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EXECUTIVE SUMMARY 

The importance of accelerated bridge construction (ABC) technologies has been realized by the 

Federal Highway Administration (FHWA) and the Iowa Department of Transportation (DOT) 

Office of Bridges and Structures. This project, which involved the construction of a two-lane 

single-span precast box girder bridge, is another in a series of ABC bridge projects undertaken 

by the Iowa DOT. 

Buena Vista County, Iowa, with the assistance of the Iowa DOT and the Bridge Engineering 

Center (BEC) at Iowa State University, constructed this bridge using rapid construction 

techniques. The design involved the use of precast, pretensioned components for the bridge 

superstructure, substructure, and backwalls. 

The successful implementation of this approach may have far-reaching implications in Iowa 

where proven rapid construction techniques could result in significant cost reductions. This 

application and demonstration represents an important step in the development and advancement 

of these techniques in Iowa as well as nationwide. 

Prior funding for the design and construction of this bridge (including materials) was obtained 

through the FHWA Innovative Bridge Research and Deployment (IBRD) Program. The Iowa 

Highway Research Board (IHRB) provided additional funding to test and evaluate the bridge. 

This project directly addresses the IBRD goal of demonstrating (and documenting) the 

effectiveness of innovative materials and construction techniques for the construction of new 

bridge structures. The objectives of this project included the following: 

 Assist the Iowa DOT and Iowa county engineers in demonstrating the benefits of 

precast, post-tensioned bridge components through this project and provide an 

opportunity for them to design and construct more cost-effective, durable bridges 

 Perform testing and evaluation of precast components for the bridge project to 

assess overall design, construction, and structural performance 

It took only five calendar days to remove the existing bridge and replace it with the new precast 

bridge; the approaches that were completed by county crews took an additional 14 days. Precast 

elements in the bridge included precast cap beams, precast backwalls, and precast/prestressed 

box girders. Construction of the bridge, as well as fabrication of the various precast elements, 

were closely observed. 

Upon completion of the bridge in 2009, it was instrumented and load tested using two county 

trucks loaded with gravel. Approximately one year later, instrumentation was re-installed and the 

bridge was tested a second time to determine any changes in its performance and/or behavior in 

that time. 

As expected, the bridge performed well and there was essentially no change in its behavior in the 

time period between the two tests. 



 



 

1 

1. GENERAL INFORMATION 

1.1 Introduction 

Interest in constructing bridges that last longer, are less expensive, and take less time to construct 

has increased. This is known as the “get in, get out, and stay out” philosophy. The idea is to 

increase the cost-effectiveness of bridges by increasing their durability (i.e., useful life) and by 

minimizing disruptions to the traveling public. Clearly, there is much to learn about how to best 

accomplish this nationally-important goal. 

Although there may be many ways to achieve this goal, the ideas discussed most commonly at 

this time include using some form of precast, segmental construction. This type of construction 

has the advantage that the individual components are manufactured off-site where improved 

quality is usually achieved. Furthermore, because much of the work is completed away from the 

bridge site, it is anticipated that user disruptions are minimized given the amount of labor-

intensive on-site work that is reduced, leading to reduced on-site construction time. 

Buena Vista County, Iowa, with the assistance of the Iowa Department of Transportation (DOT) 

and the Bridge Engineering Center (BEC) at Iowa State University, constructed a single-span 

bridge using rapid construction techniques. The design concept used in this bridge involved the 

use of precast, posttensioned components for the bridge substructure, superstructure, and 

backwalls. This application and demonstration represents another important step in the 

development and advancement of these techniques in Iowa as well as nationwide. 

Prior funding for the design and construction (which included materials) of this project was 

obtained through the Innovative Bridge Research and Deployment (IBRD) Program sponsored 

by the Federal Highway Administration (FHWA). One requirement of the IBRD Program is that 

the resulting bridge be tested and evaluated. To meet the obligations of the previously-obtained 

IBRC funding, supplemental funding was obtained from the Iowa Highway Research Board 

(IHRB). 

The successful implementation of this approach has far reaching implications in Iowa, as there 

are many instances where proven rapid construction techniques could result in significant 

reductions in costs and construction time. This project directly addresses the IBRD goal of 

demonstrating (and documenting) the effectiveness of innovative materials and construction 

techniques for new bridge structures. 

This report documents the Buena Vista County (BVC) precast bridge including its fabrication, 

construction, and field testing. The BVC precast bridge is a longitudinally-pretensioned, two-

lane, single-span box girder bridge that spans 50 ft center to center of supports. 
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1.2 Background 

The box girder design used for the BVC Bridge is based on designs, used by the Illinois DOT 

(IDOT), which are either 36 in. or 48 in. wide and which vary in depth. Shallower beams contain 

circular voids and welded wire fabric for the shear reinforcement. Deeper beams contain 

rectangular voids and the shear reinforcement consists of deformed bars. The deeper beams are 

usually limited to the 36 in. width to restrict the weight and size of the girders. This allows for 

easy transportation to the project site and placement with a mobile crane (Hawkins and Fuentes 

2002). 

Precast prestressed concrete box girder bridges were widely used for Illinois state highways 

during the 1960s and 1970s; however, use of these bridges has been discontinued for their state 

highways due to corrosion problems. About 10 percent of prestressed box girder bridges 

inventoried on Illinois state highways had experienced significant corrosion, leading to a 

decreased bridge rating and the installment of load restrictions. However, because these bridges 

are economical to build, they are still widely used on county roads throughout Illinois (Hawkins 

and Fuentes 2002). 

According to published literature, differential deflections between adjacent girders allowed the 

development of reflective cracks along the longitudinal joint between girders. Corrosion of the 

prestressing strands resulted from salt-laden water seeping through the cracked joint and into the 

girder. County engineers believe a lack of transverse load distribution between adjacent girders is 

the cause for the longitudinal cracking (Hawkins and Fuentes 2003). 

Two solutions used by IDOT to resolve this problem include post-tensioning the girders together 

transversely and providing a composite cast-in-place concrete deck. Both solutions have worked 

satisfactorily, but add to the cost of construction considerably, do not ensure that corrosion will 

be prevented, and make replacing damaged girders more difficult. These modifications are also 

not reasonable solutions for retrofitting bridges currently in service (Hawkins and Fuentes 2003). 

The BVC box beam bridge is the second box beam bridge constructed in Iowa. The first one, 

constructed in Madison County in 2007 (Phares et al. 2009), is 46 ft 8 in. center to center of 

supports. It is 24 ft 1 in. wide and consists of six box beams (4 ft wide and 2 ft 3 in. deep), each 

of which has a rectangular void. 

