F. W. Klaiber, D. J. White, T. J. Wipf, B. M. Phares, V. W. Robbins

Development of Abutment Design Standards for Local Bridge Designs
 Volume 3 of 3

Verification of Design Methodology

August 2004
Sponsored by the Iowa Department of Transportation

Highway Division and the Iowa Highway Research Board

Final

IOWA STATE UNIVERSITY
of SCIENCEAND TECHNOLOGY

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation.
F. W. Klaiber, D. J. White, T. J. Wipf, B. M. Phares, V. W. Robbins

Development of Abutment Design Standards for Local Bridges Bridge Designs Volume 3 of 3

Verification of Design Methodology

August 2004
Sponsored by the Iowa Department of Transportation Highway Division and the Iowa Highway Research Board

Iowa DOT Project TR - 486

Final
REPORT

Abstract

Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa.

The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft . However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft , and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction.

The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently.

The third volume (this volume) provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.

TABLE OF CONTENTS

DESIGN VERIFICATION EXAMPLES 1
EXAMPLE 1 TIMBER PILE ABUTMENT WITH ANCHORS IN A COHESIONLESS SOIL 3
EXAMPLE 2 STEEL PILE ABUTMENT WITHOUT ANCHORS IN A COHESIVE SOIL 63
SAMPLE FOUNDATION DETAILS FOR A PCDT SUPERSTRUCTURE 93

DESIGN VERIFICATION EXAMPLES

This document provides two sets of calculations that demonstrate the application of the substructure design methodology developed for the Iowa Department of Transportation (Iowa DOT) in Project TR-486. These calculations also verify the accuracy of the foundation design template (FDT) developed for Project TR-486. The printouts from the FDT are provided in this document at the end of each example. Also Tables 1, 2 and 3 present various foundation details for a pre-cast double tee superstructure (PCDT) with different combinations of soil type, backwall height, and pile type. It should be noted that the foundation details given in these tables are for a fictitious bridge site. Also, the information presented in these tables are not the only combination of details that will work for a given set of parameters; other pile sizes and anchor details could possibly be used.

A general description of two design examples provided herein follows:

Example 1: The first set of calculations demonstrates the design methodology for determining the foundation loads, performing the structural analysis, and calculating the capacity of timber piles with an anchor system. In this example, an abutment is designed for a PCDT superstructure with a span length and roadway width of 40 and 24 ft , respectively. The timber piles are embedded in a soil that is best described in the Iowa DOT Foundation Soils Information Chart as gravelly sand with an average standard penetration test blow count of 20 . The backwall height and estimated depth of scour are six and two feet, respectively.

Example 2: The second set of calculations demonstrates the design methodology for determining the foundation loads, performing the structural analysis, and calculating capacity for steel piles without an anchor system. In this example, an abutment is designed for a prestressed concrete (PSC) superstructure with a span length and roadway width of 60 and 24 ft , respectively. The steel piles are embedded in soil that is best described in the Iowa DOT Foundation Soils Information Chart as a firm, glacial clay with an average penetration test blow count of 11. The backwall height and estimated depth of scour are six and two feet, respectively.

EXAMPLE 1
TIMBER PILE ABUTMENT WITH ANCHORS IN A COHESSIONLESS SOIL

EXAMPLE 1: TIMBER PILE ABUTMENT WITH AN ANCHOR IN A COHESIONLESS SOIL

BRIDGE INFORMATION

Pre-cast double tee superstructure (see lowa DOT Report TR-410 Standards)

SPAN := 40ft		Span length
RDWY := 24ft		Roadway width
BW : $=6 \mathrm{ft}$		Backwall height
ES := 2 ft		Estimated scour depth
W21 := 21in		W21×57 girder depth
Slab depth $=8 \mathrm{in}$		
$\mathrm{Z}_{\mathrm{b}}:=\mathrm{BW}-8 \mathrm{in}-\mathrm{W} 21$	$\mathrm{z}_{\mathrm{b}}=3.583 \mathrm{ft}$	Distance between bearing and stream elevations
SPT := 20		Standard penetration test blow count for a soil best described as a coarse sand in the lowa DOT FSIC
$\mathrm{FB}:=0.7 \cdot \frac{\text { ton }}{\mathrm{ft}}$		Pile friction bearing resistance (lowa DOT FSIC)
$N A:=2$		Number of abutments

