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EXECUTIVE SUMMARY 

Asphalt wearing surfaces on timber bridges are designed not only to protect the timber deck 

components from vehicular wear and tear, but also to provide a moisture barrier and protect the 

deck from the elements. However, premature failure and/or degradation of the wearing surface 

have been common problems associated with glued-laminated timber girder bridges with 

transverse glued-laminated decks. 

This failure/degradation of the wearing surface can result in the accelerated deterioration of the 

timber beneath due to water infiltration, and often incorrectly implies structural inadequacy. 

The primary objective of the research summarized in this report was to construct and test a 

demonstration timber bridge utilizing new design details developed to reduce the magnitude of 

the asphalt wearing surface deterioration to acceptable levels and therefore increase the 

durability of the entire bridge system. 

In support of this objective, lessons learned from previous bridge field tests, along with details 

developed during laboratory testing, were applied to a field demonstration bridge. 

Previous load tests conducted on glued-laminated timber bridges with asphalt wearing surfaces 

found that the bridges with the most significant amount of wearing surface deterioration had two 

characteristics in common: 1) average to moderate relative deflections between adjacent glued-

laminated deck panels and 2) cupped deck panels resulting from differences in moisture content 

between the top and bottom of the deck panels. 

Subsequent laboratory testing of a full-scale glued-laminated timber bridge concluded that 

relative deck panel deflections could be reduced by means of physical connection at the deck 

panel joints. Various connection details were investigated, including steel dowels, glass-fiber 

dowels, a steel plate placed at mid-panel depth, and a plywood overlay. 

It was concluded that, based on the test results and the constructability of all of the alternatives 

considered, the plywood overlay was the most viable option. 

Given the findings of the field and laboratory testing, there was a need to test the plywood 

overlay alternative on a structure with an asphalt wearing surface to determine if this alternative 

had an impact on the deterioration of the asphalt. 

The bridge specifically designed for this project consists of two 38 ft simple spans; each span 

consists of six glued-laminated timber girders and 5 1/8 in. by 4 ft transverse glued-laminated 

timber deck panels lag screwed to the girders. 



x 

Span 1, the south span, has a layer of 3/4 in. treated plywood screwed directly to the deck panels; 

Span 2, the north span, was not covered with plywood and would be used as a control. The decks 

of both spans were overlaid with asphalt. 

Inspection of the wearing surface one month following bridge construction noted transverse 

cracking at the deck panel joints on Span 2 with less noticeable cracks on Span 1 over the deck 

panel joints. However, cracking over the plywood joints was also observed in Span 1. 

Global girder deflection measurements from 2009 indicate that the global response of the 

structure was as expected. The peak tensile strain in the girders measured during the 2009 and 

2010 tests was approximately 250 microstrain (0.45 ksi), well below the design bending stress 

(calculated based on HS20 truck) of approximately 2.2 ksi. 

Wearing surface inspection in 2010 noted that the cracking at the panel joints on Span 2 were 

becoming more prevalent; cracking on Span 1 was now evident at both the transverse and 

longitudinal plywood joints, as well as at the transverse deck panel joints. 

Differential panel deflection data measured in both 2009 and 2010 indicated two things: 1) 

differential panel deflections were within the recommended limit of 0.10 in. and 2) slightly larger 

differential panel deflections were evident on Span 1 than on Span 2, which was opposite of 

what was expected. 
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1. GENERAL 

1.1 Introduction 

The Bridge Engineering Center (BEC) at Iowa State University (ISU), in cooperation with the 

United States Department of Agriculture (USDA) Forest Products Laboratory (FPL), has 

completed research in the recent past on glued-laminated timber girder bridges, specifically 

related to improving the performance and deterioration characteristics of the deck and asphalt 

wearing surface (Hosteng et al. 2005, Wipf et al. 2005). 

Numerous timber bridges with problematic asphalt wearing surfaces were field tested in previous 

work (Hosteng et al. 2005). Subsequently, a laboratory investigation was conducted that resulted 

in the development of design modifications for reducing or eliminating differential panel 

deflections in bridges with glued-laminated girders and transverse glued-laminated decks (Wipf 

et al. 2005). 

In an attempt to improve the performance of asphalt wearing surfaces on timber bridges, research 

was funded and supported by the National Center for Wood Transportation Structures 

(NCWTS), a national center housed at Iowa State University in partnership with the FPL, the 

Federal Highway Administration (FHWA), and the National Parks Service (NPS). 