1.3 Objectives and Scope 

The overall objective of this project was to evaluate the BVC precast bridge components and 

assess the overall design, construction, and structural performance. To accomplish the objectives, 

the project included the following tasks: 

 Design the bridge substructure elements (piling, precast abutment caps, and 

precast backwalls) and superstructure elements (box beams). This task was 

completed by the Iowa DOT Office of Bridges and Structures. 
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 Document fabrication of the various bridge elements and actual construction of 

the bridge. 

 Develop a monitoring plan to evaluate the structural performance of the bridges as 

well as the individual box beam elements. 

 Evaluate the structural performance of the bridge by using the monitoring plan 

developed in the earlier task and subjecting the bridge to live load tests. One test 

was completed when the construction was completed and a second test was 

undertaken about a year later. 

 The final task of the project is the preparation and submission of a final report that 

presents the results of the various project tasks. 

1.4 Bridge Concept 

The BVC box beam bridge was another step in developing an accelerated bridge construction 

program in Iowa. This box beam bridge was designed by Stuart Nielsen of the Iowa DOT Office 

of Bridges and Structures for HL-93 loading using the 2007 Load and Resistance Factor Design 

(LRFD) specifications. 

The BVC Bridge is a nominal 50 ft long and 28 ft wide. (A complete set of plans for this bridge 

is included in Appendix A.) Several three-dimensional (3D) images were also created by Nielsen 

to assist the contractor in visualizing the accelerated bridge construction process. An overall 

view of the concept model of the bridge is shown in Figure 1.1. 

 

Figure 1.1. Concept model showing final bridge 
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Abutments were a combination of piling driven in the field (5 for each abutment) and precast 

abutment caps (3 ft x 3 ft x 28 ft), which were cast with five voids (21 in. in diameter to 

accommodate the piling (Figure 1.2a). The combination of the piling and precast abutment cap is 

shown in Figure 1.2b. 

 

 

a.) Precast abutment b.) Precast abutment on piles 

Figure 1.2. Schematic of precast abutment cap 

Precast abutment caps were used on two previous accelerated bridge construction projects—one 

in Madison County (Phares et al. 2009) and one in Boone County (Klaiber et al. 2009). As a 

result of these successful applications, they were used on this bridge. This is, however, the first 

accelerated bridge project in which precast backwalls were used (Figure 1.3). 

 

Figure 1.3. Precast backwall and abutment 

As shown in Figure 1.3, the precast backwall units were attached to the abutment caps with 

dowels. The backwalls were actually placed after the seven precast box beams (Figure 1.4) were 

set. 
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Figure 1.4. Voided slab precast deck beams 

The box beam units (4 ft x 1 ft 9 in x 50 ft 10 in) were connected to the precast abutments with 

1.5 in diameter dowels; they were connected transversely at the third points with 1 in. diameter 

thread rods. 

A schematic of the various precast elements assembled and the guardrail posts and piling are 

shown in Figure 1.5. 

 

Figure 1.5. Guardrail posts 

The guardrail posts were attached to the exterior box beams using anchor bolts that had been cast 

in these units. In this report, the terms box beam, deck beam, and simple beam have been used to 

describe the flexural elements. 
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2. BRIDGE DESCRIPTION 

The box beam bridge is located on a low-volume road (640th Street) in Buena Vista County 

close to Storm Lake as shown in Figure 2.1. 

 

Figure 2.1. Location of Buena Vista County precast bridge 

The new bridge replaced a posted timber bridge (26 ft 8 in. long by ~ 18 ft wide) that was 

constructed in 1936. The original bridge is shown in Figure 2.2. 

 

a. Elevation     b. End view 

Figure 2.2. Original bridge at demonstration site 

Buena Vista Bridge 
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The new bridge, shown in Figure 2.3, has precast abutment caps, backwalls, and box beams; and, 

this single-span bridge has a span length of 50 ft center to center of supports. 

 

a. Elevation     b. End view 

Figure 2.3. New Buena Vista County box beam bridge 

Overall dimensions of the bridge (shown in Figure 2.4) are out-to-out deck width of 28 ft and 

out-to-out length of 50 ft 10 in. 
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a. Plan view 

 
b. Section A-A 

Figure 2.4. Plan and section of bridge 

As previously mentioned, this bridge had several precast elements: two abutment caps, four 

backwall segments, and seven precast, prestressed box beams. Details of the abutment backwalls 

are shown in Figure 2.5. Each backwall was comprised of two precast segments. 
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a. Elevation view 

 

b. Plan view 

 

c. Wing wall segments 

Figure 2.5. Abutment backwall details 

Abutment caps details are shown in Figure 2.6. As shown in Figure 2.6a, the precast abutment 

cap is 26 ft 2 in long, 3 ft wide, and varies in depth from 3 ft at the ends to 3 ft 2 7/8 in. deep at 

the centerline. Voids in the caps, created by 21 in. diameter corrugated metal pipe (CMP), are to 

accommodate the piling. 

Abutment cap reinforcement details are shown in Figures 2.6b and 2.6c and one of the caps is 

shown in Figure 2.6d. As Figure 2.6b shows, the primarily longitudinal reinforcement is eight #8 

bars, and #5 bars are used for the shear reinforcement. 
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a. Overall dimensions 

 

b. Reinforcement details – side view 

 

c. Reinforcement details – top view 

 

d. Abutment cap 

Figure 2.6. Abutment cap details 
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Details on the seven box beams in the bridge are shown in Figures 2.7 and 2.8. Overall 

dimensions of the box beams, as shown in Figure 2.7, are 50 ft 10 in. long, 4 ft wide, and 21 in. 

deep. Each unit has three circular voids—two 12 in. in diameter and one 10 in. in diameter. 

As shown in Figure 2.7a, the box beams were solid concrete 1 ft 3 in. from each end and for 8 in. 

around the two transverse tie regions. The 12 in. and 10 in. diameter voids created top and 

bottom slab thicknesses varying between 4 1/2 and 5 1/2 in., and a total nominal web thickness 

of 14 in., which is divided among the four webs that vary in thickness due to the circular voids. 

Shear keys (4 in. x 3/4 in.) in the vertical faces of the box girders are shown in Figure 2.7c. As 

the purpose of the shear keys is to transfer a portion of the load between adjustment units, only 

interior beam units have shear keys in both vertical faces. The two exterior beams only have 

shear keys on their interior faces. However, exterior units do have inserts in the exterior face for 

attachment of the guardrails. 

Reinforcement details for the box girders are shown in Figure 2.8. One-half inch diameter, 

seven-wire, uncoated, low-relaxation, prestressing strand plus mild #4 (Grade 60) reinforcing 

bars were used for the flexural reinforcement. Twenty-eight strands were in the bottom of the 

slab and two strands were in the top of the slab; and, a total initial prestress of 900.5 kips was 

applied to the straight strands. 