GRAVITY LOADS

Dead Loads

GL:= SPAN + 2•(6in)
$B L:=G L+2 \cdot(6 \mathrm{in})$
G := 57plf
$N_{G}:=8$
$\mathrm{GL}=41.00 \mathrm{ft}$
$\mathrm{BL}=42.00 \mathrm{ft}$
Girder length
Bridge length
W21x57 girder weight per foot (Iowa DOT TR-410)
Number of girders

Span length

Roadway width

Backwall height

Estimated scour depth
W21×57 girder depth

Distance between bearing and stream elevations

Standard penetration test blow count for a soil best described as a coarse sand in the lowa DOT FSIC

Pile friction bearing resistance

Number of abutments

BR := 50plf		Conservatively assumed thrie-beam rail weight per foot
FWS := 20psf		Assumed future wearing surface
$\gamma_{C}:=0.150 \mathrm{kcf}$		Concrete unit weight
Slab $:=(8 i n) \cdot B L \cdot$ RDWY $^{\prime} \cdot \gamma_{C}$	Slab $=100.80$ kip	Calculated slab weight
Girder : $=\mathrm{N}_{\mathrm{G}} \cdot \mathrm{G} \cdot \mathrm{GL}$	Girder $=18.70 \mathrm{kip}$	Calculated girder weight
Rail $:=2 \cdot B R \cdot B L$	Rail $=4.20 \mathrm{kip}$	Calculated barrier rail weight
$\mathrm{FWS}_{\text {wt }}:=\mathrm{FWS} \cdot \mathrm{RDWY} \cdot \mathrm{BL}$	$\mathrm{FWS}_{\text {wt }}=20.16 \mathrm{kip}$	Calculated future wearing surface weight
$\quad 2 \%$	2\%	
- RDWY / 2	RDWY / 2	
$y:=\frac{R D W Y}{2} \cdot 2 \%$	$y=0.240 \mathrm{ft}$	
$\mathrm{A}:=\frac{1}{2} \cdot \mathrm{y} \cdot \frac{\mathrm{RDWY}}{2} \cdot 2$	$\mathrm{A}=2.880 \mathrm{ft}^{2}$	Cross sectional area of crown
Crown := BL $\cdot \mathrm{A} \cdot \gamma_{C}$	Crown $=18.14 \mathrm{kip}$	Calculated crown weight

Abutment Cross Section

Live Load

AASHTO HS20-44 design truck
(AASHTO 3.7)

For 1 traffic lane, maximum live load abutment reaction $=55.20$ kips .

$$
\frac{\mathrm{RDWY}}{10 \cdot \mathrm{ft}}=2.4
$$

LN := 2

No lane reduction factor needed.
$\mathrm{LL}_{\mathrm{g}}:=\mathrm{LN} \cdot \mathrm{R}_{\mathrm{A}}$
$T A R:=L_{g}+D L_{g}$
pf := 1.40

FAR := TAR•1.4

MPL := 25ton
$\mathrm{N}_{1}:=\frac{\text { FAR }}{\left[\mathrm{MPL} \cdot\left(2 \cdot \frac{\text { kip }}{\text { ton }}\right)\right]}$
$N:=7$
$S:=\frac{\text { RDWY }-2 \cdot(0.75 \mathrm{ft})}{(\mathrm{N}-1)}$

Round down to 2 traffic lanes
(AASHTO 3.12.1)

Calculated live load abutment reaction

Total abutment reaction

Nominal axial pile factor (Volume II, Chapter 2)

FAR $=336.56$ kip \quad Total factored abutment reaction

Maximum axial pile load (assume embedded pile length is greater than 30 ft)
(Iowa DOT BDM 6.2.6.3)
$N_{1}=6.73$

Use 7 piles

Pile spacing with 9 in. between edge of roadway and first exterior pile

LATERAL LOADS

Transverse Loads

Transverse wind loads are assumed to be divided equally among all piles and are transferred through shear at the bridge bearings.