This research involves the demonstration of construction practices developed to improve the 

performance of new and existing glued-laminated timber bridges. Specifically, a demonstration 

timber bridge was constructed to test various design, rehabilitation, and construction alternatives. 

The design alternative developed in the laboratory research (Wipf et al. 2005), a plywood 

overlay alternative, was the first alternative to be evaluated on the demonstration bridge and is 

the focus of this report. 

Summarized in this report are the results of two years of inspection and load testing of the 

demonstration bridge. Initial inspection and load testing was conducted in the summer of 2009 

and a follow-up inspection and testing were conducted in the summer of 2010. 

1.2 Research Objectives 

The objectives of this study include the following: 

 Evaluate the effectiveness of the plywood overlay alternative at reducing 

differential panel deflections 

 Evaluate the effect of the plywood overlay alternative on the global response of 

the structure 

 Evaluate the performance of the plywood overlay alternative at reducing or 

eliminating the deterioration of the asphalt wearing surface 
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1.3 Project Scope 

To satisfy the research objectives, the project scope includes the following post-bridge 

construction tasks: 

 Inspect the asphalt wearing surface for visual signs of distress and note locations 

 Evaluate the performance of the wearing surface of Span 1, the span with the 

plywood deck overlay alternative, compared to the performance of Span 2, the 

control 

 Evaluate the global deflection performance of both spans compared to design 

 Evaluate the deflection performance of the transverse deck panels 
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2. SUMMARY OF PRECEEDING WORK 

2.1 2004 Field Test Results 

Inspection and test results from the work conducted in 2003-2004 by the BEC (Hosteng et al. 

2005) indicated that asphalt wearing surface deterioration is very prevalent, but the presence and 

severity of the deterioration tends to vary from bridge to bridge. 

Of the bridges tested, those with the most severe asphalt wearing surface deterioration were 

found to have several characteristics in common that may relate to wearing surface degradation, 

including  repeated and/or large differential panel deflections, glued-laminated deck panels with 

physical conditions showing deterioration, and relatively large global girder deflection. 

Field test data suggested that the repetitive relative movement of adjacent deck panels, as well as 

the actual magnitude of the relative displacements, were both significant factors affecting the 

condition of the asphalt wearing surface. Measured differential panel deflection magnitudes 

ranged from negligible to as much as 0.18 in. Differential panel deflection is a quantity that is 

not directly addressed in any code or specification; however, the Timber Bridge Manual (Ritter 

1990) does recommend limiting differential deflections to 0.10 in. and presents a table (Table 2.1 

in this report), that recommends maximum girder spacing based on the thickness and stiffness of 

the glued-laminated deck panel. 

Table 2.1. Effective span for transverse glued-laminated deck panels 

Table 7-9. Approximate maximum effective span for noninterconnected transverse glulam 

deck panels based on a maximum vehicle live load deflection of 0.10 in.; deck 

continuous over more than two supports; loading from a 12,000 lb wheel load; 

bd = 15 in. + deck thickness. 

                                                 Approximate maximum deck span (in.) 

    t = 5 in. or   t = 8 1/2 in. or 

E' (lb/in.
2
) *  E' (lb/in.

2
) * t = 5 1/8 in. t = 6 3/4 in. t = 8 3/4 in. 

1,300,000 1,082,900 __50 68 _91 

1,400,000 1,166,200 __51 70 _94 

1,500,000 1,249,500 __53 72 _95 

1,700,000 1,416,100 __56 75 _99 

1,800,000 1,499,400 __57 76 _101 

*E' = ECM = 0.833E 
   

 

Field data from the 2004 study ranged from negligible to up to twice the 0.1 in. recommended by 

the Timber Bridge Manual (Ritter 1990) to eliminate asphalt cracking. Furthermore, the bridges 

with the largest differential deflections also had comparatively worse asphalt wearing surface 

performance. 
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The physical condition of the transverse glued-laminated deck panels were also found to likely 

impact and even compound the deterioration of the asphalt wearing surface in some cases. In 

general, the most severe wearing surface deterioration was found on bridges that had cupped 

deck panels. Figure 2.1 illustrates one case of significant deck panel cupping and the subsequent 

effect on wearing surface condition (Hosteng et al. 2005). 