Shear reinforcement consisted of overlapping #4 U-shaped bars. These stirrups were on 6 in. 

centers in the region 3 ft from the beam ends, then on 9 in. centers for the next 6 ft, and then on 

12 in. centers in the remaining portion of the beams, except in the vicinity of the transverse tie 

where the spacing was reduced to 6 in. (see Figures 2.8a and 2.8b). 

The two exterior box beams were fabricated with 1 in. diameter anchor bolts on their exterior 

sides for connecting the eight guardrail posts. The posts were spaced uniformly on 6 ft 3 in. 

centers as shown in Figure 2.9. 

Two anchor bolts (spaced 2 3/4 in. off the post centerline) were required for attaching each post. 

Guardrail posts (3 ft 4 in. long) were fabricated from TS 6 x 3 x 1/4 in. sections; a 12 gauge thrie 

beam was used for the guardrail. Each post is connected to a 3/4 in. thick steel base plate (8 in. x 

7 in.) with a 3/4 in. diameter A325 bolt and a 3/8 in. diameter bolt. This assembly was connected 

to the bridge using the two 1 in. diameter anchor bolts described previously. 
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a. Profile view 

 
b. Plan view 

 
c. Section A-A 

Figure 2.7. Box beam dimensions 
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a. Top slab reinforcement 

 

b. Profile view of reinforcing layout 

 
c. Section A-A 

Figure 2.8. Box beam details 
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a.  Plan view of guardrail post spacing 

 
b. Profile view of guardrail and connection 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

c. Base plate     d. Bearing plate 

 

Figure 2.9. Box beam guardrail system 
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e. Guardrail system 

Figure 2.9. Continued 

2.1 Fabrication 

Initial casting began July 21, 2009 and was completed August 25, 2009. Two abutment caps, 

four wing wall sections, and seven box girders were cast. The target concrete strengths, as well 

as the actual strengths obtained, are shown in Table 2.1. 

Table 2.1. Precast concrete strengths 

Element 

Concrete Strength (psi) 

Target Obtained 

Abutment 1 5,000 5,800 

Abutment 2 5,000 6,200 

Backwalls  5,000 6,290 (avg) 

Box Beams (at release) 6,000 6,225 (avg) 

Box Beams (28 day) 7,000 7,710 (avg) 

 

As may be observed, concrete strengths in all elements exceeded the design target values. For 

convenience, box girders were cast two at a time in one prestressing bed with bulkheads 

separating the two girders. Because seven box girders were required for the project, only one 

girder was cast in one of the pours. Figure 2.10 shows the top reinforcement in the box beams. 
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a. Overall view 

 

b. Placement of concrete in box beam forms 

Figure 2.10. Box beam fabrication 

As illustrated, the corner #4 bars, as well as the corner #4 bars in the bottom layer, were replaced 

with 1/2 in. diameter prestressing strand tensioned to 3,000 lbs. The reason for replacing the four 

#4 bars (shown in Figure 2.8c) was to create more rigidity at the corners to simplify tying the 

shear reinforcement. Thus, reinforcement in the top layer was four prestressing strands (two 

fully-stressed and two stressed to 3,000 lbs) and four #4 bars. 
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Also shown in this figure are the Styrofoam cylinders used to create the voids in the box girders. 

Hold-downs to keep the Styrofoam from floating are shown in Figure 2.10a. As shown in Figure 

2.10b, the Styrofoam cylinders were terminated 1 ft 3 in. from the beam ends to create the solid 

beam ends. Two other items, which can be seen in Figure 2.10b, are the guardrail post anchor 

rods and the cable-lifting loops, which are cut off after the box beams are placed in the field. 

Backwall elements were cast one at a time; formwork, as well as the reinforcement for these 

elements, are shown in Figure 2.11. For installation, each of the backwall panels had three cable 

lifting loops and two screw inserts for additional lifting points. 

 

Figure 2.11. Backwall formwork 

The two abutment caps were also cast one at a time. Figure 2.12 shows the abutment cap form 

work, one of the two required cable lifting loops, reinforcement, and two of the five pieces of 

CMP, required to create voids for the piling. 
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Figure 2.12. Abutment cap forms 

The dates the various elements were cast are shown in Table 2.2, as well as the release times for 

the seven box beams. 

Table 2.2. Precast element cast dates 

Element Cast Date (2009) Release Time 

Box Beams 2 and 3 August 11 15 hours 

Box Beams 4 and 5 August 14 2.5 days* 

Box Beam 6 August 18 15.8 hours 

Box Beams 1 and 7 August 25 15.5 hours 

Backwall 1 July 27 N/A 

Backwall 2 July 28 N/A 

Backwall 3 July 29 N/A 

Backwall 4 July 30 N/A 

Abutment Cap 1 July 21 N/A 

Abutment Cap 2 July 23 N/A 
*Poured on Friday and released on Monday 

N/A = Not applicable as elements not prestressed 

 

Concrete strengths in the box beams at release were presented in Table 2.1. Given the elements 

were cast in the summer, no additional heat was required for curing. 

2.2 Preconstruction-Plant Assembly 

Prior to being shipped to the bridge site, the individual precast elements were inspected and 

partially assembled in the precast yard to ensure the elements fit together properly. This step also 

gave the contractor, who was new to this type of construction, a chance to review the various 

elements and ask questions about the construction sequence. Images of the precast abutments in 

the precast yard are shown in Figure 2.13. 
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a. Overall view of precast abutment        b.)  Precast abutment pile connection openings 

Figure 2.13. Prefabricated abutments in precast yard 

The fit between two adjacent box beams is shown in Figure 2.14. In this setup, the trueness of 

the elements, as well as the alignment of the transverse tie assembly, could be checked. 

 

Figure 2.14. Voided precast beams 

Figure 2.15 shows one of the backwall segments positioned on the precast abutment cap. The 

four backwall segments were cast “flat” and lifted out of the forms using the three lift cables 

shown in this figure. 

To lift the backwall segments into place, lifting hooks were attached with bolts screwed into 

inserts in the top of the backwall elements (Figure 2.15). After the 13 elements were inspected 

and partial assembly was completed, these were stored at the precast yard until needed at the 

bridge site. 

Construction of the bridge in the field is presented in the next section of this chapter. 
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Figure 2.15. Precast backwall and abutment 

2.3 Field Construction Observation 

The road on which the bridge was located was closed September 10, 2009 and the new bridge 

was completed September 14, 2009. Dirt work was completed for the approaches to the new 

bridge by county crews and required 14 days to complete. If necessary to open the road sooner, 

which wasn’t the case with this project, the dirt work could have been bid out and completed 

quicker, reducing the number of days the bridge was closed. 