WIND ON SUPERSTRUCTURE
(Iowa DOT BDM 6.6.2.6.1)

$\begin{array}{lll}E A:=(1.75 \mathrm{ft}+8 \mathrm{in}+\mathrm{W} 21) \cdot \text { SPAN } & \mathrm{EA}=166.67 \mathrm{ft}^{2} & \begin{array}{l}\text { Bridge superstructure } \\ \text { elevation surface area }\end{array} \\ W S:=\frac{E A \cdot(50 \mathrm{psf})}{\mathrm{NA} \cdot \mathrm{N}} & \mathrm{WS}=0.60 \mathrm{kip} & \begin{array}{l}\text { Wind on superstructure } \\ \text { force per pile }\end{array}\end{array}$

WIND ON LIVE LOAD
$L L_{w}:=100$ plf
$\mathrm{WL}:=\mathrm{LL}_{\mathrm{w}} \cdot \frac{\mathrm{SPAN}}{(\mathrm{NA} \cdot \mathrm{N})} \quad \mathrm{WL}=0.29$ kip
Line load applied to entire bridge length (Iowa DOT BDM 6.6.2.6.2)

Wind on live load force per pile

Longitudinal Loads

BRAKING FORCE
(Iowa DOT BDM 6.6.2.4)
5% of the AASHTO lane gravity loading multiplied by the number of 10 ft design lanes.
$\mathrm{W}:=0.64 \mathrm{klf}$
$\mathrm{F}:=18 \mathrm{kip}$
$\mathrm{BFP}:=\frac{\mathrm{LN} \cdot(\mathrm{W} \cdot \mathrm{SPAN}+\mathrm{F}) \cdot 0.05}{\mathrm{NA} \cdot \mathrm{N}} \quad \mathrm{BFP}=0.31 \mathrm{kip} \quad$ Braking force per pile

DEAD LOAD EARTH PRESSURE
(Iowa DOT BDM 6.5.2.4)

$\begin{array}{lll}\mathrm{w}_{2}:=(250 \mathrm{psf}) \cdot \mathrm{S} & \mathrm{w}_{2}=0.938 \mathrm{klf} & \begin{array}{l}\text { Convert soil pressures } \\ \text { into distributed loads }\end{array} \\ \mathrm{w}_{3}:=(35.9 \mathrm{psf}) \cdot \mathrm{S} & \mathrm{w}_{3}=0.135 \mathrm{klf} & \\ \mathrm{LL}_{\text {sur }}:=(1 \mathrm{ft}) \cdot \mathrm{w}_{2}+\frac{1}{2} \cdot\left(\mathrm{w}_{2}-\mathrm{w}_{3}\right) \cdot(6 \mathrm{ft})+\mathrm{h} \cdot \mathrm{w}_{3} & \mathrm{LL}_{\text {sur }}=4.42 \mathrm{kip} & \begin{array}{l}\text { Total lateral force per pile } \\ \text { from live load surcharge }\end{array}\end{array}$

DETERMINE DEPTH TO PILE FIXITY

$f=$ depth to fixity $\quad f=0.82 \cdot \sqrt{\frac{H}{\gamma_{C} \cdot B \cdot K_{p}}}$
For a cohessionless soil (Broms, 1964)

For this example, an anchor system is used. This requires an interative consisten deformation process starting with an initial assumption for the anchor force per pile.