 

Figure 2.1. Wearing surface deterioration resulting from cupped deck panels 

The cupping of the deck panels is believed to be a result of insufficient panel-to-girder 

connections combined with significant moisture content gradients between the top and bottom 

surfaces of the deck panel. Although bridges with flat, uncupped deck panels had wearing 

surface deterioration that was less severe than those with cupped panels, in most cases, the 

deterioration was significant nonetheless. Lastly, of the bridges tested, those with the best-

performing asphalt wearing surfaces were also found to have lower global midspan girder 

deflections as shown in Table 2.2. 

Table 2.2. Correlation between global girder deflection and wearing surface performance 

Bridge 

Experimental  

n-values 

D=L/n 

Wearing Surface 

Condition 

Rating* 

Lost Creek 2032 9 

Camp Creek 1380 7 

Badger Creek 1150 9 

Russellville 750 5 

Chambers County 675 6 

Wittson 600 5 

Butler County 560 2 

Erfurth 520 4 
*Rating Scale: 1-severe; 5-moderate; 9-minor 
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Deck and/or wearing surface deterioration may decrease as bridge stiffness increases; however, it 

is also recognized that a more stringent deflection criteria would result in structural members that 

provide more strength than is necessary from a structural capacity perspective. 

The cost associated with members that provide more capacity than necessary may not be 

warranted as a short-term solution to the problem, but, given the significant costs associated with 

the rehabilitation of bridge overlays, research may be warranted into the long-term cost-

effectiveness of these types of structural modifications. 

2.2 2006 Laboratory Test Results 

Shortly after the above-mentioned field testing, a laboratory investigation was conducted that 

involved the design, construction, testing, and evaluation of a full-scale glued-laminated timber 

bridge at the ISU Structures Laboratory (Wipf et al. 2005) (see Figure 2.2). 

 

Figure 2.2. Erected laboratory bridge 

The laboratory bridge consisted of glued-laminated timber girders and a transverse glued-

laminated timber deck and was used to evaluate several different panel-to-panel connection 

alternatives that were developed to minimize relative panel deflection. 

Loading of the structure was performed using hydraulic actuators loaded in 1,000 lb increments 

up to 16,000 lbs each, which is half of an axle load of the HS-20 design truck, located adjacent to 

a panel joint. Figure 2.3 shows the maximum differential panel displacements calculated for each 

alternative investigated with the left-most “Control” bar indicating no special joint treatment. 
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Figure 2.3. Maximum differential panel deflection for the laboratory bridge alternatives 

Based on Figure 2.3, the most promising deck modification (based on both performance and ease 

of construction) involves adding a layer of treated tongue and groove plywood on top of the 

timber deck surface prior to placement of the wearing surface, as illustrated conceptually in 

Figure 2.4. 

 

Figure 2.4. Plywood layout on the laboratory bridge 

4'

Glued-Laminated

Deck Panel Joint

7 deck panels @ 48" = 28'

4'x8' Tongue - Groove

Plywood
8'
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Differential panel deflection data from the plywood overlay alternative is presented in Figure 2.3 

as the data bar labeled Plywood. Compared to the control, the plywood overlay alternative 

reduced the differential panel deflections by more than 50 percent. In addition, this alternative is 

less expensive and a more construction-friendly alternative compared to the dowels alternative. 

Following the completion of the laboratory evaluation, the BEC designed a full-scale glued-

laminated timber girder bridge that would be the field test-bed for the details developed in the 

laboratory. The bridge was constructed in the summer of 2009 in Delaware County, Iowa on a 

substructure designed by the Delaware County Engineer. The design details and results of the 

first segment of this testing and investigation on this demonstration bridge are presented in the 

following chapters. 
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3. DEMONSTRATION BRIDGE 

3.1 Design 

Design of the demonstration bridge superstructure was completed following the Timber Bridges: 

Design, Construction, Inspection and Maintenance manual (Ritter 1990) and the American 

Association of State Highway and Transportation Officials (AASHTO) Load and Resistance 

Factor Design (LRFD) Bridge Design Specifications (AASHTO 1998) in supplement. The 

design live loading considered during design was the HS 20-44 vehicle. 

As mentioned previously, the demonstration bridge is a two-span, glued-laminated, timber girder 

bridge (see Figure 3.1). 

 

Figure 3.1. Completed demonstration bridge in service 

Both spans consist of six 38 ft long glued-laminated timber girders simply supported on 5 ft 

centers. The girders are Southern Yellow Pine (SYP), combination symbol 24F-V3, 10 1/2 in. by 

31 5/8 in., with 3/4 in. of camber at midspan. 

