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General Abstract

Structural concrete is one of the most commonly used construction materials in the
United States. However, due to changes in design specifications, aging, vehicle impact, etc. –
there is a need for new procedures for repairing concrete (reinforced or pretressed)
superstructures and substructures. Thus, the overall objective of this investigation was to develop
innovative cost effective repair methods for various concrete elements. In consultation with the
project advisory committee, it was decided to evaluate the following three repair methods:

• Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed
concrete bridges

• Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns
• Various patch materials

The initial results of these evaluations are presented in this three volume final report. Each
evaluation is briefly described in the following paragraphs. A more detailed abstract of each
evaluation accompanies the volume on that particular investigation.

Repair of Impact Damaged Prestressed Concrete Beams with CFRP (Volume 1)
Four full-sized prestressed concrete (PC) beams were damaged and repaired in the laboratory
using CFRP. It was determined that the CFRP repair increased the cracking load and restored a
portion of the lost flexural strength. As a result of its successful application in the laboratory,
CFRP was used to repair three existing PC bridges. Although these bridges are still being
monitored, results to date indicate the effectiveness of the CFRP.

Use of FRP to Prevent Chloride Penetration in Bridge Columns (Volume 2 - this
volume) Although chemical deicing of roadways improves driving conditions in the winter, the
chlorides (which are present in the majority of deicing materials) act as a catalyst in the corrosion
of reinforcement in reinforced concrete. One way of preventing this corrosion is to install a
barrier system on new construction to prevent chloride penetration. Five different fiber
reinforced polymer wrap systems are being evaluated in the laboratory and field. In the
laboratory one, two, and three layers of the FRP system are being subjected to AASHTO ponding
tests. These same FRP wrap systems have been installed at five different sites in the field (i.e.
one system at each site). Although in the initial stages of evaluation, to date all five FRP wrap
systems have been effective in keeping the chloride level in the concrete below the corrosion
threshold.

Evaluation of Repair Materials for Use in Patching Damaged Concrete (Volume 3)
There are numerous reasons that voids occur in structural concrete elements; to prevent additional
problems these voids need repaired. This part of the investigation evaluated several repair
materials and identified repair material properties that are important for obtaining durable
concrete repairs. By testing damaged reinforced concrete beams that had been repaired and
wedge cylinder samples, it was determined that the most important properties for durable
concrete repair are modulus of elasticity and bond strength. Using properties isolated in this
investigation, a procedure was developed to assist in selecting the appropriate repair material for
a given situation.



 

Effective Structural Concrete Repair 
 

General Introduction 
 

 Structural concrete is one of the most commonly used construction materials in 

the United States.  Due to changes in the design specification for bridges, increases in 

legal loads, potential for over-height vehicle impacts, and general bridge deterioration, 

there is need for new procedures for strengthening and/or rehabilitating existing 

reinforced and prestressed concrete bridges. In this investigation, strengthening and 

rehabilitating are considered to be specific means of repairing. The problems previously 

noted occur in the superstructure as well as in the substructure and are commonplace for 

state bridge engineers, county engineers and consultants. 

 In the past, several different materials and procedures have been used for 

strengthening/rehabilitating structural concrete with varying degrees of success.  Some of 

the procedures used may be effective initially, however, they may not be effective long 

term especially if the deterioration is due to chloride contamination.  Thus, research was 

needed to develop successful repair methods/materials for strengthening/rehabilitating 

various structural concrete bridge elements. 

Overall Research Objectives 

 The overall objective of this project was to develop innovative repair methods that 

employ materials which result in the cost effective repair of structural concrete elements.  

Carbon Fiber Reinforced Polymers (CFRPs) were found to be the most effective material 

for long term repair.  They have shown promise for use in strengthening and/or 

rehabilitating various bridge elements.  These materials have the advantage of large 
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strength/weight ratios, excellent corrosion and fatigue properties, and are relatively 

simple to install. 

 To insure the success of this project, a project advising committee (PAC) 

consisting of members from the Iowa DOT Office of Bridges and Structures and the Iowa 

County Engineers Association was formed  The research team met with the PAC on six 

different occasions.  During the initial meetings, the numerous problems engineers have 

with structural concrete bridge elements were discussed.  In later meetings, the research 

team proposed some potential solutions to the problems previously noted.  The outcome 

of the last PAC meeting was that the following three repair methods should be 

investigated: 

1.) Evaluation of CFRP for use in repairing/strengthening damaged prestressed 

concrete bridges, 

2.) Evaluation of FRP for preventing chloride penetration into bridge columns, 

3.) Evaluation of various patch materials. 

 This project involved a combination of laboratory and field tests.  In two cases (1 

and 2 noted above), there were laboratory investigations prior to investigating the 

procedure/material in the field in demonstration projects.  The procedures/materials used 

in the demonstration projects will be periodically inspected until the end of the contract 

which is Dec., 2008. A log noting the date of the inspection, condition of strengthening 

system, etc. will be kept for each demonstration project.  If a significant change in the 

strengthening system is observed at one of the demonstrate sites, the structure could be 

tested if such a test would provide additional information on the repair material/system. 
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Reports 

 Since there were three unique repair systems/materials investigated in this project, 

the results are presented in three separate volumes.  Laboratory as well as field test results 

are presented in this three volume final report.  Following this initial report, brief interim 

reports on the demonstration projects will be submitted approximately every two years.  

At the conclusion of the project (Dec. 2008), a final summary report will be submitted. 

 As previously noted, each volume of this final report is written independently.  

Thus, the reader may read the volume of interest without knowledge of the other two 

volumes.  To further assist the readers in their review of this final report: 

• Each volume has a unique abstract, summary, and conclusions, which are 

pertinent to that part of the investigation.  Application guides for installing CFRP 

on damaged prestressed concrete beams and FRP on columns are presented in 

Volumes 1 and 2, respectively.  A general abstract briefly summarizing the entire 

project is presented at the beginning of each volume.  Thus, the three volume 

report has four abstracts. 

• Each volume has a reference list that is unique to that part of the project.  A 

limited number of references have been cited in more than one volume of the final 

report. 

• The three volumes have different authors – the senior members of the research 

team plus the graduate research assistant(s) who worked on that part of the 

investigation. 
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Volume 2 Abstract 

 
Yearly, over 500 million dollars are spent on the chemical deicing of roadways to 

improve travel conditions during winter snow and ice storms.  The chlorides within the 

salts however act as a catalyst in the corrosion of reinforcement in reinforced concrete.  It 

is estimated that several billion dollars are needed to rehabilitate the nation’s bridges that 

have deteriorated due to this reinforcement corrosion.  Several researchers have observed 

that if a barrier protection system against corrosion was installed at the time of 

construction, corrosion could be prevented.  This report summarizes the initial stages of 

an investigation of one such system.  Five different fiber reinforced polymer (FRP) wrap 

systems, applied to prevent chloride penetration into the concrete, are being evaluated in 

the laboratory and field. 

 In the field portion, reinforced concrete columns at five different sites had a FRP 

barrier system installed.  These five columns are being monitored yearly to determine if 

chlorides, from deicing salts applied to adjacent roadways during winter months, have 

penetrated the wrap.  In the laboratory, an AASHTO ponding test was initiated on 

concrete slabs constructed to evaluate one layer, two layers, and three layers of the same 

five different FRP wrap systems.  In addition to the FRP wrap systems, two protective 

top coats were installed on the same concrete slab.  The concrete slab was then subjected 

to a three percent sodium chloride solution during 90 day ponding cycles.   

            To date, a single layer of all five FRP wrap systems has been effective in keeping 

the chloride level in the concrete below the corrosion threshold.  With the exception of 

one product, the single layer of FRP wrap has been effective in preventing chlorides from 

penetrating into the concrete.  However in this case, level of chlorides in the concrete is 

still below the threshold limit. The effectiveness of the five FRP systems, based on both 

the field and laboratory data, will be presented in a supplementary report at the 

conclusion of this investigation. 
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1.  INTRODUCTION 

1.1  Background 

 In 1991, a special report published by the Transportation Research Board stated that 

in the United States, $1.5 billion is spent on snow and ice removal programs each year.  

Chemical deicing, which included ten million tons of salt, accounts for 1/3 of these 

expenditures (1).  During a typical winter storm, the Ames District of the Iowa Department 

of Transportation (Iowa DOT) spreads an average of 500 pounds of salt/lane/mile during 

each pass they make on Interstate-35.  Depending on the severity of the storm, this quantity 

of salt can be spread on anywhere from 350 to 400 lane miles, which is 175 to 200 thousand 

pounds of salt per storm.  The salt and ice removal program undoubtedly provides significant 

benefits for public safety by providing less hazardous road conditions during the winter 

months, but at a cost to the transportation infrastructure.  It is estimated that $28 billion is 

needed for the rehabilitation of the nation’s bridges that have deteriorated as a result of 

corrosion of the reinforcement in concrete (2).    

 The chlorides within the salt act as a catalyst in the natural corrosion process.  Once 

corrosion commences, the reinforcement transforms into rust, which is a porous product that 

occupies more space than the steel.  As corrosion continues in a structure, the corrosion 

product, rust, exerts tensile forces on the surrounding concrete thus inducing delamination 

along the interface between the steel and concrete. Ultimately, this reduction in the cross-

section of the reinforcement and the loss of bond reduce the serviceability and structural 

capacity.  However, the problem with corrosion in the reinforcement is not always the 

deterioration of the steel, but the initial spalling and cracking of the concrete.  For example, a 

man was killed in New York when he drove underneath a reinforced concrete bridge as a 
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piece of concrete fell off due to corrosion (3).  To prevent incidents like this from happening, 

there are various techniques to prevent chlorides from causing corrosion in the 

reinforcement. Methods of prevention include deflection systems, barriers, corrosion 

inhibitors, waterproof membranes and seals.  Many of these techniques, however, do not last 

the life of the reinforced concrete structure.  Thus, there are several methods of rehabilitation 

that can be implemented once corrosion has occurred.   Methods of repair and rehabilitation 

include patching and the electrical chemical treatments of cathodic protection, chloride 

extraction and realkalization.  All of these methods are described in detail later in this 

document. 

1.2  Project Objective 

 In a journal article regarding corrosion rehabilitation methods in reinforced concrete, 

Kendell and Daily (4) stated that the ultimate protection system against corrosion would be 

the installation of a barrier at the time of construction, thus preventing corrosion from ever 

starting.  The objective of this project is to determine the feasibility of this concept by 

evaluating a new technique for preventing chloride penetration in new reinforced concrete 

construction, thus preventing corrosion from occurring.  Fiber reinforced polymers (FRP) 

have been tested to determine their ability to restore ductility and strength to damaged 

structural elements as well as provide additional confinement for structural elements in 

seismic regions.  However, FRP may also provide a secondary benefit of preventing chloride 

penetration.  Therefore, this project’s objective is to evaluate FRP’s resistance to chloride 

penetration by conducting tests on FRP wrapped, reinforced concrete columns while 

simultaneously conducting laboratory tests to determine the permeability of FRP over a five 

year period. 
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1.3 Project Scope 

 Both field and laboratory experiments were initiated to evaluate five different FRP 

wrap systems and two protective topcoats.  Five reinforced concrete columns in the vicinity 

of Ames, Iowa were selected for the field evaluation.  A baseline was established at all field 

test sites by acquiring samples at twelve locations around the perimeter of the column and at 

three different depths.  The samples were analyzed to determine the initial level of chlorides 

within the concrete.  One column at each test site was wrapped with one of the five FRP 

wrap systems.  Two systems utilized glass fibers whereas the other three utilized different 

carbon wrap systems.  All five systems were then painted with a protective topcoat to reduce 

UV exposure.  Over the next five years, these five columns will be visually inspected to 

ensure that the wrap is performing adequately and additional samples will be obtained, 

analyzed and compared to the baseline data to determine if the FRP wrap system is an 

effective barrier to chlorides. 

   In the laboratory portion of this research project, the performances of the FRP wraps 

in an aggressive chloride environment were investigated.  All five FRP wraps and the two 

topcoats were installed on one slab.  These wraps were placed in one, two and three layers on 

the slab, which was then subjected to an American Association of State Highway and 

Transportation Officials (AASHTO) ponding test (5).  This test required the test surface to be 

submerged in at least 0.5 in. of a three percent sodium chloride solution.  Wraps were 

submerged for 90 days; then, the solution was drained and samples were obtained.  The slab 

was then patched and submerged again for another 90 days.  This process will be repeated for 

five years, resulting in a total of 18 tests.  Throughout the program, results from both the field 
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and laboratory chloride penetration tests will be used to establish a profile that illustrates the 

effectiveness of FRP wraps in preventing chloride penetration. 

 In Chapter Two, the basic corrosion process as well as current methods of 

rehabilitation and repair are reviewed.  Chapter Three presents the outline for both the field 

and laboratory experiments of the project.  The results from the sampling process are 

discussed in Chapter Four with a final summary and trends presented in Chapter Five.  Note 

that this document only discusses the first year and a half of both the field and laboratory 

tests.  Subsequently, a final report will be prepared at the conclusion of this project that 

includes the data for the remaining three and a half years in an abridged format.  This final 

report will contain the conclusions and recommendations based on the five years of data. 
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2.  LITERATURE REVIEW 

2.1  Reinforcement Corrosion 

 Prior to determining if a material is adequate to prevent the initiation of corrosion, it 

is helpful if one has a basic understanding of the corrosion process.  Therefore, in the 

following sections, a brief review of the actual corrosion mechanism in reinforced concrete 

as well as the various factors that influence the rate of corrosion are presented.   

2.1.1  Corrosion Process of Reinforcement 

 In order to understand the various methods for rehabilitating and preventing chloride 

contamination of concrete, one must review the process of corrosion.   Reinforced concrete in 

its natural state does not corrode, even if moisture is present.  The cement in concrete will 

naturally form an alkaline solution that protects the steel.  This solution reacts with 

penetrating acids to form a neutral product that creates a passive layer around the steel 

consisting of dense hydroxides with minerals from the cement.  This natural process creates 

both an anode and cathode to establish an electrical balance.  The anode is the actual site of 

corrosion whereas the cathode is the site of the protective covering.  Corrosion begins at the 

anode when the electrochemical process is initiated by the oxidation of the iron.  Oxidation is 

the process when an oxidizing agent, which is oxygen in this case, takes electrons from the 

iron atoms, transitioning them into soluble ions that enter the solution.  This process is 

represented in Eqn (1):   

Fe → Fe2+ + 2e-                                                   Eqn (1) 

 As previously stated, an electrical balance must be maintained in the system.  

