV
R

O
N

S 



41 

Intersection Database 

InTrans created an intersection database as part of a prior project for the Iowa DOT. This 

database includes a shapefile providing an extensive inventory of intersection characteristics 

throughout the state. The database currently includes information for more than 170,000 

intersections. For this study, the researchers spatially located curves that included intersections 

using this shapefile. They did a spatial join to calculate the number of intersections on each of 

the curves and stored this information as a separate attribute. 

Statewide Crash Database 

For the purposes of the horizontal curve risk factor analysis, the researchers extracted crash data 

from the beginning of 2010 through the end of 2014. The researchers summed the total crashes 

over this five-year period for each curve and broke the data down for crashes by each injury 

severity level (based on the most severe injury sustained in each crash). For the purposes of this 

study, the researchers extracted two samples of crash data: 

1. Data for curves located on Iowa’s paved two-lane highway system. The researchers used 

these data as part of a preliminary crash-tree analysis to discern general trends in crashes 

with respect to traffic volume and curve radius. 

2. Data for horizontal curves located along multi-lane highways on the Iowa primary road 

network. Using these data, the researchers conducted a more detailed analysis of various 

curve characteristics, which included the estimation of safety performance functions (SPFs), 

to examine the relationship between crashes and curve characteristics. 
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PRELIMINARY ANALYSIS FOR PAVED TWO-LANE HORIZONTAL CURVES 

The research team conducted a high-level analysis to examine general trends among the 

horizontal curves located on paved two-lane highways across Iowa. Summary statistics from the 

crash data for these curves are provided in Table 9.  

Table 9. Summary crash type statistics for GIMS segments 

Crash  

Type Mean Min Max Total 

Std  

Dev 

K 0.02 0 2 254 0.15 

A 0.07 0 4 787 0.29 

B 0.16 0 7 1,851 0.48 

C 0.20 0 15 2,316 0.61 

KABC 0.45 0 20 5,208 1.04 

O 0.86 0 53 9,962 1.93 

KABCO 1.31 0 73 15,170 2.67 

K=Fatality, A=Disabling Injury, B=Evident Injury, C=Possible Injury, O=Property Damage Only 

Turning to one of the primary characteristics of interest, Figure 23 shows the distribution of total 

crashes when plotted against radius. The total crashes are clustered between radii of 60 to 5,000 

feet.  

 

Figure 23. Crashes versus radius 
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Using Excel, the researchers manipulated the exported crash data using pivot tables. They 

excluded crashes that were specifically coded as intersection-related within the crash database 

from the dataset based on the Intersection Roadway Junction/Feature Type codes 11 through 22 

(shown in Figure 24).  

 

Figure 24. Roadway Junction/Feature Type codes from Iowa DOT Investigating Officer’s 

Report of Motor Vehicle Accident Code Sheet 

For each of the five years of data (including and excluding intersection-related crashes), the 

researchers created a separate pivot table. They also created binary variables for crash severity 

from the CSEVERITY field. 

Once the researchers assembled these data, they conducted a crash-tree analysis to examine some 

preliminary trends in the horizontal curve database. The researchers constructed trees by 

considering all crashes occurring on two-lane horizontal curves in Iowa during the five-year 

study period (2010–2014 for this part of the study), aggregated between fatal/injury and PDO 

crashes. The next split grouped crashes of each injury severity by quartiles of curve radius, as 

shown in Figure 25. 
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Figure 25. Fatal/injury versus PDO crashes on horizontal curves based on curve radius 

Another tree was created by splitting the two crash injury severity levels (fatal/injury and PDO) 

by the quartile of daily entering volume (dev). Figure 25 shows the results of this tree analysis. 
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Figure 26. Fatal/injury versus PDO crashes on horizontal curves based AADT ranges 
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DETAILED INVESTIGATION OF DIVIDED HIGHWAY HORIZONTAL CURVE RISK 

FACTORS 

The research team conducted an in-depth investigation of the safety of horizontal curves on 

divided highways for this study. They aggregated the data into two groups: freeway and non-

freeway segments. About 53 percent of the curves in the dataset were located on limited access 

facilities (i.e., freeways), while the remainder were comprised of high-speed non-freeways, 

including expressways. Table 10 shows the descriptive statistics for the data used as part of the 

horizontal curve crash frequency analysis. 