$\mathrm{F}:=5.00 \mathrm{kip}$	Assumed anchor force per pile
$\mathrm{H}:=\mathrm{BFP}+L L_{\text {sur }}+$ EDL $-F$	$\mathrm{H}=4.04 \mathrm{kip}$
$\mathrm{B}=$ pile width	Total lateral force per pile
	$\mathrm{D}_{\mathrm{b}}:=13 \mathrm{in}$
$D_{t}:=10 \mathrm{in}$	Pile butt diameter
Pile tip diameter	

To account for the change in cross section use a representative pile diameter.

$$
\begin{array}{ll}
B:=D_{t}+0.33 \cdot\left(D_{b}-D_{t}\right) & B=10.99 \mathrm{in} \\
\phi=53.881 \mathrm{deg}-(27.603 \mathrm{deg}) \cdot \mathrm{e}^{-0.0147 \cdot \mathrm{SPT}} & \phi:=33.309 \mathrm{deg} \\
K_{p}:=\frac{1+\sin (\phi)}{1-\sin (\phi)} & K_{p}:=3.436
\end{array}
$$

$\gamma_{\mathrm{S}}:=0.125 \mathrm{kcf}$
$f:=0.82 \cdot \sqrt{\frac{H}{\left(\gamma_{S} \cdot B \cdot K_{p}\right)}} \quad f=2.629 \mathrm{ft}$
Rankine passive earth pressure coefficient (assume soil surface behind the backwall is horizontal)

Soil unit weight

Depth below estimated scour line to pile fixity

Pile and Anchor Properties

$$
\begin{array}{lll}
\mathrm{A}:=\frac{\pi}{4} \cdot\left(\mathrm{~B}^{2}\right) & \mathrm{A}=94.86 \mathrm{in}^{2} & \text { Representative pile are } \\
\gamma_{\mathrm{t}}:=0.05 \mathrm{kcf} & \text { Timber unit weight } \\
\text { PSW }:=\mathrm{A} \cdot \gamma_{\mathrm{t}} & \text { PSW }=0.033 \mathrm{klf} & \text { Pile self-weight per foot } \\
\mathrm{I}:=\frac{\pi}{64} \cdot \mathrm{~B}^{4} & \mathrm{I}=716.1 \mathrm{in}^{4} & \text { Pile moment of intertia }
\end{array}
$$

Vertical Anchor Location

$$
\mathrm{BW}=6.00 \mathrm{ft}
$$

$$
\mathrm{ES}=2.00 \mathrm{ft}
$$

$$
\mathrm{z}_{\mathrm{b}}=3.583 \mathrm{ft}
$$

$$
\mathrm{Z}_{\mathrm{a}}:=2.583 \mathrm{ft}
$$

Distance between stream and anchor elevations (1ft below the bearings)

Maximum Lateral Anchor Capacity

$\mathrm{FM}:=\frac{\gamma_{\mathrm{S}} \cdot(\mathrm{b})}{2} \cdot\left(\mathrm{Z}_{2}+\mathrm{Z}_{1}\right) \cdot\left(\mathrm{K}_{\mathrm{pa}}-\mathrm{K}_{\mathrm{aa}}\right)$	$\mathrm{FM}=4.106 \mathrm{klf}$	Maximum lateral anchor capacity per foot
$\mathrm{FS}:=1.5$	Factor of safety	
$\mathrm{FMP}:=\frac{\mathrm{FM} \cdot \mathrm{S}}{\mathrm{FS}}$	$\mathrm{FMP}=3.750 \mathrm{ft}$	Pile spacing
		Maximum anchor block capacity per pile

Therefore 5 kips anchor force assumption is OK.

Compute New Anchor Force Per Pile

$F=\sigma \cdot A$
$\sigma=E \cdot \varepsilon$
$\varepsilon=\frac{\Delta \mathrm{L}}{\mathrm{L}_{\mathrm{o}}}$
$\Delta L=$ Pile deflection at anchor elevation

Use superposition to compute deflection of the pile at the elevation of the anchor rod.