Therefore, at the cathode, the liberated electrons will be combined with water and oxygen to 
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form hydroxyl ions.  It is the build-up of hydroxyl ions that form the passive protective layer 

around the reinforcement steel at the cathode. This is represented in Eqns (1) and (2):  

                                 O2 + 2H2O + 4e- → 4OH-                                             Eqn (2) 

 These two equations are the fundamental actions that initiate corrosion.  Therefore, even as 

the concrete is creating a passive layer of protection, it requires oxygen and water for this 

process to occur. Water and oxygen are also the primary components required for corrosion 

to develop.  The formation of the corrosion product, rust, can be explained in several ways.  

Equations (3) through (5) are the process required for the formation of rust as described by 

Broomfield (3):   

    Fe2+ + 2OH- → Fe(OH)2 = (Ferrous Hydroxide)                        Eqn (3) 

     4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 = (Ferric Hydroxide)                 Eqn (4) 

            4Fe(OH)3 → 2Fe2O3H2O (Rust) + 4H2O                              Eqn (5) 

 It is the hydrated ferric oxide, rust, that creates the spalling and cracking commonly 

observed in chloride contaminated reinforced concrete structures.  As the ferric oxide 

becomes more hydrated, it swells and becomes more porous.  Unhydrated ferric oxide has a 

volume twice that of the steel it replaces; thus, when it becomes hydrated, its volume can 

increase two to ten times that of steel (3).  The increase in volume results in increased 

pressure at the reinforcing steel and concrete interface, which leads to “pop outs” or spalling 

of concrete.  Visible rust stains will also be generated. 

 The natural balancing cycle that generates corrosion can be accelerated by two 

different mechanisms.  One is carbonation and the second is the accumulation of chloride 

ions in the system.  These two mechanisms do not directly affect the concrete, but instead 

effect the reinforcement.  Carbonation breaks down the passive layer of protection by 
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lowering the pH level of the protective barrier.  Usually, the passive layer has a pH level 

between 12 and 13, which is relatively constant because there are more calcium hydroxide 

ions in the cement’s pores than in the dissolved solution.  Carbonation is the interaction of 

carbon dioxide with water to form a carbonic acid, which has a pH level of four.  This acid in 

turn will react with the calcium hydroxide ions in the solution to form calcium carbonate.  As 

the carbonic acid reacts with the calcium hydroxide, it exhausts the surplus calcium 

hydroxide ions retained in the cement pores which results in lowering the pH level (3).  Once 

the pH level drops, the reinforcement looses its protective properties by neutralizing the 

protective layer surrounding the steel.  Ultimately, this leaves the reinforcement susceptible 

to a corrosion attack. 

 Chloride penetration acts as a catalyst to the corrosion process. It does not reduce the 

pH level like carbonation does, but instead directly damages the steel at weak points.  Voids 

in the concrete that bond to the reinforcement create susceptible areas for chloride attack.  

With the gap between steel and concrete, water can enter and transport chlorides to the steel 

surface.  When an adequate concentration of chloride ions has accumulated, they begin to 

break down any remaining passive layer on the steel and allow the corrosion process to 

continue at a faster rate.  

 As chlorides damage the steel, the solid FeCl2
 seen in Eqn (6) forms which breaks 

down into chloride and iron ions (3):   

                      FeCl2 → Fe2+ + 2Cl-                                                Eqn (6)           

The chloride ions are recycled back into the system to attack again while the iron ions are 

consumed in the process to create ferrous hydroxide in Eqn (3), which ultimately generates 

rust.  The general consensus in several reports states that 0.4 percent by weight of cement is 
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the threshold for chlorides that have been cast into concrete.  Usually, this condition is found 

in older structures in which chlorides were used as an accelerator or when aggregates that 

inherently contain chlorides are used.  This threshold reduces to 0.2 percent by weight when 

the chlorides are diffused in.  An example of contamination by diffusion is ocean spray 

consistently misting a reinforced concrete structure.  Once the chloride concentration reaches 

either of these thresholds, corrosion initiates. 

2.1.2  Chloride Sources 

 There are two primary sources of chlorides that were mentioned in the previous 

section.  Chlorides are either cast into concrete or diffuse in from the outside (3).  Until thirty 

years ago, chlorides were still used as set accelerators.  Chlorides have also been cast into 

concrete because sea water or contaminated aggregates were used in the mix.  Diffusion 

occurs mainly through salt spray, either from the sea or deicing salts.  However, air pollution 

and contaminated ground water are other potential sources of chlorides through diffusion (7).  

2.1.3  Factors that Influence the Rate of Corrosion 

 There are several factors that influence the rate of corrosion in steel reinforcement.  

First are the factors that contribute to the transportation of chlorides in a liquid media. 

Capillary pore size can increase the movement of chlorides whereas entrained air and cracks 

create voids that block transportation.  Also, a lower water/cement ratio and a dense binder 

aid in reducing chloride transportation (8).  The age, type of binder, size and type of 

aggregates and chemical additives used are all factors that influence the deterioration of 

concrete due to chlorides.  Other factors are temperature and relative humidity.  As the 

temperature rises, the ions gain mobility and the salts become more soluble, thus accelerating 

the oxidation reaction.  However, as the temperature is decreased, the reverse behavior 
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occurs.  The ions slow down and the corrosion process halts when the pore waters freeze.  It 

should be noted that the freezing point is lowered due to the excess of chloride ions in the 

solution.  The relative humidity within the concrete may not be at the same levels as the 

atmospheric humidity levels because of water splash or solar heat gain, which are all capable 

of raising the humidity level. Note that corrosion is thought to be at a maximum at a 90-95 

percent relative humidity (3). 

2.2  Prevention, Repair and Rehabilitation of Chloride Contaminated Concrete 

 Each reinforced concrete structure that is inspected and found to have deterioration 

due to the effects of chlorides has four options; repair, rehabilitate, replace or do nothing.  

Replacement or the do nothing options are both dependent on how much structural capacity 

has been lost due to corrosion.  If the structure appears to be in relatively good condition, the 

inspectors may continue to monitor the corrosion and observe if it worsens.  However, if the 

deterioration is significant, replacement may be the only feasible option.  For the remaining 

structures that fall into the category where action needs to be taken to halt the process of 

corrosion, the ideal choice is either repair or rehabilitation. All of these options could be 

eliminated if a chloride prevention system had been installed immediately following 

construction.  In the following three sections, various methods of prevention as well as 

methods of repair and rehabilitation are reviewed. 

2.2.1  Prevention of Chloride Contamination 

 Currently there are several methods to prevent chloride contamination, the most basic 

being barriers and deflection systems.  Gutters and drains can be utilized to guide water away 

from susceptible areas of the structure.  Barriers have been constructed out of masonry, 

which do not actually stop the chlorides (8).  However, the masonry bricks which are initially 



10 

for aesthetics also protect the concrete in that the chlorides will have to pass through the four 

or more inches of cover provided by the masonry to penetrate the concrete.   Another method 

of protection is to add a corrosion inhibitor to either the concrete surface or the reinforcement 

directly.  The inhibitor prevents the cathodic and anodic reactions from taking place at the 

interface of concrete and steel.  However, the inhibitors can be consumed and only work up 

to a given level of chloride ingress (9). 

 A technique that has been popular in Europe is to install a waterproof membrane on 

the decks prior to the laying of the top layer of asphalt.  This system, however, is not without 

problems; these membranes have been known to fail at joints, curbs and drains where 

chlorides can get underneath them.  Also, the membranes can be damaged if the asphalt is too 

hot.  Overall, the membranes only have a life of about ten to fifteen years (3).  A similar 

technique that has been tested is a highly-elastic acrylic rubber coating that can be applied 

over reinforced concrete surfaces (10).  Research has shown that these provide excellent 

resistance against chlorides.  Lastly, as a prevention method, penetrating sealers can be 

applied.  These sealers keep chlorides out of the concrete, but allow water vapor to pass 

through the membrane.  However, sealers do not have the ability to bridge cracks, should 

they be pre-existing.  Sealers lose their appeal in inclement weather.  The concrete pores 

require an adequate amount of water in order to react with the sealer, but not an excess of 

water that it will push the sealer out.  Should it rain during installation, the entire process 

would require a second application, thus increasing the cost of the protective system (3).   

2.2.2  Repair of Chloride Contaminated Concrete 

 Once reinforced concrete has been contaminated by chlorides, there are two 

alternatives outside of replacing it - repair or rehabilitation.  The appropriate system for a 
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given situation depends on the structure type, condition and the structural capacity level that 

needs to be maintained.  To repair chloride damage, one needs to merely replace or fix the 

contaminated parts. However, this only takes care of the symptoms, where rehabilitation 

essentially restores the concrete and reinforcement to their original condition.   

 The first step in repairing contaminated concrete is to remove all unsound material.  

This is accomplished with pneumatic hammers, hydrojetting or milling.  The method chosen 

is a factor of contractor preference and the project budget.  Once the unsound material is 

removed, which should include up to one inch behind the reinforcement, the exposed 

reinforcement surface should be cleaned.  Depending on the severity of the chloride 

contamination and how much material had to be removed, temporary support may be 

required until the repair is complete. Next a sound, cementitious repair material is applied as 

a patch.  The repair material should be chosen so that the steel is returned to a high alkaline 

environment which will promote the reformation of the passive layer (3). 

 When only a patch is used without the benefit of a rehabilitative process, care should 

be taken that the corrosion process is not accelerated. Acceleration of the corrosion is a 

potential threat because the patch can actually halt all anodic reaction in its vicinity and 

therefore stop the production of hydroxyl ions at the cathode that are used in creating the 

passive layer.  This causes the area around the patch to become the new anode where the 

chloride hydroxide ratio can reach a critical level and require balancing, which in turn causes 

the entire area around the patch to corrode.  All this can be avoided with the additional use of 

a rehabilitative method. 

 Another procedure for repairing reinforced concrete columns is to employ a steel 

jacket.  With this method, a steel jacket is placed around the exterior of the column and a 
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grout is placed between the column’s surface and the steel jacket to establish a secure bond.  

This provides confinement for the column, without having to remove and replace the 

unsound concrete.  However, this is a short-term repair; the original corrosion problem needs 

to be addressed by either painting or galvanizing the steel jacket to ensure that it too will not 

corrode once exposed to deicing salts and other forms of chloride contaminants. 

2.2.3  Rehabilitative Methods for Chloride Contaminated Reinforced Concrete 

There are three primary non-destructive rehabilitative procedures available.  All three 

halt or prevent the corrosion process in either chloride contaminated or carbonated concrete.  

This is accomplished by a process that is both electrical and chemical.  An external anode is 

applied to the concrete so that when an electrical current is passed through the anode giving it 

a positive charge, the opposite is happening in the reinforcement.  The entire reinforcement 

surface becomes the cathode.  The three electrochemical extraction techniques are cathodic 

protection, chloride extraction and realkalization; each technique utilizes the basic process 

previously described.   

For cathodic protection, the anode is embedded within the surface of the concrete and 

remains there for the entire life of the structure.  When a small direct current is passed from 

the surface anode to the reinforcement, it forces the anodic reaction to stop at the site of the 

steel concrete interface, leaving only the induced cathodic reaction active.  With the entire 

steel surface as a cathode, the generation of hydroxyl ions increases the alkalinity and 

rebuilds the passive layer.  The chloride ion has a negative charge; therefore, it will be 

repelled by the negative charge of the cathode at the steel and migrate towards the positive 

charge of the external anode.  This method of rehabilitation has been known to last for 

twenty years (3).   
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Figure 2.1  An extreme example of 
spalling concrete (11). 

Figure 2.2  Application of an external anode 
with a spray-on mixture of water 
and cellulose fiber (11). 

The second alternative is chloride extraction.  This is a similar process to cathodic 

protection, but instead of permanently embedding the anode, it is only temporarily attached. 

An electrical power source, higher than that used in cathodic protection, is used to pass a 

direct current from the anode to the cathode so that the entire rehabilitation process requires 

only four to six weeks to complete.  The external anode is usually made of a titanium wire 

mesh which is connected to the concrete surface by a mixture of cellulose fibers and water, 

which is similar to paper mâché (3).  An example of a spalling reinforced concrete column is 

shown in Figure 2.1, and the process of installing the cellulose fibers through a spray mixture 

is illustrated in Figure 2.2. The objective of this process is to transport the chloride ions out 

of the concrete by ion migration under the influence of the electric field generated by the 

direct current.  The system must be kept wet because water is the medium through which the 

current and ions flow.  As these ions migrate towards the external anode, they become 

trapped in the cellulose fibers of the paper mâché.  At the conclusion of the rehabilitation 

period, the external anode is removed in combination with all the trapped chloride ions.  A 
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Figure 2.3  Layout of an electrochemical treatment for a reinforced concrete pier (12).

schematic view that illustrates a plan for chloride removal from a reinforced concrete bridge 

pier using electrochemical extraction is presented in Figure 2.3.  