Table 10. Descriptive statistics for horizontal curve crash frequency dataset 

Variable 

Freeway (n=251) Non-Freeway (n=220) 

Average Std Dev Min Max Average Std Dev Min Max 

Directional AADT 9,974 5,413 1,390 2,4870 4,726 2,006 1,395 11,960 

Curve radius (ft) 3,329 1,015 1,420 5,257 2,781 969 678 5,176 

Curve length (ft) 1,223 760 121 4,407 1,197 701 116 3,535 

55 MPH speed limit 0.072 0.258 0 1 0.418 0.493 0 1 

65 MPH speed limit 0.311 0.463 0 1 0.582 0.493 0 1 

70 MPH speed limit 0.618 0.486 0 1 0.000 0.000 0 0 

Surface width 24.080 0.732 24 32 24.018 0.929 16 30 

Rural area 0.729 0.444 0 1 0.786 0.410 0 1 

Median width (ft) 56.876 26.105 2 380 60.195 21.498 9 140 

Cable median years 0.797 1.503 0 5 0.000 0.000 0 0 

Independent curve 0.717 0.450 0 1 0.750 0.433 0 1 

Reverse curve 0.112 0.315 0 1 0.091 0.287 0 1 

Compound curve 0.171 0.377 0 1 0.159 0.366 0 1 

Left curve 0.494 0.500 0 1 0.486 0.500 0 1 

Paved outside shoulder 0.944 0.229 0 1 0.627 0.484 0 1 

Outside shoulder width 10.000 0.605 8 15 9.727 1.039 3 12 

Outside rumble strip 0.853 0.355 0 1 0.464 0.499 0 1 

Paved inside shoulder 0.829 0.377 0 1 0.314 0.464 0 1 

No inside shoulder 0.004 0.063 0 1 0.068 0.252 0 1 

Inside shoulder width 6.048 0.817 0 10 5.791 1.957 0 10 

Inside rumble strip 0.080 0.271 0 1 0.136 0.343 0 1 

Total Crashes (2010–2014) 2.267 2.171 0 11 1.423 1.433 0 7 

 

For these curves, the researchers identified non-intersection crashes, as well as crashes that 

occurred in the merge or diverge area, using the roadway type. They used a spatial query in 

ArcMAP to identify crashes that were within 150 feet of the curves. Given that the curve 

database was developed on a directional basis (northbound, southbound, etc.), the researchers 

were able to match crashes to specific curves using directional coding. The researchers excluded 

crashes that did not have directional coding, as well as curves adjacent to said crashes, from their 

analyses to ensure that the data used is as complete and accurate as possible. 

Separate summaries are provided for freeways and non-freeways in the table. Similar data are 

provided in Table 11 for the crash severity dataset. While the frequency dataset included 471 

horizontal curves, 953 crashes were reported on these segments during the five-year analysis 

period. 
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Table 11. Descriptive statistics for horizontal curve crash severity dataset 

 
Freeway (n=666) Non-Freeway (n=287) 