Figure 3.2 illustrates a plan view of the completed structure. Precast concrete abutment and pier 

caps provide 9 in. of girder bearing. Transverse glued-laminated timber deck panels are lag 

screwed to the girders as shown in Figure 3.3. Each span consists of two 3 ft by 5 1/8 in. thick 

deck panels and eight 4 ft by 5 1/8 in. thick deck panels, all made of SYP combination symbol 

Number 49. Figure 3.4 illustrates a cross section of Span 1; Span 2 is identical only without 

plywood on the deck panels. 
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Figure 3.3. Deck panel and lag screw layout, both spans 

 

 

Figure 3.4. Cross section of demonstration bridge, Span 1 

Note the plywood overlay alternative that was developed and tested in the laboratory had the 

plywood orientated with the long side of the plywood sheet running parallel with the span of the 

Glued-laminated Girder
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5
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bridge. However, during design of the demonstration bridge, the research team decided to change 

the orientation of the plywood by rotating the sheets 90 degrees as shown in Figure 3.5. 

 

Figure 3.5. Plan layout of plywood on demonstration bridge, Span 1 

In addition, the plywood used on the demonstration bridge was NOT tongue and groove as used 

on the laboratory bridge because tongue and groove was not available in the correct thickness of 

treated plywood (3/4 in. plywood was used on the laboratory bridge and 1 in. plywood was 

specified by the research team for the demonstration bridge). 

There are currently no codes, standards, or specifications that recommend or provide guidelines 

for the pattern of screws for attaching plywood to a timber bridge deck; therefore, 

recommendations were taken from guidelines typically used on the installation of roof sheathing 

and used as a baseline. 

The final pattern of screws utilized to affix the plywood to the deck is illustrated in Figure 3.6. 

To allow for a level deck surface after placement of the plywood, the Span 1 girder bearings 

were designed 1 in. lower in elevation than the Span 2 girder bearings. A glued-laminated timber 

guardrail was designed for this structure, and the county engineer specified a steel approach rail 

for the structure. 

8 panels @ 48" = 32'

38'
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Deck Panel Joint

1" Treated

T/G Plywood

3'
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Figure 3.6. Typical screw pattern for plywood attachment to timber deck 

3.2 Construction 

Construction of the demonstration bridge began in early spring of 2009. As mentioned 

previously, Delaware County provided the design of the pier and abutments and the BEC 

provided the design of the superstructure. 

The substructure consisted of concrete abutment caps on steel H-piles and a concrete pier on 

steel H-piles. Figure 3.7a shows the casting of the south abutment cap, pier, and H-pile for the 

north abutment (with the photo taken looking south). 

Once the pier and abutments were constructed, the glued-laminated girders were erected one 

span at a time. The girders were connected to the abutment and piers with steel angles, thru-

bolts, and a neoprene bearing pad. 

Figure 3.7b shows the placement of the girders on the south span bearings. Steel cross-bracing 

provided the lateral support for the girders at the supports and at midspan and were assembled 

prior to being installed between the girders. 

Once the girders were erected, anchored, and braced, the transverse glued-laminated deck panels 

were set in place and connected to the girders. Connection of the deck panels to the girders was 

provided by three lag screws per panel per girder, in field-drilled, countersunk holes. Figures 

3.7c and 3.7d illustrate the installation and attachment of the transverse deck panels to the 

girders. 

1"

1"

2"

1'

1'

Panel Joint

1"

8'
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a. Construction of abutments and pier b. Erection of south span girders 

    
c. Deck panel placement    d. Deck panel connection to girders 

    
e. Plywood and guardrail posts installed  f. Asphalt binder 

    
g. Placement of asphalt wearing course h. Completed demonstration bridge 

Figure 3.7. Construction of the demonstration bridge in Delaware County, Iowa 
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Following the installation of the glued-laminated timber deck panels, the plywood sheathing was 

attached to Span 1. As noted previously, Span 1 was designed so that the elevation of the top of 

the deck panels would be 1 in. lower than the top of the deck panels on Span 2; this elevation 

difference accounted for the thickness of the plywod sheathing and resulted in an even bridge 

surface at the joint between Spans 1 and 2. 