Images showing the various phases of constructing the bridge are shown in Figures 2.16 through 

2.19. 

It took essentially one day to remove the existing bridge at the site. As shown in Figure 2.16a, 

the superstructure has been removed and all that remains at the east end of the bridge is the 

abutment and piling from the previous bridge at the site. 

Templates used to position the five piles correctly in each abutment are shown in Figure 2.16b. 

When driving the piles, close attention had to be paid to their location and tolerances. Pile heads 

could not deviate from the specified locations by more than 3 in. in any direction, so that the 

precast pile cap could be installed easily. 

Figure 2.16c shows the driving of the second pile in the west abutment, while Figure 2.16d 

shows all west abutment piling is in place and cut to the desired length. Driving of the final pile 

in the east abutment is shown in Figure 2.16e; also shown in this figure is the installed filter 

fabric. 

It took only one day (September 11, 2009) to drive all 10 piles required for the bridge 

substructure. Arrival of the east pile cap is shown in Figure 2.16f; the installed abutment cap is 

shown in Figure 2.16g. 
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a. Existing east abutment    b. Piling templates 

             
        c. Pile driving in west abutment     d. Piling completed in west abutment 

         
        e. Driving piling in east abutment  f. East abutment cap arriving at site

         
       g. East abutment cap in place        h. Installing west abutment cap 

Figure 2.16. Abutment construction 
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The same process was repeated for installation of the west abutment cap, which is shown being 

positioned in Figure 2.16h. After installation of the two abutment caps, concrete was placed in 

the abutment voids on September 12, 2009 and allowed to cure over the weekend. 

The superstructure and guardrail installations (except for approach guardrails) were completed in 

one day (September 14, 2009). The order of the precast beam placement is shown in Figure 2.17; 

as can be seen in the middle box beam (Bm #4) was placed first and the two exterior beams 

(Bms #1 and #7) were placed last. 

 

Figure 2.17. Order of box beam placement 

Erection times for the various beams are presented in Table 2.3. Total time required for lifting 

beams from the seven trucks and placing them on the abutments was slightly less than an hour. 

Table 2.3. Box beam erection times 

Truck 

Time Truck 

Arrived at Site 

Beam Lifted  

from Truck 

Beam Placed on 

Abutments 

Time Required  

for Placement 

1 7:35 a.m. 8:10 a.m. 8:32 a.m. 22 min 

2 8:23 a.m. 8:35 a.m. 8:40 a.m. 5 min 

3 9:12 a.m. 9:35 a.m. 9:40 a.m. 5 min 

4 9:36 a.m. 9:50 a.m. 9:55 a.m. 5 min 

5 9:37 a.m. 10:01 a.m. 10:05 a.m. 4 min 

6 10:05 a.m. 10:15 a.m. 10:19 a.m. 4 min 

7 11:11 a.m. 11:19 a.m. 11:25 a.m. 6 min 

    Total = 51 min 

 

Total time (from when the first truck arrived until the last beam was placed) was slightly less 

than four hours. The additional time was due to a problem with the depth of Bm #5 that delayed 

placement of Bm #3 and Truck #7 getting lost between the precast yard and the project site. 

Two backwall sections were transported on Truck #4 and two on Truck #5. Upon arrival at the 

project site, they were unloaded and placed on dunnage until installation. Images of the various 

steps completed during the construction of the superstructure are shown in Figure 2.18. Details 

of the steps are described briefly in Table 2.4. 

DB1 DB2 DB3 DB4 DB5 DB6 DB7

7 5 3 1 2 4 6

Order of Deck Beam Placement

N
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a. Both abutments in place 

 
c. Positioning of Beam #4 

 
b. Unloading of Beam #4 

 
d. Setting of Beam #5 

Figure 2.18. Construction of the superstructure 
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e. Difference in beam thickness 

 
g. Positioning of exterior Beam #7 

 
f. Positioning of Beam #3 

 
h. Tie rod block out

Figure 2.18. Continued 
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i. Tightening interior tie rods 

 
k. Cutting off beam lift cables 

 
j. Drill hole in abutment cap for new anchor rods 

 
l. Placement of non-shrink grout

Figure 2.18. Continued 
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Table 2.4. Key to images in Figure 2.18 and the various phases of bridge construction 

Image Description 

a 

Both the east and west abutment are ready for placement of the seven box beams. Some 

of the neoprene pads are in place as are the dowel ends for connecting the backwall 

segments to the abutment cap. In the background, the first truck with Bm #4 arrives. 

b 
Bm #4 is being lifted by two cranes and moved into position to be placed on the 

abutments. 

c 
Bm #4 is being placed (in the correct location longitudinally and transversely) on the 

neoprene pads. 

d Bm #5 is being put in place. 

e 

Due to a fabrication error, the north edge of Bm #5 was approximately 3/4 in. deeper 

than the desired depth of 21 in. Placement of the remaining beams was stopped until 

the county engineer reviewed this problem. Given this bridge was on a low-speed, low-

volume road, the variation would not cause problems and construction continued. 

Except for this edge of Bm #5 all other beams were the desired 21 in. in depth. 

f Bm #3 has been lifted and is being positioned to place next to Bm #5. 

g 
Setting of the south exterior Bm #7 showing the extension of the anchor rods for 

attachment of the guardrail posts. 

h 

Voids in adjacent box beams (17 ft 1 in. from each end) created space so the coupling 

nuts required for the transverse tie assembly could be tightened. The exterior top 

prestressing tendon that is exposed will be covered when the grout between the 

adjacent units is placed and this void is filled. 

i 
Tightening of the transverse tie rods through the voids previously described in Figure 

2.18h. 

j 

Workers using an impact rotary drill to create a 1 1/2 in. diameter hole 12 in. into the 

abutment cap. After the transverse tie assembly has been tightened, 1 1/2 in. smooth 

dowels (2 ft  3 in. long) will be epoxied in these holes. 

k 

Prior to grouting the various joints and voids in the bridge, the lifting loops were cut off 

slightly below the surface of the concrete deck. These regions were then filled with 

grout. Images of the several steps required for installing the backwalls and guardrails 

are shown in Figure 2.19 with a brief description of the construction in Table 2.5. 

l 

Workers shown placing non-shrink, non- metallic grout (NS Grout manufactured by 

The Euclid Chemical Company) in the joints between the adjacent beams and the 

pockets required for tightening the transverse tie assembly. Prior to placement of the 

grout, polystyrene backer rod was placed in the joint where required. Note the joint 

between Beams 6 and 7 has been completed and has been covered with wet burlap for 

curing. 