Variable Mean Std Dev. Min Max Mean Std Dev. Min Max 

K or A 0.024 0.153 0 1 0.038 0.192 0 1 

B 0.089 0.284 0 1 0.122 0.327 0 1 

C 0.111 0.314 0 1 0.192 0.394 0 1 

PDO 0.776 0.417 0 1 0.648 0.478 0 1 

Driver not protected 0.024 0.153 0 1 0.038 0.192 0 1 

Driver not ejected 0.980 0.138 0 1 0.965 0.183 0 1 

Airbag deployed 0.101 0.301 0 1 0.160 0.367 0 1 

Driver age 39.977 16.321 15 99 38.091 17.837 16 90 

Male driver 0.667 0.471 0 1 0.578 0.494 0 1 

Alcohol, drug, or medication 0.030 0.171 0 1 0.031 0.174 0 1 

Single-vehicle, no fixed object 0.219 0.414 0 1 0.286 0.452 0 1 

Single-vehicle, fixed object 0.267 0.443 0 1 0.247 0.431 0 1 

Head-on 0.014 0.115 0 1 0.010 0.102 0 1 

Rear-end 0.215 0.411 0 1 0.251 0.434 0 1 

Angle-left 0.000 0.000 0 0 0.028 0.165 0 1 

Broadside 0.011 0.102 0 1 0.017 0.131 0 1 

Sideswipe same 0.264 0.441 0 1 0.150 0.357 0 1 

Sideswipe opposite 0.011 0.102 0 1 0.010 0.102 0 1 

Dusk 0.033 0.179 0 1 0.014 0.117 0 1 

Dawn 0.024 0.153 0 1 0.031 0.174 0 1 

Ice, snow, or slush 0.320 0.466 0 1 0.328 0.469 0 1 

Concrete barrier 0.054 0.226 0 1 0.000 0.000 0 0 

Paved median 0.000 0.000 0 0 0.031 0.174 0 1 

Grass median 0.637 0.481 0 1 0.948 0.223 0 1 

Curbed median 0.000 0.000 0 0 0.021 0.143 0 1 

Curbed grass median 0.309 0.462 0 1 0.000 0.000 0 0 

Compound curve 0.075 0.264 0 1 0.105 0.306 0 1 

Reverse curve 0.065 0.246 0 1 0.073 0.260 0 1 

Independent curve 0.860 0.347 0 1 0.822 0.382 0 1 

Left curve 0.545 0.498 0 1 0.484 0.500 0 1 

Curve length (ft) 1,392 707 158 4,407 1,480 935 142 4,919 

Curve radius (ft) 3,343 932 1,645 5,279 2,677 1,014 678 5,119 

55 MPH speed limit 0.078 0.268 0 1 0.540 0.498 0 1 

65 MPH speed limit 0.293 0.455 0 1 0.460 0.498 0 1 

70 MPH speed limit 0.629 0.483 0 1 0.000 0.000 0 0 

AADT 12,514 5,600 1,795 25,850 6,199 3,127 1,700 12,750 

Urban 0.338 0.473 0 1 0.436 0.496 0 1 

K=Fatality, A=Disabling Injury, B=Evident Injury, C=Possible Injury, PDO=Property Damage Only 

Statistical Methods 

Once the researchers compiled the datasets, they conducted a series of statistical analyses to 

ascertain how crashes were affected by curve radius, curve type, and other geometric and site 

characteristics. They considered various count data model frameworks in the development of 

crash prediction models. Ultimately, they assessed frequency data using a negative binomial 

modeling framework. This is similar to the approach utilized for the intersection risk factor 

analysis for this study. Within the context of the horizontal curve analysis, the probability of a 

specific horizontal curve i experiencing yi crashes during the five-year analysis period is as 

follows: 
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where λi is equal to the expected number of crashes at curve i during the analysis period, E[yi]. 

The parameter λi is specified as a function of explanatory variables: 

λi = EXP(βXi) (8) 

where Xi is a vector of explanatory variables and β is a vector of estimable parameters (e.g., 

AADT, curve radius). To account for the fact that crash data tend to be over dispersed (i.e., the 

variance of crash counts is generally greater than the mean), the parameter λi is allowed to vary 

as follows: 

λi = EXP(βXi + εi) (9) 

where EXP(εi) is a gamma-distributed error term with mean of one and variance α. 