Following the placement of the plywood overlay alternative, the timber guardrail posts were 

installed on the entire structure. The rails were left off of the bridge temporarily to facilitate 

easier placement of the asphalt wearing surface (see Figure 3.7e). 
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4. TEST AND EVALUATION METHODOLOGY 

Field tests in 2009 included installing deflection transducers and strain transducers at midspan of 

both spans, as illustrated in Figure 4.1. 

 

Figure 4.1. Typical instrumentation setup 

Figure 4.2 shows the location of displacement and strain transducers for the 2009 test on Spans 1 

and 2, along with the direction of travel for the test truck (south for all 2009 tests). 

Figure 4.3 shows the location of displacement and strain transducers for the 2010 test on Spans 1 

and 2. The direction of travel for the test truck during the 2010 test was opposite for each span 

(i.e., the truck traveled north when testing Span 1 and south when testing Span 2). 

In 2009, global girder deflections were measured at midspan of each girder on both spans; 

however, global deflection of the girders was not recorded during the 2010 testing as the focus of 

testing was shifted to the performance of the deck panels. 

Differential panel deflections were determined in both 2009 and 2010. In 2009, differential 

deflections were recorded only at panel joints. In 2010, several of the panel joints instrumented 

in 2009 were instrumented again to check for any changes in behavior over the course of a year. 

Differential deflections were also calculated at girder/panel connections and at the mid-width of 

several panels where a plywood joint was present (see Figure 4.4). 
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a) Detail A, Near North Abutment 

 

 
b) Detail B, Near South Abutment 

Figure 4.4. Instrumentation layout near supports, demonstration bridge 2010 
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Strains were recorded at the top and bottom of each girder at midspan of both spans in 2009. For 

the 2010 testing, the number of girders instrumented was reduced to two per span (girders G4 

and G6), such that the 2009 and 2010 data could be directly compared. 

In all cases, one strain transducer was installed on the bottom of the girder and one 

approximately 3 in. below the top of the girder. Note that herein all global deflections and panel 

deflections relative to the girders are negative values as they are a measurement of downward 

deflection. Differential panel deflections are denoted as positive given they are only a magnitude 

value and direction has no significance. 

During live load testing, the bridge was loaded with a tandem axle dump truck with a total 

weight of 49,860 lbs and 52,320 lbs in 2009 and 2010, respectively. For all tests and all load 

cases, the load truck traveled across the bridge at a crawl speed. See Figure 4.5 for the 

positioning of the load truck in 2009 and Figure 4.6 for the positioning in 2010. 

 

Figure 4.5. Load cases for demonstration bridge 2009 testing (looking north) 
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Figure 4.6. Load cases for demonstration bridge 2010 testing (looking north) 
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5. TEST AND EVALUATION RESULTS 

5.1 Inspection 

5.1.1 One Month Post-Construction 

Approximately one month after construction of the demonstration bridge, the research team 

visually inspected and load tested the structure. Visual inspection of the substructure and 

superstructure components indicated that all components were in excellent condition. 

Girder bearings showed no signs of rotation; the deck panels were seated firmly on the top of the 

girders; and no signs of distress or deterioration were found in the hardware or timber members. 

Inspection of the wearing surface one month following construction of the bridge noted 

transverse cracking at the deck panel joints on Span 2, as illustrated in Figure 5.1, and less 

noticeable cracks on Span 1 over the deck panel joints. However, cracking over the plywood 

joints was also observed in Span 1. 

 

Figure 5.1. Transverse cracking evident one month post construction on Span 2 

5.1.2 Two Months Post-Construction 

One month after the initial inspection and testing, a follow-up inspection was completed. The 

substructure and superstructure were, again, in excellent condition and unchanged. The wearing 

surface condition was unchanged as well, with the exception of one observation. On Span 1, 

additional minor cracking in the wearing surface was noted at the deck panel joints, in addition 

to the cracking at the transverse plywood joints noted a month earlier, as shown in Figure 5.2. 

Transverse Cracks 
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a. Span 1      b. Span 2 

Figure 5.2. Transverse cracking two months post construction 

5.1.3 One Year Post-Construction 

Approximately one year after construction of the demonstration bridge, the research team 

conducted a second visual inspection and load test on the structure. Visual inspection of the 

substructure and superstructure components again indicated that these components were in 

excellent condition. Inspection of the asphalt wearing surface revealed cracking of the wearing 

surface at the deck panel joints on Span 2 (no plywood); on Span 1 (with plywood), visible 

cracking was evident at the transverse plywood joints as well as at the panel joints (see Figure 

5.3). 