5 loadings to consider:

1) Dead load earth pressure
2) Live load surcharge
3) Assumed anchor force
4) Braking force
5) Passive soil pressure on pile
6) DEAD LOAD EARTH PRESSURE

$E S=2.00 \mathrm{ft}$	$B W=6.00 \mathrm{ft}$	$\mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft}$
$\mathrm{h}=8.00 \mathrm{ft}$	$\mathrm{f}=2.629 \mathrm{ft}$	
$x:=Z_{a}+E S$	$x=55.0$ in	Distance between anchor elevation and estimated scour line
$\mathrm{E}:=1600 \mathrm{ksi}$		Timber modulus of elasticity for southern pine (AASHTO Table 13.5.1A)
$\mathrm{w}_{1}=1.077 \mathrm{klf}$	$\mathrm{I}=716.1 \mathrm{in}^{4}$	
$d_{1}:=\frac{w_{1} \cdot x^{2}}{120 \cdot h \cdot E \cdot I} \cdot\left[\left(10 \cdot h^{3}-10 \cdot h^{2} \cdot x\right)+5\right.$		
	$\mathrm{d}_{1}=0.104 \mathrm{in}$	Pile deflection at anchor elevation
$M:=\frac{1}{2} \cdot h \cdot w_{1} \cdot \frac{h}{3}$	$\mathrm{M}=11.49 \mathrm{ft} \cdot \mathrm{kip}$	Moment at estimated scour line
$V:=\frac{1}{2} \cdot h \cdot w_{1}$	$\mathrm{V}=4.31 \mathrm{kip}$	Shear at estimated scour line
$d_{2}:=\frac{1}{E \cdot I}\left[\frac{\left(M \cdot f^{2}\right)}{2}+\frac{\left(V \cdot f^{3}\right)}{3}\right]$	$\mathrm{d}_{2}=0.099$ in	Pile deflection at estimated scour line
$\theta:=\frac{1}{E \cdot I} \cdot\left[M \cdot f+\frac{V \cdot\left(f^{2}\right)}{2}\right]$	$\theta=0.006 \mathrm{rad}$	Pile slope at estimated scour line
$\mathrm{d}_{\mathrm{a} 1}:=\mathrm{d}_{1}+\mathrm{d}_{2}+\theta \cdot\left(\mathrm{Z}_{\mathrm{a}}+E S\right)$	$\mathrm{d}_{\mathrm{a} 1}=0.515$ in	Total pile deflection at anchor elevation from active earth pressure

2) LIVE LOAD SURCHARGE

Part a)

$x:=Z_{a}+E S \quad x=55.00$ in
Distance between anchor elevation and estimated scour line

$$
\begin{aligned}
& \text { Part b) } \\
& L:=E S+B W+f+1 \cdot f t \\
& \mathrm{~L}=11.629 \mathrm{ft} \\
& x:=f+E S+Z_{a} \\
& x=7.212 \mathrm{ft} \\
& d_{a 3}:=\frac{w_{2} \cdot(1 \mathrm{ft}) \cdot x^{2}}{2 \cdot E \cdot I} \cdot\left[\left(\frac{-1}{3}\right) \cdot x-\frac{1}{2} \cdot(1 \mathrm{ft})+\mathrm{L}\right] \\
& d_{a 3}=0.321 \text { in } \\
& \text { Pile deflection at anchor } \\
& \text { elevation } \\
& \text { Moment at estimated } \\
& \text { scour line } \\
& \text { Shear at estimated } \\
& \text { scour line } \\
& \text { Pile deflection at } \\
& \text { estimated scour line } \\
& \text { Pile slope at estimated } \\
& \text { scour line } \\
& \text { Total pile defelction at } \\
& \text { anchor elevation from } \\
& \text { surcharge } \\
& \text { Pile length from point of } \\
& \text { fixity to } 1 \mathrm{ft} \text { above } \\
& \text { roadway elevation } \\
& \text { Distance between anchor } \\
& \text { elevation and point of fixity } \\
& \text { Total pile deflection at } \\
& \text { anchor elevation from } \\
& \text { Part b) of live load } \\
& \text { surcharge }
\end{aligned}
$$