In contrast to the crash frequency data, the crash severity data are of a discrete, ordinal nature, 

with crashes classified on a five-point scale ranging from no injury to fatal injury. Due to a 

limited number of fatal (K) crashes, the researchers used a combined fatal and incapacitating 

injury category in this study (K+A). Consequently, these data are well suited for analysis using 

an ordered probit model. Ordered probit models are derived by defining a latent variable z, which 

can be specified as a linear function for each observation such that: 

𝑧 = 𝛽𝑋 + 𝜀 (10) 

where 𝑋 = vector of variables determining the discrete ordering, 𝛽 = vector of estimable 

parameters, and 𝜀 = random disturbance term. 

With the use of this equation, observed injury outcome data, y, for each crash is defined as: 

 𝑦 = 1  if 𝑧 ≤ 𝜇0 

 𝑦 = 2  if 𝜇0 < 𝑧 ≤ 𝜇1 

 𝑦 = 3  if 𝜇1 < 𝑧 ≤ 𝜇2 

 𝑦 = ⋯  

 𝑦 = 𝐼  if 𝑧 ≥ 𝜇𝐼−1 

where the estimable threshold parameters, 𝜇, define 𝑦, which corresponds to integer ordering, 

and I is the highest integer ordered response. The 𝜇 represents parameters that are jointly 

estimated with the model parameters 𝛽. If the error term is assumed to be distributed as standard 

normal across observations, an ordered probit model results. Setting the lower threshold 𝜇0 equal 

to zero results in the outcome probabilities, as follows: 
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𝑃(𝑦 = 𝑖) = 𝛷(𝜇𝑖 − 𝛽𝑋) − 𝛷(𝜇𝑖+1 − 𝛽𝑋) (11) 

where 𝜇𝑖 and 𝜇𝑖+1 represent the upper and lower thresholds for response category i, and 

estimation is done by standard maximum likelihood methods. 

One concern that arises within the ordered probit is that each variable is assumed to have 

consistent effects across all severity levels (i.e., the proportional odds assumption). To mitigate 

this concern, the researchers employed a partial proportional odds model specification. This 

more flexible framework allows the effects of certain variables to vary across injury severity 

levels. This model specification is appropriate when some of the variables do not satisfy the 

proportional odds assumption. 

Horizontal Curve Investigation Results and Discussion 

The results of the crash prediction models for horizontal curves are presented in Table 12.  

Table 12. Results of horizontal curve negative binomial model for freeways versus non-

freeways 

Variable 

Freeway Non-Freeway 

Estimate (Std Error) p-value Estimate (Std Error) p-value 

Intercept -9.075 (1.48) <0.001 -6.798 (1.972) 0.001 

Ln(Directional AADT) 0.998 (0.097) <0.001 0.601 (0.168) <0.001 

Median width -0.004 (0.002) 0.027 -0.008 (0.003) 0.025 

Paved outside shoulder -0.552 (0.266) 0.038 N/S N/S 

Paved inside shoulder N/S N/S 0.273 (0.133) 0.040 

Ln(Curve Radius) -0.685 (0.169) <0.001 -0.564 (0.18) 0.002 

Independent curves N/S N/S -0.227696 0.138 

Overdispersion parameter 0.160 - 0.127 - 

Goodness of Fit 
    

Intercept-Only AIC 994.83 
 

699.58 
 

Fully-Specified AIC 907.16 
 

695.81 
 

N/S = not statistically significant 

Separate model results are included for non-freeways and freeways in the table. For each model, 

parameter estimates are provided, along with the associated standard errors and p-values. In each 

case, the negative binomial model was shown to provide significantly better fit than the Poisson 

models, a reflection of over dispersion among the segment-specific crash data. The researchers 

treated curve length as an offset variable. Consequently, these regression models can be used to 

estimate the number of crashes per unit length. 