 The third and newest rehabilitation process is realkalization.  This process is virtually 

the same as chloride removal with a few differences.  A direct current, lower than that used 

for cathodic protection, is used to aid in the chloride transport along with an alkaline 

solution, which contains a high concentration of sodium carbonates that is used as a mode of 

transport instead of only water.   The alkaline solution aids in creating an environment that is 

resistant to carbonation by reducing the pH level to its natural level between 12 and 13 and 

flooding the concrete with sodium carbonates that react with carbon dioxide, thus eliminating 

any threat that the carbon dioxide may pose to the reinforcement.  Laboratory applications of 

this process have shown that this environment makes it very difficult for the concrete to ever 

carbonate again (3).  Velivasakis et al (13) state that once a structure has gone through the 

realkalization process, it will not require future maintenance for carbonation contamination; 

this entire process only takes three to six days to complete.   
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It should be noted that there are various side effects that occur as the result of these 

processes, both beneficial and detrimental to the reinforced concrete system.  Beneficial 

effects include a significant drop in the rate of future corrosion, increased resistivity to future 

chloride and carbonation attacks and an improved resistance to freeze/thaw effects.  The 

prevalent detrimental effect is that of hydrogen embrittlement, which is usually only of 

concern in prestressed concrete structures.  Hydrogen embrittlement occurs when high 

strength steels trap hydrogen atoms created from the rehabilitation processes within their 

framework at defects and grain boundaries.  This causes the steel to weaken and therefore 

causes a premature failure of the structure.  As soon as the electrochemical process induced 

by the rehabilitation method is completed, the hydrogen atoms diffuse into the atmosphere 

and return the steel back to its normal ductile state (13).  

2.3  Fiber Reinforced Polymers 

 Over the last thirty years, fiber reinforced polymers (FRP) have emerged as potential 

solutions to the various problems within the transportation infrastructure.  Most commonly, 

FRP is in the form of sheets or jackets to either restore damaged reinforced concrete to its 

original structural strength or, in certain situations, to increase the original strength as well as 

improve confinement in seismic regions.  This application allows for optimal use of the FRP 

so that advantage can be taken of its material properties, low weight and resistance to 

corrosion.   

 Over the past few years, researchers have become more interested in this last 

characteristic of FRP, its resistance to corrosion.  Various experiments have been conducted 

to determine if a FRP wrap is capable of halting corrosion or at the very least containing the 

chlorides.  In the paragraphs that follow, the use of FRP in various rehabilitation systems as 
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well as the numerous experimental programs in which FRP is subjected to a chloride 

environment are summarized.  A brief synopsis is also included that assesses the performance 

of FRP in various environments.  

2.3.1  FRP Properties and Rehabilitative Characteristics  

 FRP has been utilized in various strengthening systems for several years in areas 

outside of civil engineering.  An example of this is the use of polyvinyl chloride piping 

(PVC).   In the fifties, FRP was used to reinforce PVC piping to increase the pipe’s pressure 

capacity and stiffen the flanges.  The FRP extended the life of the piping as well as aided in 

providing resistance to chemical leakage.  The PVC pipes could crack, but the corrosive 

liquids would only leak through the FRP after prolonged exposure to the chemical attack 

(14).  This same concept has been expanded and used more extensively in civil engineering 

applications.   

 FRP wraps, which are a two part system, have become the most common form.  The 

first part is the fiber itself, which is woven into sheets.  By varying the direction and design 

of the weave, the manufacturers can create fibers with varying strengths and flexibilities. The 

most commonly manufactured fibers employ glass and carbon.  The more commonly 

available fibers are as follows: 

 E-glass is the most common fiber because of its strength and resistance to water 

degradation. It is also used as an electrical insulator. 

 S-type fibers have a higher strength than E-glass fibers and a higher resistance to 

corrosion. 

 C-glass fibers have the highest corrosion resistance of the glass fibers. 
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 Aramid (Kevlar®) is the most common synthetic fiber which displays high tensile 

strength, fatigue and impact resistance, yet its stiffness is significantly below that of 

glass.  

 Carbon fibers are generally five times stronger than glass fibers, have the highest 

stiffness of all the fibers, and resist continuous loads better; however, they are 

significantly more expensive than glass fibers. 

 The second component of the FRP wraps is the epoxy resin that is used to impregnate 

the epoxy sheets.   Once saturated with the epoxy resin, the composite is created and can be 

installed on the concrete surface or, in the case of multiple layers of the composite wrap, to 

itself.  In sheet form, FRP is available in rolls which can then be applied like wallpaper.  

Other forms of FRP are custom manufactured shells that clamp into place around a column, 

various reinforcement and beam cross-sections, and modular protruded bridge deck sections.   

 Today, FRP is no longer being wrapped on just PVC piping, but various reinforced 

concrete structures as well.  FRP wraps have been tested to determine their abilities in 

restoring strength and ductility as well as upgrading seismic resistance.  Experiments have 

shown that stress – strain curves plotted from the testing of the confined concrete have good 

energy dissipation characteristics, which indicates that FRP wraps would aid in preventing 

catastrophic failures in seismic zones (15).  Wraps have proven to be a successful external 

confinement mechanism for strengthening concrete in seismic regions taking the place of 

conventional steel jackets (16).  However, FRP costs more than concrete and steel retrofits.  

This initial high cost is offset by several factors: lesser weight, reduced installation time, 

decreased maintenance and FRP’s resistance to corrosion.  When all these factors are 
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weighed, plus the increase in life expectancy that results with the FRP wraps, the initial costs 

are offset by a savings of 10-30 percent for a 75 year design life (17).    

2.3.2  Research Conducted on FRP and Chloride Contaminated Reinforced Concrete 

 The use of FRP wrap as a means of confinement in seismic regions has been taken 

one step further by researching FRP’s ability to rehabilitate reinforced concrete structures 

that have corroded.  It was stated previously that the corrosion process generates expansive 

forces on the concrete, which causes it to crack and spall.  Experimentation has shown that 

the FRP wrap acts as a remedy for these expansive forces.  Not only does it slow down the 

rate of reaction, but it also confines the concrete core which provides ductility and strength 

for the column (16).  

 There are multiple ongoing experiments that are investigating the effects of wrapping 

chloride contaminated concrete.  Soudki and Sherwood (18) constructed ten reinforced 

concrete beams with seven of them containing variable levels of cast-in-place chlorides.  Six 

of these were then covered with an external carbon wrap and the remaining four were left 

uncovered for baseline comparison.  Accelerated corrosion was then induced using an 

impressed current in four of the wrapped beams and three of the unwrapped beams to varying 

degrees of corrosion: five, ten and 15 percent mass loss.  The carbon wraps proved to be 

successful up to the 15 percent mass loss because no delamination was observed and the 

specimen’s rupture strain was not reached.  The results of a four-point flexure test concluded 

that the carbon wrap increased the yield and ultimate strength by an average 24.5 and 50 

percent, respectively, when compared to the beams that had undergone corrosion with no 

protective wrap.  The CFRP wrapped specimen that had the highest degree of corrosion, a 15 

percent mass loss, had a 30 percent increase in ultimate strength over the unwrapped control 
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specimen that had not been subjected to any accelerated corrosion.  The only case where the 

unwrapped control specimens outperformed the wrapped specimens that were subjected to 

accelerated corrosion was in the case of ductility.  Some loss of ductility was observed in the 

wrapped specimens. 

  Fuentes (19), a graduate student at the University of Texas at Austin, constructed 18 

beams and 42 cylinders that had cast-in-place chlorides along with flexural cracks.  Some of 

these specimens were then damaged further with a chipping hammer so that two different 

patch materials could be evaluated.  Others were sealed with a corrosion inhibitor or wrapped 

with two different FRP systems on both wet and dry surfaces.  These specimens were then 

subjected to a continuous rotation of one week in a 3.5 percent salt solution and then allowed 

to air dry for two weeks.  Every three months, half-cell potential readings were collected 

from all specimens.  The first few readings revealed a 90 percent probability that no 

corrosion was taking place; however, the experimental program will continue monitoring 

these specimens for several years.   

The University of Toronto (20) conducted an experiment using seven third-scale 

models of reinforced concrete columns that had cast-in-place chlorides around the 

reinforcement as well as a high water-to-cement ratio.  Five of these columns were subjected 

to accelerated corrosion by an impressed current through the reinforcement for 49 weeks.  

Next, three of the corroded columns were repaired with a carbon fiber wrap.  It was found 

that the carbon wrap improved the ductility and strength of the corroded members.  

Specifically, the carbon wrap increased the load carrying capacity of one of the columns by 

28 percent and reduced the corrosion rate by 50 percent.  Interestingly, the corrosion 

damaged and wrapped column that achieved the 28 percent increase due to the wrap actually 
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exceeded the load capacity of the control column.  Also, the increased ductility of a wrapped 

column was shown when its axial deformation was greater than six times that of the control 

specimen during the ultimate load test.   

 Teng, Sotelino and Chen (21) conducted experiments that utilized glass wraps in both 

a field and a laboratory setting in Indiana.  Three layers of FRP wrap along with two layers 

of a protective coat were used on reinforced concrete columns.  They were inspected every 

two months for temperature variation between the outside fibers and the core column 

temperature and it was concluded that there was minimal variation.  However, two of the 

wrapped columns were damaged in an automobile incident and it was noted that once the 

epoxy cover was removed, the glass fibers became exposed to moisture and swelled.  This 

increase in volume caused additional damage to other fibers.  In the laboratory, over 80 

specimens were constructed and wrapped with varying layers of FRP or just the epoxy resin.  

These were then subjected to an accelerated corrosive environment where they were cycled 

through one week in a five percent salt solution and then allowed one week to air dry.  This 

continued for 40 weeks.  The final conclusion of this experiment was that the glass FRP and 

the epoxy resin by itself both provide an excellent protection system against corrosive agents.   

 In England, Scarth and Keble have conducted research on aramid FRP’s ability to 

inhibit corrosion and chloride penetration (22).  They selected six reinforced concrete column 

sites that displayed signs of chloride contamination.  It was found that the higher levels of 

chloride were in the bottom third of the column and in joints where water leaked.  However, 

before they could wrap any of the columns they first needed to bring the chloride level below 

0.3 percent by conducting electrochemical chloride extraction.  Their research showed that 

the chloride extraction process only reduced the chlorides by 75 percent in the top layer of 
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concrete.  Due to concern that the corrosion may continue once the wraps were in place and 

there would be no means to visibly inspect the concrete, a permanent corrosion monitoring 

system (PCMS) was installed.  Once this system was in place, a uni-directional aramid FRP 

wrap system was applied to the entire column.  First the wrap system was placed vertically 

along the column with a taper; the top of the column had a minimum thickness of 0.04 in. 

and the bottom had a maximum thickness of 0.5 in.  Once the vertical wraps were in place, 

three layers of the wrap system were then placed along its entire length of the column in the 

hoop direction.  In the last two years, the data from the PCMS have not changed, which has 

led to Scarth and Keble’s conclusion that the aramid FRP provides an impermeable barrier to 

chlorides. 

 The Department of Civil and Environmental Engineering at Florida A&M University 

in conjunction with Florida State University conducted tests that utilized two different epoxy 

resins and carbon FRP as possible chloride barriers (23).  Forty-two 4 in. concrete test 

cylinders were cast with one bar of reinforcement through the center.  By altering the 

orientation of the carbon fibers, epoxy type and the number of wrap layers, 13 different 

surface treatment options were established.  Once these surface treatments were applied to 

the test cylinders they were placed into a five percent sodium chloride solution.  Each 

cylinder was then connected to a DC power supply, in order that an impressed current could 

be initiated.  All cylinders had their corrosion potentials and impressed current flow levels 

monitored continually as well as a periodic visual inspection.  Whenever a spike in electrical 

activity, crack or debonded wrap was noticed, that particular cylinder was pulled from the 

sodium chloride solution and analyzed for chloride content and mass loss.  In general, the 

authors concluded that the type of epoxy resin used does have a significant effect on the 
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specimen’s performance.  Also the specimens with only epoxy resin had 1.5 times the 

amount of chlorides than the specimens with one layer of carbon FRP wrap.  The specimens 

with two layers of carbon FRP wrap had even less chloride levels than those with one layer.  

Overall, the carbon FRP wraps were evaluated as potentially effective in reducing corrosion 

in reinforced concrete structures located in marine environments. 

 Sen, at the University of Florida, has conducted research to assess the long-term 

performance of FRP as a possible prestressing material in marine environments (24).  

Aramid, carbon and fiberglass were the materials investigated.  It proved to be difficult to 

establish a short-term test that could adequately represent a long-term test.  The primary 

reasons for this were the complexities of the degradation of fiber/epoxy system, the lack of 

material data and how to calibrate the results.  A test was created that required 66 precast 

beams that were wrapped with one of the three materials.  The fiberglass was kept in a 

constant environment, partially submerged in a tank that cycled through wet-dry cycles for 

20 months.  The aramid and carbon wraps were kept outside and partially submerged for a 

period of 36 months.  At the completion of these cycles, all beams were tested to ultimate 

capacity.  The results showed that the fiberglass and aramid wraps failed due to the exposure 

of the wet-dry cycling and the carbon fibers showed no reduction in capacity when compared 

to control specimens that did not experience the wet-dry cycling. 

However, the Florida DOT’s (19) tests did not prove to be as successful as those 

previously mentioned.  The Florida DOT wrapped only the mid-splash zone of reinforced 

concrete columns located in a marine environment with a fiberglass jacket.  They found that 

through capillary action the water rose in the column behind the wrap and became trapped 

along with the chlorides it transported which ultimately increased the corrosion rate.  The 
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wrap effectively prevents visual inspections of the corrosion behind the wraps which makes 

this situation even more precarious.  The New York DOT launched a similar program in 

1998 that looked into the effectiveness of FRP for preserving deteriorated concrete (25).  Six 

columns that had extensive deterioration were wrapped on the Court Street Bridge in Owego, 

New York with both carbon and glass fibers.  After five years of exposure to the 

environment, the wraps will be removed along with the columns for testing to determine how 

effective the wraps are as a rehabilitative mechanism. 

2.3.3  Environmental Factors on FRP 

 A concern with the FRP wraps are their ability to endure periods of freeze/thaw as 

well as fluctuating levels of relative humidity.  For instance, a specific concern is that should 

moisture become trapped behind the wrap on a column it could cause a significant increase in 

volume. Because this is all occurring behind the wrap, the possibility of catching the 

corrosive action during a visual inspection is doubtful.  The program that the Florida DOT 

ran had this type of situation occur; however, it was the result of the wrap being installed in a 

marine environment.  