 

Details on the installation of the backwalls and guardrails are presented in Figure 2.19 and Table 

2.5. 
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a. Removing lifting loops on backwall segments 

 
c. Placement of a backwall segment 

 
b. Placing grout bed for backwall segment 

 
d. Placement of second backwall segment at west end

Figure 2.19. Installation of precast backwalls and guardrail system
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e. Grouting of various voids and joints 

 
g. Installation of guardrail post on south side of bridge 

 
f. Completing north guardrail 

 
h. “Completed” bridge

Figure 2.19 Continued
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Table 2.5. Key to images in Figure 2.19 and the various phases of backwall and guardrail 

construction 

Image Description 

a 

Prior to placing the backwall segments on the abutments, the lifting loops used in 

removing the elements from the forms, placing them on the trucks for shipping, etc., 

were removed. The segments were then moved using lifting hooks, screwed into 

inserts precast into their top surface. 

b 

As may be seen, for leveling the backwall segments and connecting them to the 

abutment cap, an epoxy grout bed was first placed. Prior to this step, the backwall 

segments were dry-fitted on the abutment dowels to ensure a proper fit. 

c 
One of the two backwall segments required at each end of the bridge is being placed 

on the epoxy grout bed. 

d 

After placing the first backwall segment, the second one was set on the epoxy grout 

bed. Similar to the first one, it also was dry-fitted to make sure of it fitting correctly 

with the other backwall segment and the abutment dowels. 

e 

After the four backwall segments were placed, the various voids (between the box 

beams, in the backwall wall segments, between the backwall segments and box 

beams, etc.) were grouted and cured. 

f 

After completing the superstructure, the guardrails (the portion attached to the box 

beams) were installed. This image shows installation of the last section of the 

guardrail on the north side of the bridge. 

g Installation of the guardrail posts on the south side of the bridge. 

h 
The bridge was essentially complete on September 24, 2009 except for the required 

approaches and remaining portions of the guardrails. 

 

A Sony internet-based web-camera was installed relatively close to the northeast corner of the 

bridge site as shown in Figure 2.20a. A close-up of the camera is shown in Figure 2.20b. 

This camera was installed on September 8, 2009 and recorded an image of the construction site 

every 5 minutes until September 15, 2009 when the camera was removed. 

Images during this time period have been merged and provide a continuous record of the 

removal of the original bridge and construction of the new one. This time-lapse record may be 

obtained from the researchers. 
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a. Camera installation 

 
b. Time-lapse camera 

Figure 2.20. Time-lapse camera at bridge site during bridge construction 
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3. FIELD TESTING 

Field testing of the BVC precast bridge took place in 2009 (September 14) and 2010 (October 

19) so that any behavior changes in this 13 month period could be quantified. In the following 

sections, instrumentation and the test methodology used are presented. In the next chapter, 

results from the two tests are presented. 

3.1. Instrumentation 

The BEC in conjunction with BVC and the Iowa DOT developed the monitoring and evaluation 

plan for the bridge. The plan entailed investigating the behavior of the bridge after its completion 

and its behavior approximately one year later. Instrumentation was placed at important locations 

to measure overall deflections, relative deflections between adjacent box beams, and strains. The 

location of the instrumentation used for the two tests is shown in Figure 3.1 (2009 

instrumentation in Figure 3.1a and 2010 instrumentation in Figure 3.1b). 

Based on results from the 2009 tests, slightly less instrumentation was used in the 2010 tests. In 

the 2009 tests, 24 Bridge Diagnostics Inc. BDI transducers were used for measuring strains at 

desired locations and 12 displacement transducers were used for measuring deflections at desired 

locations. The arrangement of deflection transducers made it possible to measure global 

displacements of the bridge as well as relative displacements between adjacent box beams. In 

2010, relative displacement transducers (shown in Figure 3.2) were used, given it was desired to 

determine the relative displacement between adjacent box beams rather than global 

displacements. 

3.2. Testing 

As noted previously, the bridge was tested two times with the tests being approximately 13 

months apart. In both years, the testing consisted of point-in-time live load testing with either a 

fully-loaded three-axle dump truck or two fully-loaded three-axle dump trucks being positioned 

on the bridge. 

A total of seven load cases, shown in Figure 3.3 (LC1 through LC7), in which the transverse 

position of the truck(s) was varied, were used in 2009. Note that in LC6 and LC7, there were two 

trucks on the bridge. In the 2010 tests, the same load cases (shown in Figure 3.3) were used, 

except that LC6 was omitted. 

The dimensions and weights of the test trucks used each year are presented in Figure 3.4. Truck 

28 was used both years and was the truck used in the single truck load cases (LC1-LC5). Based 

on total weight, the weight of the truck was approximately the same each year; however, there 

was some difference in the axle weight distribution. 

 



 

 

 

a. 2009 Instrumentation 

Figure 3.1. Instrumentation layout 
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b. 2010 Instrumentation 

Figure 3.1. Continued
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Figure 3.2. Relative displacement transducer between DBs 5 and 6 
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a. LC1 

 
b. LC2 

 
c. LC3 

 
d. LC4 

Figure 3.3. Transverse load positions: vehicle traveled east (into page) 
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e. LC5 

 
f. LC6 [summation of LC3 + LC5] 

 
g. LC7 

 
h. LC8 (2009, 2010: [summation of LC1 + LC5]) 

Figure 3.3. Continued 
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a. Truck 28     b. Truck 13 (same as Truck 12) 

 

c. Top view 

 

 
d. Side view 

Year Truck 

Dimensions Load (lbs) 

A B C D F T Gross 

2009 
28 14'-9" 4'-6" 6'-0" 7'-2" 18,800 38,140 56,940 

13 15-2" 4'-5" 6'-0" 7'-2" 17,600 37,820 55,420 

2010 
28 14'-9" 4'-6" 6'-0" 7'-2"  17,000 39,340  56,380  

12 15-2" 4'-5" 6'-0" 7'-2"  17,540 41,000 58,540  

 

Figure 3.4. Dimensions and weights of test trucks used in 2009 and 2010 bridge field tests 

F T

D C

A B
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In 2009, Truck 13 was the second truck on the bridge in LC6 and LC7, while, in 2010, Truck 12 

was used with Truck 28 in the two truck load tests (LC7). As Figure 3.4 shows, Truck 12’s 

weight (used in the 2010 test) was about 3,000 lbs greater than Truck 13 (used in the 2009 test); 

however, the axle spacing in the two trucks is the same. An image of the two trucks on the bridge 

during LC7 in 2010 is shown in Figure 3.5. 