Examining specific variables of interest, crashes increased consistently with traffic volume in the 

two models. The effects were inelastic as a 1 percent increase in volume was associated with 

increases of 1.0 percent and 0.6 percent for freeway and non-freeway facilities, respectively.  
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Paved outside shoulders were associated with fewer crashes on freeways, while paved inside 

shoulders were associated with increased crashes on non-freeways. Intuitively, paved shoulders 

on either side of the roadway might be expected to be associated with lower crashes, as drivers 

have additional space to maneuver and avoid other vehicles; however, it is possible that the 

paved shoulders are simply located in areas that experience higher crash frequencies and are 

therefore provided to allow drivers a refuge to safely remove a damaged vehicle from the flow of 

traffic. 

One of the primary concerns with horizontal curves is the effect of curve radius on crash 

frequency. The results of this study show crashes decreased as curve radius increased for both 

freeways and non-freeways. The effect was slightly more pronounced on freeways, which likely 

reflects more stringent design criteria on freeways relative to non-freeways when everything else 

is equal. Figure 26 provides the series of CMFs by curve radius, which are based on the results 

shown in Table 12.  

 

Figure 27. CMFs by curve radius for freeways versus non-freeways 

As the curve radius increases from 200 feet, a marked decrease is observed in crash frequency. 

The majority of the curves in the analysis dataset fell within the range of 1,000 to 5,000 feet in 

radius. Considering this range, crashes were found to roughly double. Non-freeway independent 

curves were also shown to be significantly safer compared to reverse curves and compound 

curves. 
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In addition to the crash frequency model, Table 13 presents the results of the partial proportional 

odds crash severity model.  

Table 13. Horizontal curve partial proportional odds crash severity model results 

Variables 

Freeway Non-Freeway 

Estimate (Std Error) p-value Estimate (Std Error) p-value 

No Protection 0.778 (0.335) 0.020 1.064 (0.471) 0.024 

Not Ejected -2.394 (0.376) 0.000 -1.391 (0.486) 0.004 

Head-On 1.374 (0.388) 0.000 2.425 (0.746) 0.001 

Broadside 0.887 (0.433) 0.041 - - 

Side Swipe-Opposite 1.006 (0.439) 0.022 2.232 (0.676) 0.001 

Single Vehicle-Fixed Object - - 0.506 (0.193) 0.009 

Single Vehicle-No Fixed Object - - 0.567 (0.188) 0.002 

Alcohol, Drug, Medication - - 1.067 (0.395) 0.007 

Male Driver -0.467 (0.119) 0.000 - - 

Driver younger than 20 years old -0.323 (0.208) 0.120 - - 

Concrete Barrier -1.698 (0.675) 0.012 - - 

Left Curve -0.176 (0.113) 0.119 - - 

Paved Inside Shoulder -0.276 (0.172) 0.108 - - 

Dusk And Dawn -0.488 (0.276) 0.077 - - 

Thresholds         

μ1 -2.029 (0.417) - -0.352 (0.51) - 

μ2 -1.469 (0.417) - 0.49 (0.506) - 

μ3 -0.627 (0.423) - 1.223 (0.512) - 

Airbag Deployed-μ1 -0.761 (0.179) - -1.166 (0.227) - 

Airbag Deployed-μ2 -0.326 (0.225) - -1.208 (0.237) - 

Airbag Deployed-μ3 -0.5 (0.338) - 0.209 (0.489) - 

Single Vehicle-No Fixed Object-μ1 -0.486 (0.134) - - - 

Single Vehicle-No Fixed Object-μ2 -0.682 (0.154) - - - 

Single Vehicle-No Fixed Object-μ3 0.029 (0.333) - - - 

Goodness of Fit         

Intercept-Only AIC 998.37 

 

568.13 

 Fully-Specified AIC 876.74   474.29   

AIC=Akaike’s Information Criterion 

The results of this analysis showed a variety of roadway, vehicle, and driver characteristics 

influenced the degree of injury severity. When examining the parameter estimates in Table 13, a 

positive coefficient is reflective of a factor that tends to increase the probability of the most 

severe injury (i.e., fatal), while a negative coefficient indicates a specific variable is associated 

with a lower degree of injury when a crash occurs. 