As for the concern with FRP’s durability in environments that go through freeze and 

thaw cycles, various experiments have been run that show that repeated freeze/thaw cycles 

do not significantly damage the anchorage of either glass or carbon FRP to reinforced 

concrete.  Green and Bisby (26) have performed studies to observe the effects of thermal 

expansion and contraction in FRP and concrete due to freeze/thaw cycling.  More 

specifically, they observed the temperature-induced stresses in the adhesive layer of the FRP 

to determine if they caused premature bond failure.  In one of their projects, carbon FRP 

plates were epoxied to concrete specimens.  These were exposed to cold air at -18°C for 16 
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hours and then subjected to a warm bath at 15°C for eight hours, equaling one freeze/thaw 

cycle.  Groups of the specimens went through 0, 50, 150 or 300 of these cycles.   The 

specimens were next subjected to either a pull-off test or a four-point bending test.  Results 

indicated that freeze/thaw cycling did not lower their load carrying capacity, but various 

failure modes were observed.  This is an indication that the adhesive may be affected by 

freeze/thaw exposures.  

A second study by Bisby and Green (27) utilized the same cycling test with both 

carbon and glass FRP sheets attached to the concrete beams instead of the carbon FRP plates 

utilized in their earlier experiment.  The results were similar revealing that the flexural four-

point test indicated no significant damage to the anchorage of the FRP sheets to the beams.  

Again, there was variation in the failure modes that was due to differences in the elastic 

properties of the adhesives.  

Malvar et al (28) investigated epoxy by testing its short-term adhesion characteristics 

with regard to temperature, humidity, chloride content and a primer applied to the test 

specimen’s surface prior to epoxy application.  A pull-out test was conducted to determine 

the effects of these characteristics on the bond interface.  The majority of the results showed 

that the bond strength decreased at high temperatures and humidity, 35°C and 95 percent, 

respectively; therefore, it was concluded that a maximum humidity of 85 percent for adhesive 

application was appropriate.   However, the tests that were run on a concrete pile from a 

marine environment showed an enhanced bond strength because the surface had been 

prepared by hydroblasting the concrete surface and applying a primer.  
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3.  EXPERIMENTAL PROGRAM 

3.1  Field Specimens 

 The experimental portion of this investigation was divided into two parts; field tests 

and laboratory tests.  In the following sections, the process used to determine the location of 

the field test sites as well as the process utilized to collect baseline data from each site are 

described. 

3.1.1  Evaluation and Description of Test Sites 

 A survey of reinforced concrete bridges within forty miles of Ames, Iowa was 

conducted to locate five test sites at which fiber wraps could be applied to bridge piers.  The 

forty mile distance was selected so that all test sites can be inspected within a few hours.  

Also, since data will be collected from each site during the next five years, it is more efficient 

to select test sites in the Ames area.  The first step in this process was to drive the major 

highways in the vicinity of Ames and record the maintenance numbers of every bridge with 

reinforced concrete piers in good condition located along the route.  These maintenance 

numbers were then used to obtain the maintenance histories and descriptions of each bridge.  

From these data, the number of bridges for potential test sites was reduced to nineteen.   

To determine the five most desirable locations from these nineteen, an evaluation 

matrix was created.  This matrix ranked various test site characteristics by giving a higher 

weighted percentage to characteristics that were thought to be more essential to this project.  

At the top of the list was the distance from the columns to passing traffic.  The closer the 

column was to passing traffic, the higher it ranked.  Another characteristic evaluated was the 

safety features along the pier.  For instance, guardrails were weighted higher than jersey 

barriers because the guardrail has an open configuration that will allow spray, which is 
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generated from passing to traffic during wet conditions, to go through onto the column.  

Other characteristics that were considered are condition of the concrete surface, annual 

average daily traffic, distance from Ames and diameter of the column. 

From this evaluation, five test site locations were selected, and are identified in 

Figure 3.1.  Table 3.1 lists the characteristics used in the selection of each test site.  Note that 

in these and other figures that follow, the five test sites have been identified with the label TS 

for “test site” along with a numerical notation.  The columns that were chosen to receive a 

wrap at each test site are designated with a C and the equivalent numerical value of the test 

site.  Therefore, the first test site is represented as TS1 with wrapped column, C1.  Figure 3.2 

through Figure 3.11 are schematic drawings and photographs of each test site to identify the 

column at a given test site that was wrapped with FRP.  Additional information that is 

presented in these figures includes the distance from the face of the column to passing traffic, 

the column diameter and the highway on which the column is located.  In a few of the 

photographs of the columns, Figure 3.5 and Figure 3.9, one can observe the holes where 

baseline data was obtained.   

3.1.2  Acquisition of Chloride Data 

Chloride data were acquired from various locations at each of the five test sites.  This 

required a standard procedure, ASTM C 1218: Standard Test Method for Water-Soluble 

Chloride in Mortar and Concrete (30), for obtaining the data needed in this project.  The 

samples that were gathered for each ASTM test consisted of pulverized concrete (i.e. a 

powder sample).  These powder samples were then analyzed to determine the percentage of 

chlorides they contained.  A template was developed to aid in the collection process of 

powder samples at each test site.  In the following sections, information on the procedure    
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TS3

TS5

TS1

TS2

TS4

Figure 3.1  Locations of all five field test sites in the Ames, IA region. 

 

 

 

 

 

 

 

 

 

 

 

 

Test Site 1 2 3 4 5 
Year Bridge Completed 1966 1966 1938 1964 1958 

2000 AADT            
(Trucks & Buses) 

2,410       
(330) 

13,100     
(*) 

2,010  
(290) 

23,100  
(5,420) 

66,900  
(14,170) 

Distance from Road 
Edge to Column Face 7 ft-2 in. 10 ft-6 in. 5 ft-2 in. 14 ft 10 ft-3 in. 

Safety Feature Guardrail Guardrail Guardrail Guardrail Jersey 
Barrier 

Pier Location 

On Iowa 
#175 at the 

NB I-35 
Junction 

On 13th 
Street, 1.8 

miles 
North of 
Junction 
US #30 

On US 
#65, 1.0 

miles 
North of 
Junction 
U.S. #30 

On I-35, 
2.0 miles 
South of 
Junction 
US #30 

On I-80/35, 
7.7 miles 
West of 
Junction 

Iowa #415 

Estimated Travel 
Distance from Ames, 

(miles) 
24 4 19 7 36 

Table 3.1  Key characteristics of the five field test sites.  

* data not available
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N

7’-2” from 
the front of 
the column 
to the edge 
of the road 

I-35 North Bound Lane 

Ø 2’-6” (typ) 

IA #175 
WBL 

IA #175 
EBL 

C1 

Figure 3.2  Schematic view of TS1 with key dimensions and highways. 

C1 

Figure 3.3  View of C1 prior to the FRP wrap installation. 
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C2 

I-35 North Bound Lane 

N

13th Street 
EBL 

13th Street 
WBL 

10’-6” from 
the front of 
the column 
to the edge 
of the road 

Ø 3’-0” (typ) 

Figure 3.4  Schematic view of TS2 with key dimensions and highways. 

Figure 3.5  View of C2 after baseline data has been collected. 
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Lincoln Highway 

N IA #65 
SBL 

IA #65 
NBL 5’-2” from 

the front of 
the column 
to the edge 
of the road 

C3 

Ø 3’-0” varied 
shape (typ) 

Figure 3.6  Schematic view of TS3 with key dimensions and highways. 

C3 

Figure 3.7  View of C3 prior to FRP wrap installation. 
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N 

Ø 2’-6” (typ) 

I-35 
SBL 

I-35 
NBL 

260th Street 

14’-0” from 
the front of 
the column 
to the edge 
of the road

C4 

Figure 3.8  Schematic view of TS4 with key dimensions and highways. 

Figure 3.9  View of C4 after baseline data have been collected. 
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Morning Star Drive  

N

I-35/I-80 
WBL 

Ø 3’-0” 
     (typ) 

3’-6” 
I-35/I-80 
EBL 

C5 
10’-3” from 
the front of 
the column 
to the edge 
of the road 
 

Figure 3.10  Schematic view of TS5 with key dimensions and highways. 

Figure 3.11  View of C5 prior to FRP wrap installation. 
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used to collect powder samples and the template created for locating each of them are 

presented. 

3.1.2.1  Standard Test Method for Chloride Sample Collection  The powder samples were 

extracted from the reinforced concrete columns using a rotary impact drill.  The drill was 

aligned perpendicular to the column’s surface and engaged until the desired depths were 

reached.  For this project, samples were collected at three depths; 0.5, 1.0 and 1.5 in.  The 

ASTM standard requires that a minimum of 20 grams be obtained for each powder sample.  

The reason for this requirement is to ensure that an adequate sized powder sample is obtained 

from each sample station.  Thus, if a large piece of aggregate is struck with the drill, there is 

a sufficient quantity of the powder sample to determine an accurate chloride level.  To 

prevent sample contamination, several preventative steps are required.  First, when collecting 

the sample, it should not be touched because perspiration from the hands can alter results.  

Also, any tool that is used repeatedly in the collection of samples must be cleaned with either 

a brush, cloth or water rinse.  No lubricants of any kind should be used during this sampling 

process.  As soon as they were obtained, individual powder samples were transferred from 

the test site to a labeled container and transported to the laboratory where they were later 

prepped for the x-ray spectrometer.  The x-ray spectrometer utilizes an analytical method to 

obtain elemental data from powder materials, so that the amount of chlorides in the concrete 

powder can be determined.  The results of this process are given in percent of chlorides. 

3.1.2.2  Template for Data Acquisition  A procedure was developed that can be followed in 

the future to locate sample stations on a particular column and to prevent the re-drilling of 

any sample station.  However, due to the numerous factors that describe the location of each 

powder station, a key was developed to locate their origins.  Henceforth, the abbreviations in  
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Table 3.2  Key for identifying each sample test site. 
TS =  Test Site: 1, 2, 3, 4, 5

E =  Elevation: T (Top), M (Mid), L (Low)
P =  Perimeter: 1, 2, 3, 4
D =  Depth: 0.5, 1, 1.5

Table 3.2 will be used.  An example of an identification label for a powder station using 

these abbreviations would be TS5.EM.P2.D1.1.  Figure 3.12 is a visual guide to explain the 

origin of this powder station.  The “TS5” indicates that the powder sample was taken at test 

site five, whereas the “EM” specifies that the powder sample was obtained at mid-elevation, 

three feet above the ground as shown in the figure.  Since the FRP was installed on the 

bottom five feet of each column site, data were collected at three elevations: one, three and 

4.25 ft from the ground surface.  Henceforth, these elevations will be described as Low (one 

ft), Mid (three ft) and Top (4.25 ft), and they are illustrated in Figure 3.13.  “P2” is the 

number two position around the column’s perimeter, which is indicated by the shaded 

number in Section A-A of Figure 3.12.  The label “D1” means that the powder sample was 

obtained from a depth of 1.0 in.  Finally, the last number, “1” in this example, indicates that 

this sample came from the first position on the template, which is shown in Detail B of 

Figure 3.12.  A more comprehensive depiction of the template is shown in Figure 3.14.  More 

details on each of these locating features are presented in the following paragraphs.   

 The perimeter of each column (C1 through C5) selected as a FRP wrap site has 12 

sample stations at various elevations.  The primary layout for these sample stations around 

the column’s perimeter are illustrated in Figure 3.15.  The letter “d” represents distance from 

the face of the column to the edge of the nearest traffic lane; these distances were given in 

Table 3.1.   
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 6’ 

 2’ 

 1’ 

 1’- 8”   
Top 

Mid 

Low 

 1’- 3” 

Locator Arrow 

Figure 3.13  The three elevations used for powder sample collection. 

5 ft of Fiber 
Reinforced 
Polymer Wrap 

 3’ 

Mid 

A A 

Detail B 

a.) Side view of wrapped column

60°

60°

1

4 

3

2

b.) Section A-A 

c.) Detail B 

Figure 3.12  Visual aid for the location of the powder sample in the example label. 
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11 

5 

10 

1 7 

2 

9 4S 

3 

6 

8 

5S 

11S 

10S 

1S 7S 

3S

6S

8S
4 

2S

9S

R=6 in. 

R=3 in. 

   a.) Schematic of template b.) Actual template used in the field

c.) Template in use at TS5 

Figure 3.14  Details of the template. 
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R
oa

d 
d

Detail A 

a.) Plan View 

Columns 

60° 

60°

1 

42 

3 

b.) Detail A 

3 

60° 

1

2 4

Note: Numbers identify the layout for sample stations around the outside 
perimeter of the column. 

c.) Alternate Detail A for TS3 

Figure 3.15  Perimeter locations of powder sample stations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The template created is shown in both Figure 3.14 a. and b., where the numbered 

circles identify the stations for obtaining powder samples.  After one station is used, it is 

crossed off; the next ascending number is used the next time samples are obtained.  Note that 

there is a second set of numbers with a label “S” on the template.  These secondary sample 

stations are identified and should be used if a safety feature, such as a guardrail, makes it 

difficult to obtain a powder sample at the desired sample station.   
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3.1.2.3  Collection Procedure for Field Test Sites  At each test site, several measurements 

were taken to establish each powder sample station.  To begin, each of the four points around 

the column’s perimeter shown in Figure 3.15 were located.  Next, the locator arrow 

illustrated in Figure 3.16 was painted on the concrete’s surface six feet above ground level at 

each of the four points.  The locator arrow served as a marker to establish the vertical 

centerline of the template.  Using a “plumb-bob” positioned on the locator arrow, a vertical 

reference line was established as shown in Figure 3.17.  The Low, Mid and Top elevations 

were marked on the vertical reference line.  As previously noted, the FRP wrap only covered 

the lower five feet of the column; therefore, having the locator arrow at six feet kept it 

isolated from the wrap. 