 

Figure 5.3. Transverse cracking, Span 1, one year post construction 
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5.2 Live Load Test Results 

5.2.1 2009 Global Deflections 

In general, global girder deflection results from 2009 indicate that the global response of the 

structure satisfies the design criteria even when normalized to consider the difference in weight 

between the test vehicle and the design vehicle. 

For the truck located near the guardrails, such as Load Cases 1 and 5, the maximum girder 

deflection was approximately 0.37 in. at the exterior girder nearest the load. For Load Case 3 

with the load centered transversely on the structure, the maximum girder deflection was 

approximately 0.28 in. at an interior girder. 

Using the global girder deflections to approximate the distribution of loads, a comparison of 

symmetric load cases (i.e., Load Cases 1 and 5 and Load Cases 2 and 4) indicated that the 

transverse load distribution was also symmetric for both spans, as expected (see Figure 5.4). 

 

Figure 5.4. Peak girder deflections for Load Cases 1 through 5, 2009 data 

5.2.2 2009 and 2010 Girder Strains 

The peak tensile strain in the girders for both the 2009 and 2010 tests was approximately 250 
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elasticity of 1800 ksi for the glued-laminated timber girders. This is well below the design 

bending stress of approximately 2.2 ksi for an HS20 truck. 

These peak strains typically occurred in the exterior girders when the load truck was positioned 

near the curb on either side. With the load truck centered on the bridge (Load Case 3 in Figure 

4.5 and 4.6), the transverse distribution of strain was symmetric and resulted in peak strains at 

the center girders of approximately 175 microstrain as illustrated in Figures 5.5 and 5.6. 

 

Figure 5.5. Span 1 midspan girder strains, 2009 
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Figure 5.6. Span 2 midspan girder strains, 2009 

A comparison of the top and bottom strain from a girder under the load truck for any given load 

case indicates that the transverse deck panels and the girders did not act compositely as expected; 

see Figure 5.7 for a typical strain plot from 2010. 
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Figure 5.7. Top and bottom girder strains, Span 1, G6, 2010 

 

5.2.3 2009 Differential Panel Deflections 

Differential panel deflections were determined at two locations on each span in 2009 (refer to 

Figure 4.2). One location was centered between the two mid-width girders at panel joint PJ6 and 

the other location was centered between the exterior two girders on the west side of the structure 

at PJ6. 

Data reduction after the 2009 testing revealed that the deflection data from displacement 

transducer 70370 on Span 2, located between the two center girders, was erratic and unreliable. 

This limited the amount of useful data available to the location between the exterior two girders. 

The differential panel deflection data calculated from this location on Span 1 (plywood) and 

Span 2 for Load Case 1 (which was the worst case scenario with a wheel line directly over the 

instrument location) are illustrated in Figure 5.8.  
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Figure 5.8. Comparison of differential panel deflections for Span 1 and Span 2, 2009 data 

The data in Figure 5.8 indicate larger differential panel deflections on Span 1, the span with 

plywood, compared to Span 2, the span without plywood. This same observed behavior is 

evident in the other load cases, as well, and may be a result of the following factors: 1) the 

difference in the location of the measurement of the relative deflection longitudinally with 

respect to load direction on the two spans, 2) changes made to the plywood orientation, or 3) 

other factors or a combination of these factors. 

5.2.4 2010 Panel Deflections, Global and Differential 

In 2010, much of the focus of the test was directed toward obtaining a better understanding of the 

differential panel performance. To investigate the potential change in differential panel 

deflection performance over time, differential panel deflection was again recorded midway 

between the two center girders on Span 1 at panel joint PJ6, as was done in 2009. 

Figure 5.9 shows the differential panel deflection data from 2009 and 2010 for location PJ6 

(which was midway between the middle girders). The data suggest that some reduction in the 

differential panel deflection magnitude has taken place over the one-year time period. However, 

with the cracking of the asphalt wearing surface still prevalent, the significance of this decrease 

is unknown. 
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Figure 5.9. PJ6 differential panel deflection comparison, 2009-2010 

The focus from here is on data from the 2010 load testing, only, with specific interest directed 

toward Load Case 6 and the gages located between girders G3 and G4 (Figures 4.4a, 4.4b, and 

4.6) directly under a wheel line. In general, differential panel deflections were small in 

magnitude and quite similar for both spans. 