On both freeways and non-freeways, lack of use of protective equipment (e.g., seatbelts, 

helmets) was shown to be significantly associated with increased crash severity, a result that is 

not surprising. Similarly, when drivers were not ejected from the vehicle, crash outcomes were 

typically less severe.  
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The effect of airbag deployment was shown to vary across crash severity levels for the freeway 

and non-freeway models. For the freeway model, the threshold value decreased across all 

severities, indicating that airbag deployment is associated with increased severity; however, the 

effect was greatest when considering the threshold between property damage only and possible 

injury crashes. For non-freeway crashes, the deployment of the airbag was actually shown to 

increase the threshold between the fatal/incapacitating injury and the non-incapacitating injury, 

indicating that airbags are most effective at reducing the severity of what would have otherwise 

been an even more severe crash outcome. 

The manner of collision was shown to be highly associated with crash outcome. For the freeway 

model, head-on, broadside, and sideswipe opposite crashes were consistently shown to be 

associated with increased severity, while single vehicle crashes where no fixed object was struck 

were generally associated with increased severity, with the exception of being associated with 

lower instances of the highest severity crashes. For non-freeways, head-on, sideswipe-opposite, 

and single vehicle crashes were all associated with increased crash severities. 

Consistent with expectation, drivers on non-freeways who were under the influence of drugs, 

alcohol, or medications were shown to have more severe crash outcomes. The freeway model 

revealed some surprising findings, as male drivers and young drivers (younger than 20) were 

typically associated with lower severity crash outcomes. These drivers are typically considered 

to be more risk-prone; therefore, it is likely that the results of this analysis indicate that these 

drivers are simply more resistant to injury when involved in a crash. 

Additionally, the freeway model revealed that, from a roadway geometry standpoint, crashes 

tended to be less severe on left curves and where concrete barriers are present, and where paved 

inside shoulders are present. These conditions are likely associated with a decreased likelihood 

of a vehicle crossing the median of a divided highway and being involved with a vehicle 

traveling in the opposite direction. 

Finally, crashes occurring at dusk or dawn were shown to be associated with decreased crash 

severity. This may potentially be due to drivers using extra caution at these times of day or may 

be reflective of different driving conditions during these periods. 
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CONCLUSIONS 

Intersections and horizontal curves present two high-priority areas for engineering 

countermeasures to improve safety by reducing both the frequency and severity of crashes. The 

implementation of countermeasure programs is generally focused on high-risk locations, which 

are identified based on extensive historical traffic safety data (i.e., crash history). 

Unfortunately, the identification of candidate locations for engineering countermeasures is often 

challenging due to the random and rare nature of traffic crashes, as well as related analytical 

issues such as regression-to-the-mean (RTM). These challenges are particularly pronounced on 

rural highways, where many potentially high-risk locations may be difficult to identify given 

lower traffic volumes. 

The aim of this study was to provide assistance in the identification of risk factors for traffic 

crashes on two facility types in Iowa: intersections and horizontal curves. The researchers 

identified risk factors through the analysis of a robust database for Iowa roadways, which 

combined data from various sources that included traffic volumes, roadway geometry, and other 

characteristics, as well as Iowa crash data. 

Intersection Risk Factors 

Overall, the five-year intersection crash study results for Iowa’s primary roadways reinforce 

several important geometric design characteristics that affect traffic safety. Looking at a primary 

factor of interest for intersections, the researchers found crashes to increase with skew angle at 

both three-leg and four-leg intersections. The researchers found the effect of skew was generally 

similar to the CMFs provided in the HSM (AASHTO 2010). 

For broadside and angle crashes, the effects of skew on four-leg intersections were even more 

pronounced. When comparing broadside and angle crashes to the total number of crashes at four-

leg intersections, the through movement on the minor leg was impacted more by skew angle. 