 Once all 12 sample stations at a given test site (TS1, TS2, TS3, TS4 and TS5) were 

marked, drilling could commence.  At each of the 12 sample stations, data were obtained at 

three depths, 0.5, 1.0 and 1.5 in.  The three different depths made it possible to create a 

chloride penetration profile.  To eliminate as many opportunities for contamination as 

possible, the top 1/16 in. of dust generated from the concrete surface was discarded.  The 

hole was then blown out with compressed air to remove any powdered material remaining in 

the hole.  Next, as shown in Figure 3.18, a paper collector was placed beneath the hole. The 

hammer drill utilized created a considerable amount of dust; thus, approximately half the 

powder sample was lost to the atmosphere.  This was resolved by placing a plastic bag 

around the drill-bit and holding the open end against the concrete surface.  The bag collected 

the dust off the drill-bit, which was poured into the paper collector when drilling was 

completed; this process is illustrated in Figure 3.19.  
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Figure 3.16  One of four locator 
arrows used to establish 
the perimeter positions. 

  Figure 3.17  Use of a “plum-bob” to 
position the template. 

Figure 3.18  Powder collector in place at a sample station. 
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Figure 3.19  Hammer drill and plastic bag utilized in powder collection. 

  Concrete powder that remained in the hole was then collected with a brush.  Once 

again, compressed air was blown into the hole to remove any powder that remained.  This 

cleared all material from the hole so the next sample would be free of contaminants.  The 

powder sample was then poured into a labeled container.  The paper collector and plastic bag 

were replaced after collecting each powder sample.  The drill bit was cleaned and the 

equipment was then ready for the next sample site.  Once samples were obtained from all 

three depths, the holes were immediately patched with a non-shrink grout.  In situations 

where samples were obtained from a column with a wrap in place, an additional protective 

topcoat was applied over the patch.     

 

 

 

 

 

 

 

 

 

 It should also be noted that in addition to the five test columns selected in the field to 

receive an FRP wrap system, a second column at each test site was used as a control.  These 

are identified in Appendix A.  The control column was the neighboring column to the 

wrapped column at most test sites.   Baseline data were collected from these secondary 

control columns using the same method as was used on the wrapped columns.  With the 
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control column data, it will be possible to compare the chloride penetration results from a 

wrapped column to an unprotected column at the conclusion of this project.  Baseline data for 

these control columns is presented in Appendix B along with the baseline data for the 

wrapped test columns. 

3.2  Laboratory Specimens 

 The laboratory portion of this project consists of two slabs subjected to the AASHTO 

T 259-80 ponding test (5).  The laboratory tests are to determine the effectiveness of the FRP 

as a barrier to chlorides in an accelerated environment.  One slab was constructed for use as a 

control and the second one was for testing the permeability of the various FRP wraps.  This 

portion of the project will also be monitored over a five year period.  The following sections 

describe the AASHTO ponding test and the construction of the two slabs in the laboratory 

utilizing the AASHTO test as guide. 

3.2.1  AASHTO Ponding Test 

 As stated previously in Chapter One, the T 259-80 test is the Standard Method of Test 

for Resistance of Concrete to Chloride Ion Penetration.  This test was used to establish the 

effects of varying a concrete’s properties to chloride penetration.  The parameters that can be 

varied include cement type, water-cement ratio, admixtures and differing curing treatments.  

However, there is also another statement within the test procedure that allowed for the 

evaluation of a special overlay material that is installed on the specimen.  For this project, the 

special overlay was the FRP wrap system.   

 The AASHTO test required a minimum slab thickness slab of two inches when a 

special overlay is evaluated.  This test also specified that dams with a minimum height of 

0.75 in. above the concrete surface are to be placed around the perimeter.  The dam can be 
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cast monolithically with the slab or it can be created from a secondary material and placed 

either during the casting or after it has cured.   

 The degree of saturation in the slab at the time of ponding affects the chloride ingress; 

therefore, the AASHTO test required that the slab have 28 days to air-dry prior to any 

ponding.  This eliminates variation in the results because concrete that was saturated prior to 

ponding absorbed significantly less water, which reduced chloride absorption during the 

ponding.  At the end of the 28 day air-dry period, the slab is to be subjected to 90 days of 

continuous ponding with a three percent sodium chloride solution.  The minimum depth of 

ponding was 0.5 in.  To maintain this depth, glass plates were recommended to be installed 

over the slab to reduce evaporation.  It is noted that additional sodium chloride solution can 

be added if evaporation does occur.  At the end of 90 days, the solution is drained and the 

surface is allowed to dry. 

 The final step in the AASHTO ponding test was to obtain a sample.  First, any 

accumulation of salt crystal residue should be removed.  Then powder samples can be taken 

from the concrete at depths of 0.5, 1.0, and 1.5 in., which were the same depths that were 

used in the field tests.  Each powder sample can then be evaluated with an x-ray spectrometer 

to determine its chloride content.   

3.2.2  Specimen Geometry and Fabrication 

 For this project, two slabs were constructed for the laboratory specimens.  One slab, 

Slab 1, has all five FRP wraps installed on it along with the two protective topcoats; the 

second slab, Slab 2, was used as a control.  Recall from the description of the project that 

data will be collected for five years, which means that 18 ponding cycles will occur.  At the 

end of each ponding cycle, three powder samples were taken from beneath each FRP wrap 
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Figure 3.20  Slab 1 after all five FRP overlays and topcoats have been installed. 

and protective topcoat to establish an average chloride content.  Sample stations in the slab 

were on 1.5 in. centers.  Therefore a minimum area of 413 in2 was required for the 54 

chloride sample sites per overlay segment.  For each of the wraps there are three segments: 

one with one layer of FRP, one with two layers of FRP and one with three layers of FRP.  

Figure 3.20 is a photograph of Slab 1 and Figure 3.21 is a schematic of the various FRP 

segments on Slab 1.  The letters A through E identify the five FRP wraps while T and P 

identify the two protective topcoats used.  Finally, additional area was required for the lifting 

hooks and the dam around the perimeter of the FRP.  Therefore, Slab 1 was constructed 8 ft 

square x 4 in. thick.  Note this thickness met the required two inch minimum thickness for 

the AASHTO ponding test.  Number three rebar spaced on 12 in. centers in both directions 

was used for the reinforcement in the Slab 1.   

 The second slab, Slab 2, constructed was used as a control where one half was left 

untouched for baseline data, and the second half was left unprotected and subjected to the 

three percent sodium chloride solution.  The sodium chloride solution was ponded directly  
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One 
Layer 

Two 
Layers 

Three 
Layers 

A T P E D C B 

Lifting Hook (typ) 

Figure 3.21  Slab 1 layout for each product and the number of layers. 

 

 

 

 

 

 

 

 

 

 

 

 

onto the concrete’s surface to observe the digress of the concrete when there were no 

special overlays.  Because there were only two sections on Slab 2, it only required area for 

two sets of 54 test sites.  Thus, Slab 2 could have been made 2 ft x 4.5 ft x 4 in., but for 

convenience the slab was constructed 2 ft x 8 ft x 4 in.  Slab 2 could then span Slab 1, which 

created a platform on which electric mixers used to agitate the sodium chloride solution 

could be mounted.  More details on the mixers are provided later.  Number three rebar spaced 

at 12 in. on center in both directions was installed in Slab 2 for reinforcement. 

 For this project, plexiglas was used to create the dams.  They were embedded in the 

concrete to resist pull-out as well as prevent leakage of the sodium chloride solution.  This 

was accomplished by drilling 3/4 in. holes every three inches along the bottom of the 

plexiglas.  The total height of the plexiglas was three inches, thus permitting 1.5 in. to be 
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Figure 3.22  Stacked position of Slabs 1 and 2. 

embedded into the concrete.  Once the surface of the wet concrete was leveled, the dams 

were placed with the use of a vibrator, which allowed the concrete to flow through the holes 

in the plexiglas, which in turn anchored the dams in the slabs.  As an extra precaution against 

leakage, a bead of silicone was placed along the inside and outside of the plexiglas dams.   

 Both slabs were allowed to cure for 14 days in a moist environment after which they 

were given a 28 day drying period in accordance with AASHTO T 259-80.  As the different 

FRP wraps arrived, they were installed on Slab 1, using the same process as was used for 

field installation.  An overview of this process is described in Section 3.3.2 with a detailed 

procedure for each FRP wrap given in Appendix A.  The only difference between the field 

and laboratory applications was that Slab 1 received one, two and three layers of FRP wrap, 

whereas the column test sites only received one layer.  The final segments on Slab 1 were 

painted with the two topcoats that were used in the field. These topcoats were installed with a 

paint roller.  Note that these topcoats were not applied to the FRP wraps, Products A-E, on 

the laboratory specimen, thus creating a more severe situation. 

 With everything installed, Slab 1 and Slab 2 were subjected to the three percent 

sodium chloride solution.  Figure 3.22 illustrates the two slabs stacked and ponded.  Lastly,  
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Figure 3.23  Electric mixer with a plastic paddle blade to prevent corrosion. 

to minimize evaporation, the ponded surfaces were covered with plastic sheeting.   

3.2.3  Circulation System 

 A system utilizing two electronic mixers placed on both sides of Slab 2 was 

introduced in the laboratory to keep the sodium chloride in solution.  One of the electric 

mixers is shown in Figure 3.23 while the photograph in Figure 3.24 illustrates the position of 

the two mixers on Slab 2.  The electronic mixers operated a paddle blade that stirs the 

solution.  Note that the paddle blade is fabricated from plastic to eliminate corrosion.  This 

circulation system prevented the chloride particles from settling out to maintain a constant 

three percent sodium chloride solution.  Due to the small surface area that is ponded on Slab 

2, electronic mixers were not required.  Another complication with the large surface area was 

evaporation, thus additional sodium chloride solution needed to be added.  With the mixers, a 

uniform mixture was quickly achieved between the existing and the added solution.  
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Figure 3.24  Position of the two electric mixers on the stacked slabs. 

 

 

 

 

 

 

 

 

 

 

 

3.3  FRP Material 

 This section describes the five different FRP wraps used in this project and the 

general application procedure used.  Information on the products used at each of the five test 

sites (TS1 through TS5) is also provided. 

3.3.1  Summary of FRP Properties  

 Both carbon and glass FRP wraps were employed to determine their effectiveness as 

a barrier to chlorides when combined with an epoxy matrix.  Table 3.3 summarizes the 

various material properties for each of the five FRP wraps used.  These values were provided 

by the manufacturers, and are for one layer of resin undercoat, one layer of fibers and one 

layer of resin overcoat.  The manufacturer of Product A included a disclaimer that these 

values were for informational purposes only because it is improbable that the resin thickness 

used to arrive at these results would be the same as used in an actual application. 
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Product Fiber Type
Composite 
Thickness 
(inches)

Tensile 
Strength      

(psi)

Tensile 
Modulus      

(psi)

Elongation    
(%)

A* Carbon 0.032 115x103 6.9x106 1.70
B  Glass 0.1 44.8x103 2.8x106 1.60
C Carbon 0.1 135x103 11.5x106 1.20
D Carbon 0.04 104x103 9.5x106 0.98
E Glass 0.04 81x103 3.5x106 2.23

*For the tensile strength and tensile modulus of the composite system the contribution 
of the resin is neglected.

Table 3.3 Material properties for the five FRP wraps.  

 

 

 

 

 

 

 

 

3.3.2  FRP Installation Process 

 Of the five FRP wraps described in the previous section, four of them required a very 

similar wet lay-up installation process; therefore, this section will focus on a typical wet lay-

up procedure.  More detailed information on each wrap system is provided in Appendix A, 

which contains an installation manual that guides the reader through each step of all five 

products’ application techniques as well as lists the tools required for installation. 

3.3.2.1  Typical Application for Fiber Wraps  Each FRP wrap system required a strong 

bond between the fibers and the concrete surface, which was accomplished by properly 

preparing the surface.  All cracks and voids in the concrete’s surface greater than 1/32 in. in 

depth or width were filled with a non-shrink grout or putty that had been supplied by the 

manufacturers of the various fiber wraps.  Next, any irregular spots were ground down so 

there was less than 1/32 in. fluctuation along the general concrete surface.  The grinding 

process also removed any stains or existing paint that could lead to potential de-bonding of 

the fiber wraps.  Figure 3.25 illustrates this grinding process.  Once a uniform surface was 
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Figure 3.25  Preparation of the 
concrete surface. 

Figure 3.26  Cutting the fiber sheets. 

established, the pores of the concrete needed to be opened to receive the first layer of epoxy.  

Grinding generated dust, as did passing traffic, which was removed from the concrete’s 

surface to open the pores.  Dust was removed using one of the following methods: power 

wash, sand blasting or pressurized air.  However, when power washing was utilized, the 

concrete surface had to dry prior to the wrap installation. 

 Next, the fiber sheets were cut to their required lengths, which included the 

development lengths specified by the manufacturer.  When cutting the sheets to length it was 

recommended that the lengths be kept less than 20 feet for ease of handling.  All five 

products were cut prior to the epoxy installation.  Scissors or a rotary knife was adequate to 

cut through the fabric as illustrated in Figure 3.26.   
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 For the wet lay-up field applications, a trough was constructed to aid in the epoxy 

saturation process.  The trough consisted of plywood spanning over two sawhorses with a 

plastic sheet placed over the top to protect the plywood.  Another option was to have a 

mechanical saturator on site, which is usually used on larger projects.  Once the trough was 

in place, the first batch of epoxy was mixed for the prime coat.  Each product had a two part 

epoxy system, a hardener and a resin.  Every manufacturer specifies the ratio to use when 

mixing these two parts and provides a time chart that indicated the pot life of each product 

with respect to the current temperature.  Both parts were blended with a drill utilizing a 

paddle blade for the time specified by the manufacturer.  After the epoxy was mixed, it was 

applied to the concrete’s surface with a paint roller.   

 With the prime coat in place, the sheets were saturated with epoxy and prepped for 

installation.  To saturate the FRP, the sheets were placed in the trough and the epoxy was 

poured directly onto them.  A squeegee was utilized to spread and work the epoxy into the 

fibers; this process is illustrated in Figure 3.27.  Fiber sheets were turned over and the same 

process was repeated on the backside to ensure that the sheets were completely saturated.  

Sheets were then rolled onto a piece of PVC piping for ease in installation and transport.  The 

FRP sheets are transferred onto the concrete surface by unrolling them from the pipe, as 

shown in Figure 3.28. 