 

Figure 3.5. Trucks on bridge during 2010 LC7 test 

  



 

39 

4. FIELD TEST RESULTS 

Field testing of the BVC precast bridge took place in 2009 and 2010 so that any behavior 

changes in this time period could be reviewed. In the following sections, static test results from 

these two tests are reviewed and in some cases compared. 

4.1. Loading Cases 

As noted previously, only static tests were performed (slow moving truck when one truck was on 

the bridge and stationary trucks when two trucks were on the bridge) each year on the bridge. In 

Figure 3.3, eight load cases are shown: five cases with one truck on the bridge and three cases 

with two trucks on the bridge. In 2010, LC6 was not ran and results for this load case were 

obtained by adding the results from 2010 LC3 and LC5. 

The various load cases were selected to maximize deflections and strains in various elements of 

the bridge and to meet the goals of the project. All trucks crossed the bridge traveling west to 

east. Data from the various tests were used to determine maximum box beam strains, bridge 

global deflections (2009 only), box beam differential deflections, load fractions, and end fixity. 

4.1.1. Bridge Deflections 

As a result of the small global deflections measured during the 2009 tests, it was decided to 

measure only differential deflections between the adjacent box beams in the 2010 tests. The 

maximum measured box beam deflection for the various load cases investigated in 2009 are 

shown in Table 4.1. 

Table 4.1. 2009 Maximum midspan girder deflection 

Deflection 

Load Case 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 

Magnitude (in.) 0.183 0.151 0.144 0.143 0.100 0.242 0.259 0.250 

Location DB7 DB6 DB5 DB4 DB4 DB4 DB4 DB7 

Gage (D6) (D4) (D2) (D1) (D1) (D1) (D1) (D6) 

 

In all load cases, with the truck(s) (traveling east), the data presented are with the centerline of 

the tandem wheels positioned at the centerline of the bridge. Recall in LC1-LC5 there was only 

one truck on the bridge, while in L6-L8, there were two trucks on the bridge. With one truck on 

the bridge, the maximum deflection (0.183 in.) occurred in deck beam DB7 during LC1; with 

two trucks on the bridge, the maximum deflection (0.259 in.) occurred in deck beam DB4 during 

LC7. 

The code serviceability limit state for deflection is L/800 for a bridge loaded with two HS20 

trucks including a dynamic amplification factor (AASHTO 2007, 1996). The limit state 

corresponds to a maximum deflection of approximately 0.75 in. 
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As noted previously, the maximum deflection (0.259 in.) occurred during LC7; when this value 

is normalized by weight to the standard HS20 truck and a dynamic amplification factor of 30 

percent is used, the maximum deflection becomes 0.479 in., which corresponds to a span to 

deflection ratio of L/1253. The BVC deck beam bridge, therefore, is well within the AASHTO 

serviceability limit state for deflection. 

Representative time-history deflections for 2009 LC1, LC2, and LC7 are presented in Figure 4.1. 

The various time history plots show deflections at midspan and quarter span at the edges of deck 

beams DB4, DB5, DB6, and DB7. With these data, the differential deflection between the four 

deck beams can be determined. A review of this deflection data indicates the differential 

movement between the adjacent deck beams for LC2 and LC7 is very small. In general, the deck 

beams that had the largest deflections were located closest to the applied load. 

 
 

a. LC 1 – Quarterspan 

Figure 4.1. Representative time history – 2009 deflections 
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b. LC 1 – Midspan 

 
c. LC 2 – Quarterspan 

Figure 4.1. Continued 
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d. LC 2 – Midspan 

 
e. 2009; LC 7 – Quarterspan 

Figure 4.1. Continued 
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f. LC 7 – Midspan 

Figure 4.1. Continued 

 

Partial (since displacements were only measured on one-half of the bridge) transverse deflections 

for the same three load cases (LC1, LC2, and LC7) are presented in Figure 4.2. 

As noted previously, LC1 and LC7 produced the maximum deflections for one and two trucks, 

respectively. Transverse load distribution is evident as shown in this figure, as the deck beams 

adjacent to directly-loaded deck beams also deflect, creating a continuous deflected shape. 

Although not the actual behavior, for illustration, the various deflection points have been 

connected with straight lines. 

Figures 4.3 and 4.4 are included to show how the differential movement between DB4 and DB5, 

DB5 and DB6, and DB6 and DB7 varied as the test vehicle crossed the bridge. 

Differential movements that occurred during the 2009 load tests for LC1, LC2, and LC7 

(representative load cases), at the quarterspan and the midspan are presented in Figure 4.3. 

Maximum values shown in these figures are presented in Table 4.2. 

As was noted previously, the differential movements measured during the bridge test in 2010 

were very small (approximately 1/10 the values measured during the 2009 tests. For this reason, 

only the 2010 differential movements measured during one load case, LC1, are presented in this 

report (see Figure 4.4). 
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a. LC1 

 
b. LC2 

 
c. LC7 

Figure 4.2. 2009 Transverse deflected shape at midspan and quarterspan 
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a. LC 1 – Quarterspan 

 
b. LC 1 – Midspan 

Figure 4.3. Representative time history differentials 
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c. LC 2 – Quarterspan 

 
d. LC 2 – Midspan 

Figure 4.3. Continued 
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e. LC7 – Quarterspan 

 
f. LC7 – Midspan 

Figure 4.3. Continued 
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a. LC 1 – Quarterspan 

 
b. LC 1 – Midspan 

Figure 4.4. Representative time history – 2010 differentials 
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Table 4.2. 2009 Maximum differential movement 

 Maximum Differentials (in.) 

 Quarter Span Center Span 

Beam Gap DB4-DB5 DB5-DB6 DB6-DB7 DB4-DB5 DB5-DB6 DB6-DB7 

Gage Pair D7-D8 D9-D10 D11-D12 D1-D2 D3-D4 D5-D6 

LC1 0.007 0.006 0.012 0.006 0.011 0.006 

LC2 0.006 0.008 0.010 0.004 0.011 0.005 

LC3 0.005 0.008 0.009 0.002 0.012 0.004 

LC4 0.005 0.008 0.010 0.002 0.011 0.004 

LC5 0.005 0.005 0.010 0.005 0.011 0.005 

LC6 0.009 0.012 0.018 0.005 0.021 0.007 

LC7 0.006 0.009 0.011 0.005 0.009 0.004 

LC8 0.010 0.010 0.018 0.010 0.021 0.010 

 

As was the case for the 2009 load tests, the maximum values shown in these figures, as well as 

the maximum values for the other seven load cases, are presented in Table 4.3. 