The presence of unpaved approach legs was associated with fewer crashes at high-speed, rural 

intersections, which is likely a reflection of less frequent turning movements from the major road 

and also crossing movements from the minor road (with the unpaved approach leg).  

Crashes were also less frequent at three-leg intersections where lighting was present, as well as at 

locations with larger volumes of heavy vehicles. This may be due, in part, to the fact that those 

highways tend to be of a higher functional class, which would be correlated with other roadway 

features. These roadways generally have wider lanes and shoulders, larger clear zones, and other 

higher design standards that may lead to fewer crashes than similar lower functional class 

facilities. 
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Horizontal Curve Risk Factors 

Turning to horizontal curve risk factors, crashes were found to increase with traffic volumes on 

both freeways and non-freeways, as well as in the presence of paved left shoulders on non-

freeway segments. Crashes were less frequent on freeway segments with paved outside shoulders 

and on independent curves on non-freeway segments. Crashes were more frequent on sharper 

curves (with smaller radii), as well as where curves in opposing directions were present in the 

immediate vicinity of one another. 

The researchers also conducted a crash severity analysis for horizontal curves, with the results 

showing that injuries tended to be more severe when drivers were unrestrained or ejected from 

the vehicle, or when the airbags deployed. Crashes were also more severe when crashes involved 

a single-vehicle, broadside crash, or two vehicles traveling in opposite directions. Collectively, 

these findings reflect the greater impact forces that are exerted on motorists in these types of 

crashes.  

Based on the analysis of the freeway segments, males were less likely to be injured than females, 

and younger drivers were also less likely to experience high-severity crash outcomes, which are 

findings that may relate to physiological or behavioral differences.  

Crashes also tended to be less severe on horizontal curves during dawn and dusk conditions. 

Additionally, crashes on left curves where concrete barriers or paved inside shoulders were 

present were associated with decreased crash severity, which likely reflects a lower likelihood of 

vehicles crossing the median when these features are present.  

Implementation Readiness and Benefits 

The intersection analysis provides important results that reinforce the extant research literature as 

to the relationship between intersection skew angle and crash frequency. The Iowa intersection 

database that was developed contains additional information and site types, which would allow 

for a detailed investigation into other questions of interest. 

This study is one of the first to exploit Iowa’s horizontal curve information using the Curve 

Finder tool. The results of the horizontal curve analyses provide some important preliminary 

insights into the relationship between traffic crashes and various curve characteristics, which 

may be used for effective network surveillance and the identification of high-risk horizontal 

curves. This may include the identification of curves where additional traffic warning signs (e.g., 

chevrons, advisory speed signs) may be installed.  

Moving forward, the extensive databases developed as a part of this study may be supplemented 

with additional information. As intersections and horizontal curves continue to be emphasis areas 

for improving safety, the identification of risk factors will allow for the proactive and cost-

effective implementation of various engineering countermeasures. 
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Future Intersection Safety Research 

There are several prospective avenues for further intersection safety research and more detailed 

investigation is warranted into several areas of importance identified in this study. For example, 

disaggregate-level turning movement counts would provide insights as to the findings related to 

auxiliary turn lanes and unpaved approach legs. As this study only considered total crashes and 

broadside/angle crashes, future research could explore various crash types in conjunction with 

major causes for crashes.  

Over the course of a data quality review of the intersection database, concerns arose as to the 

accuracy of several factors, including offset, rumble strip presence, bicycle lane and crosswalk 

presence, and other factors. With the continued refinement of the intersection database, 

additional risk factors could also be investigated. 

Future Horizontal Curve Safety Research 

As the quality assurance/quality control (QA/QC) process involving information from the Curve 

Finder tool progresses, the data may be used to conduct further investigations into factors 

affecting the frequency and severity of crashes along horizontal curves. This database will also 

provide an opportunity to further investigate curves on other facility types.  
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