 A paddle wheel was rolled over the entire FRP wrap in the direction of the fibers to 

allow air to escape as it pushed the fibers into the epoxy and impregnated them.  If 

misalignment of the fibers occurred, then the backside of a gloved hand was used to smooth 

the wraps in the direction of their fibers to minimize the misalignment.   
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Figure 3.27  Work the epoxy into the fibers with a squeegee. 

Figure 3.28  For ease in installation, unroll the FRP sheets onto the column. 
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 An overcoat of the same epoxy used for the primer and in the saturation process was 

required.  It was applied when the fiber layers became tack free, which can take from a half 

hour to three hours depending on the temperature and humidity.  The overcoat was installed 

with a paint roller using the same method as was used in the application of the prime coat, 

with the exception that the roller needed to follow the direction of the fibers to prevent 

misalignment.  Figure 3.29 is a completed column with entire wrap system in place.  The 

dark strip at the top of the wrap system in the figure was a piece of duct tape that was used as 

a guide during installation. 

 The fiber wrap application process was essentially completed at this point; however, 

at each test site a protective topcoat was applied to provide protection against sunlight, fire, 

vandalism as well as improve aesthetics.  Most FRP wrap suppliers recommend a preferred 

product or paint type.  Figure 3.30 illustrates a completed FRP wrap on a reinforced concrete 

column with the topcoat in place.   

 

 

 

 

 

 

 

 

 Figure 3.29  Completed glass FRP 
wrap at TS1. 

 

Figure 3.30  Finished FRP wrap 
with topcoat installed 
at TS1. 
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Table 3.4  Products used at the various test sites. 

3.3.2.2  Installation Locations Specific to Product Type  The five wrap systems and their 

corresponding locations in the Ames area are listed in Table 3.4.  As stated previously, the 

five FRP wrap systems were given the identification A through E.  At each of the five test 

sites, topcoats were installed on the wrap systems; Product P was used at TS4 while Product 

T was used at the other four test sites. 

 

 

 

 

3.4  Acquisition of Environmental Data 

The AASHTO ponding test conducted in the laboratory required a solution of three 

percent sodium chlorides.  However, a relationship needed to be established between the 

laboratory work and the sodium chloride content of slush that the test sites will experience.  

Therefore, slush samples were collected from each column site to determine if the three 

percent standard was an adequate representation of the chloride content in the spray 

generated by passing traffic.  During the first winter season (2002) after installation of the 

FRP wraps, samples of slush were collected after three different snow storms.  Figure 3.31 

and Figure 3.32 are photographs that illustrate the height of the spray, which was about 5.5 ft 

to 6 ft.  The first winter season after installation of the wrap systems was mild, which was 

indicated by the fact that the Iowa DOT in the Ames region only had to salt the roadways 17 

times.  Analysis of the samples collected at all the tests sites revealed an average of 1.2 

percent of sodium chlorides in the slush.  However, a peak of five percent was noticed at 

Test Site  FRP Wrap System 

TS1 E 
TS2 B 
TS3 D 
TS4 A 
TS5 C 
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Figure 3.31  TS1 with snow splash (3/10/03). 

Figure 3.32  TS3 with snow splash (3/10/03). 

TS5, which is an indication that during winters with more severe storms, the ice and snow 

removal programs would be more aggressive.  Therefore, sodium chloride in the slush would 

more than likely be higher than 1.2 percent.  The three percent standard may be more 

accurate during more severe winter seasons and not as conservative as it appears to be for 

this first season. 
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4.  RESULTS 

4.1  Laboratory Specimens 

 This section contains the results for the laboratory Slabs 1 and 2 after three ponding 

cycles have been completed.  There is also a brief review of a problem that occurred when 

collecting powder samples after the first cycle and how it was corrected. 

4.1.1  Chloride Penetration in the Laboratory Specimens 

 In January 2002, the laboratory slabs were completed and the AASHTO ponding test 

was initiated.  The results to date are displayed in Figures 4.1 - 4.6.  As shown in these 

figures, data were only collected at depths of 0.5 and 1.0 in.  At this time, three 90 day 

ponding cycles have been completed.  The chloride penetration profile results for the five 

FRP overlays are presented in the first five figures, with the results for the two topcoats 

presented in Figure 4.6.  The data for these chloride penetration profiles were obtained from 

the region in Slab 1 that had only one layer of FRP overlay, unless indicated otherwise.  In 

the figures, the unprotected concrete data points were from the unprotected side of Slab 2 that 

had the three percent sodium chloride solution ponded directly on the concrete surface, and 

the baseline concrete was the level of chlorides within the side of Slab 2 that was not 

subjected to ponding.  At the completion of the first cycle, an error in the collection 

procedure occurred that altered all the results.  Details are given on this problem in      

Section 4.1.2. 

 All FRP overlays have kept the chloride level below the corrosion threshold.  

Products A, B, C and E (Figure 4.1 - 4.3 and Figure 4.5) have more specifically kept the level 

of chlorides the same as in the concrete in Slab 2 not subjected to the sodium chloride 

solution.  This indicates that these four products have prevented chloride penetration to the  
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Figure 4.1  Chloride penetration profile for one layer of Product A.  
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Figure 4.2  Chloride penetration profile for one layer of Product B.  
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Figure 4.3  Chloride penetration profile for one layer of Product C.  
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Figure 4.4  Chloride penetration profile for two layers of Product D.  
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Figure 4.5  Chloride penetration profile for one layer of Product E.  
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Figure 4.6  Chloride penetration profile for Products T and P.  
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concrete.  Since one layer of these FRPs prevented chloride penetration, there was no need to 

test the chloride level in the region with two or three layers of FRP.  The results for Products 

A, B, C and E corresponded with those of Scarth and Keble (22) who wrapped reinforced 

concrete columns with at least three layers of aramid FRP for a test period of 1.5 years.  

Their results indicated that the FRP was impervious to the chloride splash from passing cars.  

The results also validated the findings of Teng, Sotelino and Chen (21) who subjected 80 

specimens (wrapped with varying layers of glass FRP) to an accelerated corrosion 

environment and determined that the FRP wrap and the epoxy resin itself provided excellent 

protection against chloride penetration. 

 In each of the Figures 4.1 - 4.6, a curved line is displayed that represents the data for 

the unprotected ponded side of Slab 2.  After nine months of ponding, it also has not reached 

the corrosion threshold.  However, the curved line represents a continuously increasing 

amount of chlorides at a depth of 0.5 in.  As the amount of chlorides in the concrete increases 

in the ponded side of Slab 2, the level of chlorides can be compared to the level of chlorides 

obtained from beneath the FRP overlays.  This comparison provides a quantifiable amount of 

chlorides that the FRP overlays have “blocked.”   

 As previously noted, Figures 4.1 - 4.5 indicate that all products except for Product D 

in Figure 4.4 have essentially the same results.  The results from the second ponding cycle 

indicated that chlorides had penetrated the FRP overlay.  Upon reviewing the collection 

process, it was determined that Product D had a problem that none of the other FRP overlays 

experienced.  It was observed that as compressed air was blown into a sample collection 

hole, the surrounding fiber overlay separated from the concrete slab.  This could be caused 

by either the wrap delaminating after six months or there was an existing air pocket where 
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the samples were taken.  In the laboratory experiment, Products D and E were installed with 

the same epoxy resin; since Product E has not displayed a similar phenomenon, there must 

have been a poor bond between the FRP and the concrete (i.e. an air pocket).  This incident 

reinforced the importance of using the air removal roller when installing the FRP wrap 

overlay on the slab.  It is highly probable that the bottom layer of the wrap system was not 

rolled sufficiently, which left a pocket of air between the FRP overlay and the concrete 

surface.  To correct this problem, as epoxy resin was applied as a sealer over the patches, it 

was allowed to seep underneath the fiber wrap system to fill the air pocket.   

 Even though the air pocket was fixed, to eliminate any additional problems, the 

samples from the third cycle were taken in an area approximately 6 in. from the problem 

area.  The results for the third cycle in Figure 4.4 indicate that all chloride levels for Product 

D dropped to match the baseline concrete chloride levels with one exception.  The chloride 

level at 0.5 in. below one layer of FRP overlay continued to indicate that chlorides had 

penetrated the single layer of overlay.  This means to date that although Product D has kept 

the chloride level below the corrosion threshold, it has allowed a small level of chlorides to 

penetrate. 

 The topcoat results are displayed in Figure 4.6.  After three cycles, both topcoats have 

kept the chloride levels below the corrosion threshold.  There has been an increase in 

chlorides at the 0.5 in. depth for both topcoat products.  However, at the 1.0 in. depth no 

increase in the chloride content above the baseline data in Slab 2 has been observed.  

Therefore, over time more than likely the topcoats installed on the columns in the field will 

not be sufficient to prevent chloride penetration.   
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4.1.2  Laboratory Experimental Errors 

 Observe in Figures 4.1 - 4.6 that there is no data point for the first ponding cycle.  At 

the conclusion of the first cycle, the chloride levels in some of the powder samples collected 

from the areas with an FRP overlay were higher than the level of chlorides in the unprotected 

portion of Slab 2 that was exposed to the chloride solution.  After an investigation into the 

possibility of contamination, it was determined that all five FRP overlay systems contained 

between 0.1 and 0.3 percent chlorides by weight.  These were small amounts; however, recall 

that 0.2 percent chlorides by weight was the corrosion threshold for diffused chlorides.  

Therefore, if just a few of these fibers were in a powder sample it would alter the results.  As 

a remedy to this problem, a grinder was used to remove all fibers within in a 2 in. diameter 

area of the powder sample station.  This process was used to obtain powder samples for the 

subsequent cycles as well as for obtaining the field samples.  Figure 4.7 and 4.8 illustrate a 

patch used with the initial sample acquisition process and the improved process, respectively.  

Observe in Figure 4.7 that a hole was drilled through the FRP overlay and the underlying 

concrete.  With this process, as the bit in the hammer drill used to obtain the sample rotated 

against the fibers, the sample became contaminated with pieces of the overlay’s fibers.  Next 

observe in Figure 4.8 where a grinder has been used to remove a portion of the surrounding 

FRP overlay.  The sample was obtained near the center of this region without the bit coming 

into contact with any of the FRP overlay. 

4.2  Field Test Site Columns 

 This section contains the results from the field test sites one year after the FRP wrap 

installation.  A review of the baseline data collected prior to the wrap is also included. 
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Figure 4.7  Epoxy patched sample stations from the first cycle. 

Figure 4.8  Sample stations from the second cycle where the surrounding FRP fiber system 
has been removed. 
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4.2.1  Chloride Penetration in the Field Test Columns 

 A summary of the research conducted on one column test site (i.e. representative 

data) is presented in this section as well as a review of the baseline data.  All five test sites 

had a FRP wrap system (Products A – E) in place prior to the 2002 winter season.  

Essentially all test sites had the same results, therefore only the data obtained at TS1 will be 

reviewed in this section as the same conclusions can be made for the other four sites.   The 

results for TS1 are displayed in Figure 4.9 and a discussion on these results is presented in 

the following sections.  Data for the remaining test sites are presented in Appendix B.  

However, note that the section on baseline data includes a discussion on leaching phenomena 

observed at TS4. 

 4.2.2  Review of Baseline Data 

 Baseline data were gathered during the summer of 2002 and is displayed as the June 

2002 data in Figure 4.9.  As mentioned previously, baseline data were collected at three 

depths and at twelve locations on the column’s perimeter.  The baseline data generated a 

comprehensive overview of the chloride levels beneath the column’s surface.  After all the 

powder samples were analyzed, it was noted that for all three heights; low, mid and top, 

Positions 1 and 2 were consistently the samples with the highest level of chlorides.  Note that 

the sketch of the column in Figure 4.9 illustrates Positions 1 - 4 around the column, with 

Position 2 being the closest to moving traffic.  Since each test site had higher chloride levels 

in relatively the same location, the decision was made to only test one height at each of the 

five stations for the next five years.  For each test site, the “Mid” elevation is the only 

elevation that has a second data point representing the chloride level after the first year with  
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Figure 4.9  Chloride content at the Mid-height position of C1. 
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the FRP wrap.  Therefore, the data displayed in Figure 4.9 is only for the “Mid” elevation; 

see Figure 3.13 for the height of this elevation.  In Figure 4.9, there are four graphs, each a 

display of the chloride profile at the four perimeter locations Position 1 - 4.  However, for 

this graph they were labeled M1 - M4, indicating a mid-height elevation.  The graphs in 

Appendix B for all test sites also utilize the labels “T” and “L” representing top and low 

elevations respectively.   

 Only M1, M2 and M3 were tested; M4 was the perimeter location farthest away from 

moving traffic, hence the baseline data resulted in negligible amounts of chloride.  The 

baseline data has results for 0.5, 1.0 and 1.5 in., but only the 0.5 and 1.0 in. depths have been 

tested after the first winter season.  This was done because this project has a focus on 

chloride penetration, where change should occur at the 0.5 in. depth prior to any other depths.  

However, due to concern with fiber contamination, both the 0.5 and 1.0 in. depths were 

analyzed.   

 Also included in the baseline data were chloride results for a neighboring column at 

each of the selected test sites, which are each located on plan views in Appendix A (see 

Figures A.1, A.3, A.5, A.7 and A.8).  Their results are displayed as control points for the top 

and low elevations in the figures presented in Appendix B.  With these controls in place, 

observations can be made of the chloride ingress for columns with and without a FRP wrap 

system in place. 

4.2.2.1  Leaching Occurrence at TS4  Finally, a noteworthy occurrence in the baseline data 

was that occasionally the chloride percentages at the depths of 1.0 and 1.5 in. were greater 

than those at 0.5 in. as shown in Figure B.9 in Appendix B.  The intermittent large aggregate 

that can be struck while drilling may explain this random variance.  Most aggregates used 
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today in reinforced concrete do not contain chlorides; however, the cement around the 

aggregate can have a build-up of chlorides.  This could indicate a higher level of chloride 

ingress at greater depths when an aggregate is struck within 0.5 in. of the concrete surface.  

Nevertheless, ten of the eleven sample stations at TS4 displayed this type of phenomenon.  