Part c)

$w_{4}:=w_{2}-w_{3} \quad w_{4}=0.803$ klf

$$
\mathrm{d}_{1}:=\frac{\mathrm{w}_{4} \cdot \mathrm{z}_{\mathrm{a}}^{2}}{120 \cdot(6 \cdot \mathrm{ft}) \cdot \mathrm{E} \cdot \mathrm{l}} \cdot\left[20 \cdot(6 \cdot \mathrm{ft})^{3}-10 \cdot(6 \cdot \mathrm{ft})^{2} \cdot \mathrm{z}_{\mathrm{a}}+\mathrm{z}_{\mathrm{a}}^{3}\right]
$$

$$
\mathrm{d}_{1}=0.038 \text { in } \quad \text { Pile deflection at anchor }
$$ elevation

$\mathrm{V}:=\frac{1}{2} \cdot \mathrm{w}_{4} \cdot(6 \mathrm{ft})$
$\mathrm{V}=2.41 \mathrm{kip}$
Shear at stream elevation

$$
\begin{array}{ll}
\mathrm{M}:=\mathrm{V} \cdot\left(\frac{2}{3}\right) \cdot(6 \mathrm{ft}) & M=9.63 \mathrm{ft} \cdot \mathrm{kip} \\
x:=\mathrm{f}+\mathrm{ES} & x=4.629 \mathrm{ft}
\end{array}
$$

$\mathrm{d}_{\mathrm{a} 4}=0.588 \mathrm{in}$
Moment at stream elevation

Distance between point of fixity and stream elevation

$$
d_{2}:=\frac{1}{E \cdot 1}\left(\frac{M \cdot x^{2}}{2}+\frac{V \cdot x^{3}}{3}\right)
$$

$$
\mathrm{d}_{2}=0.276 \mathrm{in}
$$

Pile deflection at stream elevation

$$
\theta:=\frac{1}{E \cdot 1} \cdot\left(M \cdot x+\frac{V \cdot x^{2}}{2}\right)
$$

$$
\theta=0.009 \mathrm{rad}
$$

Pile slope at stream elevation

$$
\mathrm{d}_{\mathrm{a} 4}:=\mathrm{d}_{1}+\mathrm{d}_{2}+\theta \cdot \mathrm{z}_{\mathrm{a}}
$$

Total pile deflection at anchor elevation from Part c) of live load surcharge

3) ANCHOR FORCE

$$
\begin{array}{ll}
x:=f+E S+Z_{a} & x=7.212 \mathrm{ft} \\
d_{a 5}:=\frac{-F \cdot x^{3}}{3 \cdot E \cdot 1} & d_{a 5}=-0.943 \text { in }
\end{array}
$$

4) BRAKING FORCE

$$
\begin{array}{ll}
x_{1}:=f+E S+Z_{a} & x_{1}=7.212 \mathrm{ft} \\
x_{2}:=f+E S+Z_{b} & x_{2}=8.212 \mathrm{ft} \\
d_{a 6}:=\frac{B F P \cdot x_{1}^{2}}{6 E \cdot I} \cdot\left[3 \cdot\left(x_{2}\right)-x_{1}\right] & d_{a 6}=0.071 \mathrm{in}
\end{array}
$$

$F=5.00 \mathrm{kip}$
$Z_{a}=2.583 \mathrm{ft}$
$\mathrm{f}=2.629 \mathrm{ft}$
$E S=2.00 \mathrm{ft}$

Distance between point of fixity and anchor elevation

Total pile deflection at anchor elevation from assumed anchor force
$\mathrm{f}=2.629 \mathrm{ft}$
$E S=2.00 \mathrm{ft}$
$B F P=0.31$ kip
$Z_{a}=2.583 \mathrm{ft}$
$Z_{b}=3.583 \mathrm{ft}$