Table 4.3. 2010 Maximum differential movement 

 Maximum Differentials (in.) 

 Quarter Span Center Span 

Beam Gap DB4-DB5 DB5-DB6 DB6-DB7 DB4-DB5 DB5-DB6 DB6-DB7 

Gage Pair D6 D5 D4 D3 D2 D1 

LC1 0.0009 0.0008 0.0007 0.0010 0.0021 0.0017 

LC2 0.0010 0.0010 0.0006 0.0013 0.0011 0.0021 

LC3 0.0007 0.0008 0.0012 0.0008 0.0014 0.0012 

LC4 0.0007 0.0005 0.0007 0.0014 0.0021 0.0023 

LC5 0.0010 0.0007 0.0010 0.0015 0.0018 0.0022 

LC6 0.0014 0.0012 0.0015 0.0016 0.0025 0.0027 

LC7 0.0010 0.0009 0.0010 0.0015 0.0025 0.0019 

LC8 0.0009 0.0013 0.0008 0.0018 0.0016 0.0020 

 

Figure 4.5 presents the absolute maximum differential deflections at midspan and quarterspan for 

each of the 2009 and 2010 load cases. Given the differential deflections were so small and the 

variation in truck weights from year to year were also small, direct comparison of differential 

displacements were made without normalizing for the truck weight differences. 
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a. LC1 

 
c. LC3 

 
e. LC5 

 
b. LC2 

 
d. LC4 

 
f.   LC6 
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Figure 4.5. 2009 and 2010 Differential deflections 
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       g. LC7     h. LC8 

Figure 4.5. Continued 

In 2009 global bridge displacements were measured on each side of the joints between DB4 and 

5, DB5 and 6, and DB6 and 7; these values were then used to determine the differential values. 

In 2010, the transducer (shown in Figure 3.2), which measures differential displacements 

between adjacent units, was used to determine differential displacements directly. When 

reviewing the data in Figure 4.3, note that two different vertical scales were used. 

Two things are readily apparent. In 2009, for all load cases, although small, there was more 

differential movement at midspan at the joint between DB5 and 6 than at the other two joints 

investigated. And, differential movement between all three joints is significantly less in 2010 

than it was in 2009. 

The only explanation for this improvement that the researchers can think of is a difference in 

temperature for the two test days, which resulted in more tension (and thus more friction between 

the various deck beams) in the cross tie rods. 

To confirm the results from the transducers used in 2010, two different laboratory tests were 

used to determine the accuracy and repeatability of results obtained with the transducers. Results 

obtained in the laboratory using the transducers were determined to be reproducible with 
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DB5-DB6. 
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movement measured was 0.0015 in. for LC6 at DB6-DB7 (same location and one of the same 

load cases as in 2009). At the midspan joint DB5-DB6, the maximum differential movement 

measured (0.0025 in.) for both loaded cases, LC6 and LC7. 

The fact that the differential movements were small in 2009 and significantly smaller in 2010, 

leads the researchers to believe the grouted shear keys (between adjacent box beams) and the two 

transverse hand-tightened post tensioning bars are more than adequate for transverse load 

transfer. 

However, these two tests do not allow for any conclusions to be made as to this behavior to 

continue throughout the life of the bridge. 

4.1.2. Bridge Strains 

BDI strain transducers (24 used in 2009 and 11 used in 2010) were installed on the bottom side 

of the box beams to obtain strain data for each of the load cases. The maximum midspan strains 

measured for each load case in 2009 and 2010 are shown in Tables 4.4 and 4.5, respectively. 

Table 4.4. 2009 Maximum midspan girder strains 

Strain 
Load Case 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 

Magnitude (με) 58 47 41 42 54 86 77 74 

Location DB7 DB6 DB3 DB3 DB1 DB3 DB6 DB3 

Gage (B12) (B9) (B3) (B3) (B1) (B3) (B9) (B3) 

 

Table 4.5. 2010 Maximum midspan girder strains 

Strain 
Load Case 

LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 

Magnitude (με) 55 50 41 43 57 71 80 81 

Location DB6 DB6 DB5 DB4 DB1 DB1 DB3 DB1 

Gage (B9) (B9) (B6) (B4) (B1) (B1) (B3) (B1) 

 

The maximum strain measured during the 2009 load tests occurred during LC6 in DB3 (Gage 

B3) and was 86 με. In 2010, the maximum strain (81 με) measured during LC8 in DB1 (Gage 

B1). A review of these two tables reveals minimal differences in the maximum strains measured; 

however, except, for a couple load cases, the maximum strains that occurred did so in different 

box beams. When comparing strains from 2009 and 2010, the researchers also kept in mind the 

slight difference in truck weights from year to year. 

Distributions of midspan box beam strains measured in the seven box beams for each of the eight 

load cases completed in 2009 and 2010 are shown in Figure 4.6. 
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a. 2009 

 

 
b. 2010 

Figure 4.6. Midspan strains for various load cases 
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Considering the slight difference in the truck weights between 2009 and 2010 (Figure 3.4) and 

the variation in the transverse distribution of the gravel in the trucks used in the 16 different tests 

(eight in 2009 and eight in 2010), there is very good agreement in the magnitudes of strains 

measured each year, as well as their distribution in the seven box beams. 

A review of the strains measured in 2009 indicates that, more than likely, there was a problem 

with the BDI or its installation on DB3 and DB5. Maximum values observed in this figure were 

tabulated and shown previously in Tables 4.4 and 4.5 (2009 and 2010 test data, respectively). 

Distribution of box beam strains for a representative load case, LC1, as the test vehicle crosses 

the bridge are presented in Figures 4.7 and 4.8 for the 2009 and 2010 tests, respectively. In 2009, 

three sections were instrumented: midspan (Figure 4.7a), quarterspan (Figure 4.7b), and near the 

bridge end (1 ft 6 in. from the face of the abutment in Figure 4.7c). 

In 2010, two sections were instrumented: midspan (Figure 4.8a) and near the end (as in 2009, 1 ft 

6 in. from the face of the abutment in Figure 4.8b). The end span sections were instrumented to 

determine if there was significant end restraint due to construction details. 

A review of the strains in the box beams instrumented (DB4, DB5, DB6, and DB7) – small 

tensile strains – indicated minimal end restraint. It is interesting to note that the magnitude of 

strains measured each year were essentially the same although maximum values in 2010 

occurred when the truck’s front axle was approximately 10 ft farther from the end of the bridge. 