Therefore, another hypothesis was needed because varying aggregates beneath the concrete 

surface cannot explain how chloride percentages at 1.5 in. were greater than those at 0.5 in. 

for almost an entire test site. 

 One possibility is that leaching of the chlorides took place during the summer months 

due to hard rains.  Leaching will occur in the exterior cover of the concrete’s surface, which 

reduces the chloride content at the 0.5 in. depth.  Depending on the depth of leaching, it is 

possible that the chloride levels at a depth of 1.5 in. can be greater than the chloride levels at 

1.0 and 0.5 in.  Mejlbro and Pousen (31) noted this phenomenon in their work on modeling 

chloride profiles within concrete structures as a result of exposure to de-icing salts.  They 

recognized that their model for chloride ingress could not be based solely on the 

accumulation of chlorides over the winter months, with the chloride levels remaining stable 

over the summer season.  Although there were not enough data to show the relationship 

between the depths of chlorides in concrete versus time to establish a rate at which chlorides 

were leached over the summer season, they were still able to create a single model by piecing 

together several linear functions versus time.  Presumably at TS4 the column (C4) had been 

exposed to harsher rains that the other four locations, which ultimately caused the leaching of 

chlorides that reside in the shallower depths (0.5 and 1.0 in.). 
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4.2.2  Discussion of TS1 Results 

 Recall that the data for TS1 are presented in Figure 4.9 and that only the mid-

elevation has a second set of data points.  Overall, the baseline data and subsequent samples 

are below the corrosion threshold of 0.2 percent.  At M1 and M2, up to a 0.02 percent 

decrease in chloride content is observed at a depth of 0.5 in., with a small increase in M1 at a 

depth of 1.0 in.  These minor differences may be a result of samples obtained from offset 

sample stations.  Since a same sample station can never be used twice (see template in Figure 

3.15), an offset station is used, thus the possibility of change beneath the concrete surface is 

increased.  At various sample stations, a large aggregate may be the majority of the powder 

sample and a few inches away another station may contain a large percent of cement, which 

contains higher levels of chloride than the aggregate.  For both 0.5 and 1.0 in. depths the 

chloride content has not increased since the wraps were installed. 
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5.  SUMMARY AND TRENDS 

5.1  Summary 

 Every year the United States spends an average of $1.5 billion on snow and ice 

removal programs.  Over 1/3 of these expenditures were for chemical deicing, which goes 

toward the purchase of 10 million tons of salt.  Ultimately, this results in $28 million required 

for the rehabilitation of the nation’s bridges that have deteriorated as a result of corrosion in 

reinforced concrete.   

 There are several methods of prevention, repair and rehabilitation for corrosion.  A 

few prevention methods are deflection systems, barriers, corrosion inhibitors, waterproof 

membranes and sealants.  Methods of rehabilitation include electrical chemical treatments, 

which are cathodic protection, chloride extraction and realkalization.  Today, several 

researchers are looking into the field of fiber reinforced polymers to provide protection and 

containment of chlorides.  On-going experiments include casting high levels of chlorides into 

reinforced concrete specimens to determine if the FRP sheets are capable of containing the 

expansive forces generated from the corrosion product.  Other experiments have exposed 

multiple layers of glass FRP on reinforced concrete columns both in the field and the 

laboratory to varying amounts of chlorides.  These multiple layered glass FRP wraps have 

proven successful in keeping chloride levels constant within the structure after a year of 

exposure to deicing salts. 

 This project utilized both glass and carbon FRP wraps for chloride barrier systems.  

The project was divided into two separate experiments - laboratory and field tests – which 

are both to run for five years.  In the field test, five different FRP systems (three carbon and 

two glass) were acquired.  One layer of the FRP wraps were installed on five different 
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reinforced concrete columns in the Ames, Iowa area.  For further protection against UV 

exposure and vandalism, a protective topcoat was placed over each FRP wrap system.  

However, prior to the wrap installation, baseline data were collected at twelve locations 

around both the test column, which was later wrapped, and a control column, which 

remained unwrapped.  At each of the twelve locations, data were acquired at three depths, 

0.5, 1.0 and 1.5 in.  These were then analyzed using a x-ray spectrometer to evaluate the 

existing chloride levels within the column.  Once the FRP wraps were in place, additional 

data were taken from the column after the first winter season.  This report only presents the 

results from the first season; a supplementary report will be provided at a later date that 

includes the results for the subsequent four years.  Thus far, no additional chlorides have 

penetrated the wraps.  A few variations were observed, but these minimal differences in 

chloride levels were attributed to the varying aggregate configuration within the concrete 

beneath the FRP wrap. 

 The laboratory test consisted of an AASHTO ponding test.  Two reinforced concrete 

slabs were constructed; one slab had each of the five FRP overlay systems installed on it and 

the two topcoats.  The second slab was utilized as a control, where half of the slab remained 

unprotected and was subjected to the AASHTO ponding test whereas the other half was not 

subjected to any ponding tests.  The FRP overlays were installed so that there were sections 

on the slab that had one, two and three layers of the overlay.  A three percent sodium chloride 

solution was then ponded directly onto the slab’s surface for a period of 90 days.  The 

laboratory test will also continue for a period of five years.  To date, three of these cycles 

have been completed and one layer of five FRP systems as well as the two topcoats have kept 

the chloride content in the slab below the corrosion threshold.  However, it has been 
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observed that the topcoats allowed chlorides to penetrate the concrete surface.  Also, Product 

D permitted an increase in chloride levels beneath one layer of wrap, but no increase under 

two layers of FRP wrap.  The remaining products - A, B, C and E - have allowed no 

chlorides to pass through to the concrete in the slab. 

5.2  Trends 

 Overall, all five FRP wrap systems have kept the chloride level below the corrosion 

threshold.  To date, the observed trend lines for the laboratory portion have indicated that 

Products A, B, C and E have been an effective barrier to chlorides.  Each of these products 

has not allowed any chlorides to penetrate.  Product D’s results have indicated that chlorides 

are being allowed to penetrate the FRP overlay.  The trend lines thus far for the field indicate 

that a single layer of all five FRP wraps are effective.  In Appendix C, there are two tables 

that indicate when samples are to be obtained from the laboratory slabs and the field test 

sites; these tables provide tentative test dates for the next four years.  At the end of the five 

year test period, a supplementary report with all the additional data collected and conclusions 

on the effectiveness of each of the five FRP systems as a chloride barrier, based on both the 

field and laboratory experiments, will be submitted. 
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APPENDIX A:  
 PROCEDURES FOR INSTALLING A FRP WRAP ON AREINFORCED 

CONCRETE COLUMN 
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S.B. I-35 

N.B. I-35 

Guardrail: 

Jersey Barrier: 

Test Column: 

Control Column: 

Figure A.1  Product A employed at TS4. 

Legend: 

The procedures utilized for installing the five products on a round reinforced concrete bridge 
column are outlined in the following sections.  The five products installed were: 
 
 

• A  
• B  
• C  
• D  
• E  

 
 
 
 
SECTION ONE: INSTALLATION LOCATION 
 
This section describes where each product was installed in the Ames, Iowa region. 
 
Product A 
 
The test site, TS4, is located on a bridge one and a half miles South of Highway 30 on I-35.  
The wrap was placed on the most northern column on the Southbound lane.  The 
maintenance number for the bridge is 8509.80035.  Figures A.1 and A.2 illustrate the 
positioning of the column within the pier and its distance from the passing traffic.  Note that 
the legend in Figure A.1 is utilized in all product location Figures A.3, A.5, A.7 and A.8. 
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Figure A.2  Product A on C4 at TS4 is located within 14 ft of passing traffic.

N

13th Street W.B.L. 

13th Street E.B.L.

Figure A.3  Product B employed at TS2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Product B 
 
The test site, TS2, is located on a bridge 1.8 miles north of Junction U.S. 30 on I-35.  The 
wrap was placed on the southeastern column of the bridge carrying the northbound traffic.  
The maintenance number for the bridge is 8513.6R035.  Figures A.3 and A.4 illustrate the 
positioning of the column within the pier and its distance from the passing traffic. 
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Figure A.4  Product B on C2 at TS2 is located within 10.5 ft of passing traffic. 

N W.B. I-80 & S.B. I-35 

E.B. I-80 & N.B. I-35 

Figure A.5  Product C employed at TS5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Product C 
 
Test site, TS5, is located on a bridge in Des Moines 7.7 miles West of Junction #415 where 
Morning Star Drive spans over I-80/I-35.  The wrap was placed on the northwestern column 
of the bridge.  The maintenance number for the bridge is 7733.8O080.  Figures A.5 and A.6 
illustrate the positioning of the column within the pier and its distance from the passing 
traffic. 
 
 
 
 
 
 
 
 
 
 
 
 
 



77 

Figure A.6  Product C on C5 at TS5 is located within 10.25 ft of passing traffic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Products D and E 
 
Both products D and E utilize the same epoxy, it is the fibers that differ.  Product D is a 
carbon fiber, whereas product E is a glass fiber.  The test site for Product D is TS3 which is 
located on a bridge in Colo 1.0 mile North of Junction U.S. 30 on Highway 65.  The wrap 
was placed on the northwestern column of the bridge, whose maintenance number is 
8513.1065.  The test site for Product E, TS1, is located in Jewell where Northbound I-35 
spans over Highway 175.  The wrap was installed on the southeast column of the bridge, 
whose maintenance number is 4033.0R035.  Figures A.7 – A.10 illustrate the positioning of 
the column within the pier and its distance from the passing traffic for both Product D and 
E’s location.   
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N
IA #175 E.B.L. 

IA #175 W.B.L.

Figure A.7  Product D employed at TS3. 

N

S.B. IA #65 

N.B. IA #65

Figure A.8  Product E employed at TS1. 
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Figure A.9  Product D on C3 at TS3 is located within 5.2 ft of passing traffic. 
 

Figure A.10  Product E on C1 at TS1 is located within 7.2 ft of passing traffic. 
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SECTION TWO: TOOLS USED FOR INSTALLATION 
 
The table below contains tools that are common for the installation of the five product 
systems described in Section One.  The ( ) indicate a tool that is utilized for only the 
company whose identification letter is specified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A.1  Tools used for installing the various products. 

No. Tool Purpose

1 Disk Grinder Leveling out Imperfections on the 
Concrete Surface

2 Power Washer, Soft 
Brush & Putty Knife Cleaning Concrete Surface

3 Mixing Containers Measuring and Blending of the Two 
Part Epoxy System

4 Weight Scale (A) Weighing of the Main Agent and 
Hardener

5 Hand-held Mixer with 
Paddle Blade Mixing the Two Epoxy Components

6 Putty Knife (A) Mixing and Applying Putty

7 Disposable Brush and/or 
Rollers Applying Epoxy

8 Scissors or Rotary Knife Cutting Fiber Sheets

9 Squeegee (B,C,D & E) Evenly Spreading out Epoxy into 
Glass Fiber

10 Temporary Trough Workstation for Saturating Glass 
Fibers with Epoxy

11 Paddle Wheel
Promotes Epoxy Impregnation by 
removing air between the fiber sheet 
and the concrete surface

12 Dust Masks Prevent Inhalation of Fumes and Dust

13 Goggles and Gloves Prevent Epoxy System from 
Touching Skin and Eyes

14 Acetone Clean-up Product for Tools
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Figure A.12  Weigh out each 
component. 

SECTION THREE: SURFACE PREPERATION 
 
To establish a strong bond between the concrete and each FRP product, the surface of the 
column needs to be properly prepared.  Should any holes or cracks be present, these also 
need to be repaired.   

 
• Step 1.  Clear debris from the base of the 

column. 
 

• Step 2.  Inspect the column’s surface to locate 
voids, uneven spots and stains.  All uneven 
spots need to be grinded down to less than 1/32 
in., as seen in Figure A.11.  Also the stains 
should be removed through the grinding 
process. Once the surface has been ground 
down, any voids greater than 1/32 in. that were 
located need to be filled in with a non-shrink 
grout. 

 
•  Step 3.  Dust that was generated from grinding 

and passing traffic needs to be cleaned off the 
column’s surface with pressurized water.  
Before continuing to the next step dry down the 

     surface with rags. 
 
 
 

Product A has Two Additional Stages: 
 
Primer Application 
 

• Step 1.  Measure out the primer’s main agent and 
hardener in accordance with the manufacturer’s 
specifications.  Figure A.12 illustrates that the 
manufacturer specifies the components to be 
proportioned by weight. 

 
• Step 2.  Combine the primer’s main agent and hardener 

into a mixing container as illustrated in Figure A.13.  
Use the Jiffler mixer with a 5 in. paddle wheel to agitate 
the primer solution for 3 minutes or until uniform. 

   
• Step 3.  Use paint brushes and/or 3/8 in. nap paint 

rollers to apply the primer to the concrete surface.  
 

 Figure A.11  Grind the concrete 
surface to remove any 
unevenness. 
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• Step 4.  Let the primer set until it becomes tack-free or non-sticky to the touch.  Figure 
A.14 illustrates a column with the primer installed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Putty Application 
 
Any voids up to 1/4 in. in width or depth that were not taken care of with the non-shrink 
grout and are still visible after the application of the primer need be filled with putty.  If the 
primer and non-shrink grout have adequately filled all these voids then this stage is not 
required. 
 
• Step 1.  Measure out the putty’s main agent and hardener by weight in accordance with 

the manufacturer’s specification.  Unlike the primer that required the Jiffler mixer, the 
putty needs only a flat surface and a putty knife to blend the two components.   This is 
illustrated in Figures A.15 and A.16. 

 
• Step 2.  Apply the putty to all voids that were located.  Use a stiff putty knife and work 

the putty into these areas.  Should the column require it, up to two coats of putty can be 
applied over the entire surface.   

 
• Step 3.  Allow the putty to become tack free before proceeding to the next section.  

Within the next seven days the wrap needs to be applied to the column.  Figure A.17 
illustrates a column with putty installed. 

 
 
 

Figure A.13  Mix the primer’s main 
agent and hardener for 
three minutes. 

Figure A.14  Column with primer 
system installed. 
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Figure A.15  The putty’s main agent 
and hardener are measured 
by weight. 