Figure 5.10 shows the differential panel deflections between G3 and G4 at PJ5 for LC 6 and 

indicates that the differential panel deflections for the demonstration bridge are well below the 

suggested limit of 0.10 in. However, with the deflection magnitudes of Span 1 and Span 2 being 

so similar, it also suggests that the plywood on Span 1 has little influence on the magnitude of 

the differential panel deflections. Similar findings were found at panel joint PJ4, as shown Figure 

5.11. 

In an attempt to better assess the displacement characteristics of the transverse deck panels, a 

cluster of gages was installed across two panel joints (PJ1 and PJ2) near the abutments of each 

span (Figure 4.4). Each triangle in Figure 4.4 represents a location where global displacement of 

the deck panel was recorded. Differential panel deflections were then calculated by finding the 

difference between two adjacent displacements, where relevant. 

Overall, the performance of the deck panels near the abutment on both spans was very similar, 

even with the presence of the plywood on Span 1. Differential panel deflections calculated at PJ1 

and PJ2 are similar in magnitude for both spans for LC6; similar results were found at these 

locations for the other load cases as well. Furthermore, if the displacements of each gage of the 

cluster are plotted for various positions of the truck for both tests, significant similarities are 

evident. 
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Figure 5.10. PJ5, LC 6, differential panel deflections between G3 and G4 

 

Figure 5.11. PJ4, LC 6, differential panel deflections between G3 and G4 

Figure 5.12 shows the global displacements measured at each gage in the cluster for each of the 

six locations (A-F) detailed in Figure 4.4. Figure 5.12a represents Span 1 and Figure 5.12b 

represents Span 2. 
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a.  Span 1 gage cluster displacements, Detail B 

 
b. Span 2 gage cluster displacements, Detail A 

Figure 5.12. Global displacement of gage clusters, Detail A and B 
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Moving left to right across both graphs in Figure 5.12 provides a snapshot of the displacement of 

the cluster of gages as the load truck travels across the section. Not only is the pattern of the 

displacements similar for both spans at each location of the truck, but the magnitudes are similar 

as well. There appears to be little to no influence on the global panel deflection or the differential 

panel joint deflections from the presence of the plywood. 

  



 

32 

6. SUMMARY AND CONCLUSIONS 

Previous field test results by the BEC in 2004 suggested that differential panel deflections were 

one potential cause of the premature cracking and deterioration of the asphalt wearing surfaces 

typically found on glued-laminated timber girder bridges. Of the bridges tested and inspected, in 

the majority of the cases it was found that those bridges that tested with relatively small 

differential panel deflections also had asphalt wearing surfaces with the least amount of 

deterioration. 

Subsequently, a laboratory research project was conducted on a full scale glued-laminated timber 

girder bridge to develop decking alternatives that would reduce or minimize the magnitude of 

differential panel deflections. The decking alternative developed in the laboratory testing that 

performed the best was the use of plywood decking over the glued-laminated deck. This 

alternative was then implemented on a field demonstration bridge constructed by Delaware 

County and the BEC to investigate its effectiveness on a bridge with an asphalt wearing surface. 

Preliminary field load test results from a few short months after the bridge being placed in 

service indicated that the plywood decking alternative on Span 1 did not reduce the magnitude of 

differential panel deflections compared to the control span, Span 2. 

Inspections of the asphalt wearing surface several months later indicated transverse cracking in 

the asphalt directly above the deck panel joints on both spans, as well as along the transverse 

plywood joints. 

One year post-construction, cracking appears to be slightly more evident that the previous year, 

but no new cracking has developed and the increase in deterioration is minimal. Differences in 

the style and orientation of the plywood on the demonstration bridge from that used in the 

laboratory project are potential factors, along with asphalt mix design, among others, 

contributing to the observed behaviors. 
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7. RECOMMENDATIONS 

This research is ongoing and the research team is looking into the following areas in hopes of 

improving the effectiveness and long term use of asphalt wearing surfaces on glued-laminated 

timber deck bridges: 

1. Perform follow-up field tests on the bridge to better assess and understand the 

performance 

2. Consider reorienting the plywood to mimic what was tested on the laboratory 

bridge 

3. If available, utilize tongue and groove treated plywood 

4. Design an asphalt deck overlay mix design, and/or asphalt overlay “system,” that 

is optimum for this application 

Currently, work is being completed on the redesign and evaluation of the asphalt mix design 

being used, and other asphalt overlay “systems” are being developed for implementation and 

evaluation this spring. 
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