Similar results were seen at midspan (Figures 4.7a and 4.8a), with essentially the same 

magnitude of strain occurring in 2009 and 2010; however, the maximum strain in 2010 occurred 

when the truck was approximately 10 ft farther from the end of the bridge. The only possible 

explanation the researchers have for this behavior is there may have been an error in determining 

the location of the truck on the bridge in 2009 or 2010. 
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a. Midspan strain 

 
b. Quarterspan strain 

 
c. Strain 1 ft 6 in. from face of abutment 

Figure 4.7. 2009 Experimental strains for LC1 
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a. Midspan strain 

 
b. Strain 1 ft 6 in. from face of abutment 

Figure 4.8. 2010 Experimental strains for LC1 

4.1.3. Bridge Load Fraction and Load Distribution 

Load fractions were calculated for each load case based on the assumption that the box beams 

have equal stiffness; effect of guardrails on exterior box beams (DB1 and DB7) stiffnesses was 

not taken into account. Based on this assumption, box beams can be calculated using the 

following equation: 
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where LFi = load fraction for the ith box beam, εi = strain measured in the i
th

 box beam, Ʃεi = 

sum of all box beam strains for a particular load case, and n = number box beams in the bridge 

(7 in this particular bridge). 

The load fractions determined for the 2009 and 2010 tests are shown in Figure 4.9. 

 
a. 2009 Midspan load fraction for eight load cases 

 

 
b. 2010 Midpsan load fraction for eight load cases 

Figure 4.9. Experimentally-determined load fractions 
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The largest load fraction (0.23) in 2009 occurred in DB7 while the smallest load fraction (0.07) 

occurred in DB1. Both of these values occurred during LC1. 

In the 2010 load tests, the maximum load fraction (0.22) occurred in DB1 during LC5 and the 

smallest load fraction (0.075) also occurred in DB1, but during LC1. 

The values of load fractions determined in 2009 and 2010 given potential experimental error are 

essentially the same. As expected, the load fraction was largest in the deck beams directly below 

the truck tires and decreased as the transverse distance from the deck beam to the loaded truck 

increased. When the truck was located at the transverse center of the bridge, LC3, as expected, 

the load was distributed approximately equal to all deck beams. 

Representative load fraction determined for one truck on the bridge for LC1, LC2, and LC5 are 

compared to code values, and the values used by the Iowa DOT in their design calculations in 

Figure 4.10. As shown, the values determined using experimental data are significantly smaller 

than the code and design calculation values. 

As shown in Figure 4.10, there is excellent agreement between the distribution results obtained 

in 2009 and 2010 for the three load cases in the figure. Although the results for the other load 

cases have not been included in this report, there was excellent agreement between values from 

the two years. 

To obtain an approximation of lane load distribution, data from two trucks on the bridge were 

used. In 2009, this involved LC6 and LC7. Data for LC8 (shown in Figure 3.3) was obtained by 

adding the results from LC1 and LC5. In 2010, only LC7 was actually completed in the field. 

Results for LC6 and LC8 were obtained by adding the results for having one truck on the bridge 

(LC6 = LC3 + LC5; LC8 = LC1 + LC5). Load fraction for these three combination load cases 

are shown in Figure 4.11. 

In this figure, as was the case in Figure 4.10, the experimental values obtained in 2009 and 2010, 

which are essentially the same, are compared to the design values used by the Iowa DOT, code 

distribution factors from the 1998 AASHTO LRFD, and code distribution factors from the 1996 

AASHTO standard specifications. 

A review of the three graphs in this figure (i.e., comparing the experimental values, AASHTO 

values, and the Iowa DOT values) show the bridge’s performance is conservative. 
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a. LC 1 

 

 
b. LC 2 

Figure 4.10. Experimental and codified load distributions for one truck on bridge 
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c. LC 4 

 

 

 
d. LC 5 

Figure 4.10. Continued 
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a. LC 6 

 

 

 
b. LC 7 

Figure 4.11. Experimental and codified load distribution for lane loading 
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c. LC 8 

Figure 4.11. Continued 
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5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The objective of this project was to evaluate the overall design, construction, and field 

performance of this type of precast bridge. To achieve these objectives, the various phases of 

fabrication and construction were observed and two separate field tests were completed. 

Pre-assembly of the various precast elements completed in the casting yard was definitely worth 

the effort. By pre-assembling, problems can be identified early and resolved before the precast 

elements are delivered to the bridge site, eliminating costly delays in the field. 

Prior to shipment to the field, the overall dimensions of all precast elements should be checked to 

see that they conform to the plans. If that had been done on this project, the delay caused by DB3 

being too large on one edge could have been eliminated. 

Non-shrink, non-metallic grout was used to fill the joints between adjacent deck beams, pockets 

required for tightening the transverse tie assembly, and other voids in the bridge assembly. 

Unfortunately, the contractor used water from the creek for mixing the grout. Depending on the 

impurities in the water, it could have a deteriorating effect on the grout strength and its long-term 

performance. In future applications, only potable water should be used in mixing the grout. 

Based on observations and field testing, the following conclusions and recommendations can be 

made: 

 This bridge was completed in 18 days (days from closure to reopening). 

Construction of the bridge (including removal of the existing bridge at the site) 

took only four working days. The remainder of the time was spent constructing 

the roadway approaches to the bridge. Due to the low volume of traffic on this 

road, it wasn’t necessary to actually accelerate completion of the bridge and thus 

the approach fill was completed using county personnel. If the bridge had been on 

a high volume of traffic road and thus desired to be open as soon as possible 

(obviously a function of the site), it is estimated that the fill could have been 

completed in three days. Total road/bridge closure would have been only eight 

days then. 

 The maximum bridge deflection measuring during testing was 0.259 in. 

Normalizing this value for the different between test truck weights and the weight 

of design trucks, this value becomes 0.479 in., which is significantly less than 

code requirements. 

 Very small differential movement occurred between adjacent box beams. In 2009, 

the maximum value measured was 0.021 in. while in 2010 it was significantly less 

(.0027 in.). The hand-tightened transverse tie rods and grout-filled joints provide 

good lateral load transfer between adjacent units. 

 The maximum box beam strains measured at midspan in 2009 and 2010 were 86 

με and 81 με, respectively. At 28 days, the box beam concrete strength was 7,710 

psi (which means the approximate modulus of elasticity of the concrete was 4.55 
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x 10
6
 psi). Assuming this value for Ec mean, the maximum stresses measured in 

2009 and 2010 are very small: 390 psi and 370 psi. 

 Construction details used in the bridge resulted in minimal end-restraint. Thus, 

future bridges using these details should be designed as simply-supported, as was 

done for this bridge. 

 The use for the 0.5 load distribution fraction is conservative and thus is 

recommended for use in the design of other box beam bridges. 
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APPENDIX A. BUENA VISTA BOX GIRDER BRIDGE PLANS 
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