Figure A.16  Blend until an even gray 
color appears. 

Figure A.17  Column with both the primer and putty system installed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SECTION 4:  PREPARATION OF FIBER SHEETS 
 
Both the carbon and glass fiber sheets need to be cut to their specified length, which includes 
the development length recommended by the manufacturers.  The manufacturers recommend 
the lengths be kept in the 13-20 foot range for ease of handling. The sheets can be cut at any 
time prior to installation.  A convenient time to accomplish this is when the column’s surface 
is being prepared.  Place a tarp on the ground to keep the fabric clean or use a work bench as 
shown in Figure A.18.  Figure A.19 illustrates that a pair of scissors can be used to easily cut 
the fabric. 
 



84 

Figure A.19  Use scissors or a 
rotary knife to cut 
the E-glass sheets. 

Figure A.18  Use a tarp or other protective 
cover to lay out the fiber. 

Figure A.20  Create a temporary saturation trough. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

SECTION 5: SET-UP TROUGH 
 
All the systems with the exception of Product A require the trough for the pre-impregnation 
process.  All the companies have a system for the manual application of their product which 
is what is described in this overview.  However, it should be noted for larger projects a 
saturation machine can be utilized.   
 
• Step 1.  Build a temporary work table for the saturation of the fibers.  The trough 

illustrated in Figure A.20 consists of two sawhorses with plywood spanning between 
them.  Next, a 2 in. x 2 in. frame can be attached to the edge of the plywood raising the 
sides to create a dam.  To complete the trough, cover the entire bench top with a sheet of 
plastic. 
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SECTION 6: UNDERCOAT APPLICATION 
 
Every product system requires an undercoat application.  The undercoat for each system is 
created with the company’s epoxy product, however, Product A utilizes its resin system. 
 
• Step 1.  Measure out each epoxy’s main agent and hardener in the proportions specified 

by the manufacturer.  Pour both components into a clean mixing container and proceed to 
agitate with a Jiffler mixer for the manufacturer’s recommended time (average of four 
minutes).  This is displayed in Figure A.21.  Do not use the epoxy if the pot life has been 
exceeded. 

 
• Step 2.  Transfer the mixture into a square-sided pail.  This style of pail allows the rollers 

to be more efficient. 
 
• Step 3.  Use paint brushes and/or 3/8 in. nap paint rollers to apply the undercoat as seen 

in Figure A.22.  One or two coats of the undercoat may be necessary to obtain an even 
layer of epoxy on the column.  Figure A.23 is an example of a column with the undercoat 
installed.  Note that there is a black strip of duct tape at the top of the FRP wrap height 
which was used as a guide. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.21  Mix the epoxy’s main agent and 
hardener in a clean container for 
the time specified by the 
manufacturer. 

Figure A.22  Use a 3/8 in. nap roller to apply 
the undercoat in smooth even 
strokes. 
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Figure A.23  Complete installation of undercoat. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SECTION 7: FIBER SHEET APPLICATION 
 
All the products, with the exception of Product A, use the saturated lay-up method.  Product 
A uses a dry lay-up method.  The following paragraphs describe both procedures. 
 
Dry Lay-Up Procedure for Product A 
 
• Step 1. For a column, wrapping is at least a two person effort.  One person must hold the 

carbon fiber sheets at the beginning as the other person is pulling on the sheet and 
straightening it as they wrap it around the column.  Figure A.24 illustrates this process; 
the person on the left is holding the initial end of the FRP in place as the person on the 
right is working the wrap around the column.  

 
 
 
 
 
 
 
 
 
 
 
 
 Figure A.24  Installing the fiber wrap on a column begins from the bottom. 
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Figure A.25  Plastic paddle 
wheel. 

Figure A.26  Roll in the direction of 
the fibers. 

• Step 2.  Each manufacturer lists their required development length for both horizontal 
and vertical joints.  At the location of an overlap, apply an additional layer of the epoxy 
matrix. 

 
• Step 3.  Carefully apply pressure to the paddle wheel, depicted in Figure A.25, and roll 

across the sheet in the direction of the fibers as illustrated in Figure A.26.  The paddle 
wheel forces air out as the fibers are pushed into the epoxy and impregnated. 

 
• Step 4.  Once all the layers are in place, use the backside of a gloved hand to smooth the 

fiber sheets in the direction of their fibers.  Between the paddle wheel and the 
application process, some of the fibers may become misaligned and the excess material 
needs to be worked back to the end of the sheet to create a smooth, consistent surface.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Saturated Lay-Up Procedure for Products B, C, D and E 
 
• Step 1.  Layout one of the fiber sheets that were pre-cut earlier in the set-up stage in the 

trough.  Wrapping a column starts from the bottom up, therefore start with the sheet that 
will be placed at the base. 

 
• Step 2. Pour the epoxy onto the sheet and work the epoxy into the sheet by moving a 

squeegee in the direction of the fibers, this process is illustrated in Figures A.27 and 
A.28.  The epoxy that is used in this step is the same that was used for the undercoat 
described in the previous section. 
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• Step 3. After the top side is saturated with the epoxy, flip the sheet over and repeat the 
saturation process.  Both sides of the sheet should be saturated, not dripping.  The E-
glass fibers will take on a transparent look as they become saturated and the carbon 
fibers will take on metallic sheen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.27  Pour epoxy directly onto the fiber sheet. 

Figure A.28  Move squeegee in the direction of the fibers to work in the epoxy. 
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Figure A.29  Utilize two people to unroll the FRP sheet. 

• Step 4.  Carefully roll the FRP sheet on a tube.  For ease of handling, a piece of PVC 
piping can be used to wrap the fiber around.  The wrap is then installed on the column 
by “unrolling” the FRP sheet.  Figure A.29 illustrates the “unrolling” process.  Note that 
the fibers become very slick when saturated and are difficult to handle.  This procedure 
also requires at least two people.  One person holds the initial end tight while the second 
one smoothes the fiber around the column.  Both workers wear gloves at all times 
throughout this process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Step 5.  Each manufacture lists their required development length for both horizontal and 

vertical joints.  At the location of an overlap, apply an additional layer of the epoxy 
matrix. 

 
• Step 6.  Use a metal paddle wheel, which is depicted in Figure A.30 to apply pressure to 

the fiber sheets in the direction of their fibers as illustrated in Figure A.30.  This roller 
allows air to escape as the fibers are pushed into the epoxy and impregnated. 
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• Step 7.  Once all layers are in place, use the backside of a gloved hand to smooth out the 

sheets in the direction of their fibers.  Between the paddle wheel and the application 
process, some of the fibers may become misaligned and the excess material needs to be 
worked back to the end of the sheet to create a smooth, consistent surface. 

 
SECTION 8: OVERCOAT APPLICATION 
 
Begin this stage when the fiber layers become tack free.  If there is enough material left from 
the original batch of epoxy this can be used as the topcoat or, a new batch can be created 
should there not be enough left or, if the original batch is past its pot life. 
 
• Step 1.  The overcoat application is the same as the undercoat application.  Use rollers 

with a 3/8 in. nap and roll the epoxy onto the column in the direction of the carbon fibers 
to prevent misalignment as seen in Figure A.31. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.30  Paddle wheel with a metal spline. 

Figure A.31  Apply the overcoat with 3/8 in. nap roller in the direction of the fibers. 
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SECTION 9: CLEAN-UP 
 

• Step 1.  Clean all the tools as soon as the application process is completed.   The mixer 
bit and roller handles can be cleaned with acetone only while the epoxy matrix is still 
wet.  However, if the epoxy has dried it can only be cleaned by chipping it off. 

 
• Step 2.  For the mixing containers, let the unused epoxy set-up and harden.  Within 24 

hours, the containers can be turned over and the epoxy can be knocked out in large 
pieces as depicted in Figure A.32.   

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 

SECTION 10: TOPCOAT APPLICATION 
 
The final stage the FRP wrap installation procedure is to apply a topcoat for further 
protection against sunlight, fire, vandalism as well as improve aesthetics.  All columns, with 
the exception of the site with product A, utilized topcoat T, a textured topcoat that gives the 
appearance of concrete, as their protective covering.  The site that had Product A installed 
utilized a latex paint as the protective topcoat. 
 
• Step 1.  Apply the topcoat over the fiber system.  This can be applied after the overcoat 

has cured at least 24 hours.  Figure A.33 is an example of a cured column prior to 
receiving the protective topcoat.  Figure A.34 shows a worker applying topcoat T with a 
long nap paint roller.  The finished FRP wrap system is shown in Figure A.35. 

 
 

Figure A.32  Let the epoxy set-up overnight and the hardened substance can be 
removed, allowing the containers to be used again. 
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Figure A.33  Completed glass 
fiber wrap. 

Figure A.34  Roll on the topcoat with a long  
nap roller.

Figure A.35  Finished product. 
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APPENDIX B:   
CHLORIDE PROFILES FOR TS1-TS5 



94 

 This Appendix contains the chloride profiles for all five test sites after the first year of 

installation.  Note that the figures are displayed in order from the top position to the low 

position.  A central guide is provided on each page to illustrate where each powder sample 

was obtained.  For the top and low positions, the central guide has a key that includes control 

information.  The control points refer to the second column at each test site that had baseline 

data collected.  At the conclusion of five years, a second round of samples will be collected 

from these control columns.  At that time, the chloride penetration between an unwrapped 

column and a wrapped column can be compared.  Recall that Position 2 around the perimeter 

is the closest to moving traffic, with Position 4 being the farthest from traffic.  Note that not 

all test sites have data for Position 3 since there was a low collision wall that connected to the 

column at Position 3 at some of the test sites. 

 
 
 
 
 
 
 
 



 

Figure B.1  Chloride content at the Top position of C1 and the TS1 control.
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Figure B.2  Chloride content at the Mid-height position of C1. 
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Figure B.3  Chloride content at the Low position of C1 and the TS1 control. 
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Figure B.4  Chloride content at the Top position of C2 and the TS2 control.
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Figure B.5  Chloride content at the Mid-height position of C2. 
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Figure B.6  Chloride content at the Low position of C2 and the TS2 control. 
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Figure B.7  Chloride content at the Top position of C3 and the TS3 control.
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Figure B.8  Chloride content at the Mid-height position of C3. 
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Figure B.9  Chloride content at the Low position of C3 and the TS3 control. 
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Figure B.10  Chloride content at the Top position of C4 and the TS4 control. 
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Figure B.11  Chloride content at the Mid-height position of C4. 
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Figure B.12  Chloride content at the Low position of C4 and the TS4 control. 
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Figure B.13  Chloride content at the Top position of C5 and the TS5 control. 
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Figure B.14  Chloride content at the Mid-height position of C5. 
c.) Position M1 d.) Position M4 

b.) Position M3 a.) Position M2 

0

0.01

0.02

0.03

0.04

0.05

Jun-02 Jun-03 Jun-04 Jun-05 Jun-06 Jun-07 Jun-08

Ch
lo

rid
e 

Co
nt

en
t b

y 
W

ei
gh

t, 
%

   
   

 '
0

0.01

0.02

0.03

0.04

0.05

0.06

Jun-02 Jun-03 Jun-04 Jun-05 Jun-06 Jun-07 Jun-08

Ch
lo

rid
e C

on
ten

t b
y W

eig
ht

, %
   

    
 '

0.5 in. 

1.0 in. 

1.5 in. 

Key:

L 

M 

T 

1

3

60° 

60° 

42

Test Dates Test Dates 

Test Dates Test Dates 

108 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

0

0.01

0.02

0.03

0.04

0.05

0.06

Jun-02 Jun-03 Jun-04 Jun-05 Jun-06 Jun-07 Jun-08
Ch

lo
rid

e C
on

ten
t b

y W
eig

ht
, %

    
   '

0

0.02

0.04

0.06

0.08

0.1

0.12

Jun-02 Jun-03 Jun-04 Jun-05 Jun-06 Jun-07 Jun-08

T D

C
hl

or
id

e 
C

on
te

nt
 b

y 
W

ei
gh

t, 
%

   
   

 

b.) Position L1 c.) Position L4 

a.) Position L2 

Test Dates 

0

0.02

0.04

0.06

0.08

0.1

Jun-02 Jun-03 Jun-04 Jun-05 Jun-06 Jun-07 Jun-08

C
hl

or
id

e 
C

on
te

nt
 b

y 
W

ei
gh

t, 
%

   
   

L 

M 

T 

0.5 in. 

1.0 in. 

1.5 in. 

Control 0.5 in. 

Control 1.0 in. 

Control 1.5 in. 

Key:

1

3

60° 

60° 

42

Test Dates 

Test Dates 

Figure B.15  Chloride content at the Low position of C5 and the TS5 control. 
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APPENDIX C: 
FUTURE TEST DATES 
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Table C.1  Tentative test dates for field work. 

Test # Date 
Baseline October - 02

1  June - 03
2  June - 04
3  June - 05
4  June - 06
5  June - 07

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  All five test sites are to be analyzed once a year, preferably in June, which are the 

lightened test dates displayed in Table C.1.  The last test, #5, should have samples 

taken from the control column at each test site in addition to obtaining samples from 

the wrapped column. 
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Cycle # Date Started Date Finished
1 1/13/2003 4/12/2003
2 4/18/2003 7/17/2003
3 7/30/2003 10/29/2003
4 11/15/2003 2/11/2004
5 2/25/2004 5/25/2004
6 6/8/2004 9/6/2004
7 9/20/2004 12/19/2004
8 1/2/2005 4/2/2005
9 4/16/2005 7/15/2005

10 7/29/2005 10/27/2005
11 11/10/2005 2/8/2006
12 2/22/2006 5/23/2006
13 6/6/2006 9/4/2006
14 9/18/2006 12/17/2006
15 12/31/2006 3/31/2007
16 4/14/2007 7/13/2007
17 7/27/2007 10/25/2007
18 11/8/2007 2/6/2008

Table C.2  Tentative test dates for 90 day laboratory cycles  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:  The dates that have been lightened are the tentative test dates for the laboratory tests.  

Each test period is 90 days with a 14 day allowance for draining of the slabs, 

collecting powder samples, patching and re-ponding. 
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