Dist. between point of pile fixity and anchor elevation

Dist. between point of pile fixity and bearing elevation

Pile deflection at anchor elevation from braking force
5) PASSIVE EARTH PRESSURE $-d_{a 7}$

$$
\mathrm{f}=2.629 \mathrm{ft}
$$

$$
E S=2.00 \mathrm{ft}
$$

$$
\mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft}
$$

$$
\mathrm{H}=4.04 \mathrm{kip}
$$

$$
\begin{array}{ll}
\alpha:=\frac{1.92 \cdot \mathrm{H}}{f^{2}} & \alpha=1.123 \mathrm{ksf} \\
\xi:=0.12 \cdot \frac{\mathrm{H}}{\mathrm{f}^{3}} & \xi=0.027 \mathrm{kcf} \\
x:=\mathrm{f}+\mathrm{ES}+\mathrm{Z}_{\mathrm{a}} & \mathrm{x}=7.212 \mathrm{ft} \\
\mathrm{~d}_{\mathrm{a} 7}:=\left(\frac{\alpha \cdot f^{4} \cdot x}{24}+\frac{\xi \cdot f^{5} \cdot x}{60}-\frac{\alpha \cdot f^{5}}{120}-\frac{\xi \cdot f^{6}}{120}\right) \cdot\left(\frac{-1}{\mathrm{E} \cdot \mathrm{I}}\right)
\end{array}
$$

$$
\mathrm{d}_{\mathrm{a} 7}=-0.023 \mathrm{in}
$$

$$
\mathrm{d}_{\mathrm{aT}}:=\mathrm{d}_{\mathrm{a} 1}+\mathrm{d}_{\mathrm{a} 2}+\mathrm{d}_{\mathrm{a} 3}+\mathrm{d}_{\mathrm{a} 4}+\mathrm{d}_{\mathrm{a} 5}+\mathrm{d}_{\mathrm{a} 6}+\mathrm{d}_{\mathrm{a} 7}
$$

$$
\mathrm{d}_{\mathrm{a} T}=0.711 \mathrm{in}
$$

Constants in equation of parabolic passive soil reaction distribution

Distance between point of fixity and anchor elevation

Total pile deflection at anchor elevation from passive soil reaction

Total pile deflection at anchor elevation

Pile deflection at the anchor location $=\mathbf{0 . 7 1 1} \mathrm{in}$. with an assumed anchor force of 5 kips per pile.

Anchor Rod Length

(Bowles, 1997)

$$
\begin{array}{ll}
\mathrm{h}=8.00 \mathrm{ft} & \mathrm{~b}=3.00 \mathrm{ft} \\
\mathrm{ES}=2.00 \mathrm{ft} & \mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft}
\end{array}
$$

$y:=Z_{a}+E S-\frac{1}{2} \cdot b \quad y=3.083 f t$

Two possibilities:
a) active failure plane controls
b) passive failure plane controls

Case A: minimum rod length $=x_{1}+x_{2}$
$\phi_{\mathrm{b}}:=33.69 \mathrm{deg}$
Backfill soil friction angle
(lowa DOT BDM 6.5.2.4)
$\alpha:=45 \mathrm{deg}-\frac{\phi_{\mathrm{b}}}{2}$
$\alpha=28.16 \mathrm{deg}$
$\tan (\theta):=\frac{\mathrm{x}_{1}}{\mathrm{~h}}$
$x_{1}:=\tan (\alpha) \cdot h$
$\mathrm{x}_{1}:=4.28 \cdot \mathrm{ft}$
$x_{2}:=\frac{h-y}{\tan (\alpha)}$
$x_{2}:=9.20 \cdot f t$
$\mathrm{x}_{1}+\mathrm{x}_{2}=13.480 \mathrm{ft}$
Case A) minimum anchor rod length

Case B:

$x_{3}:=\frac{y+b}{\tan (\alpha)}$	$x_{3}:=11.37 \cdot f t$	Case f$)$ minimum anchor rod length
$x_{r}:=15 \mathrm{ft}$	$13.47 \mathrm{ft}>11.48 \mathrm{ft}$	Minimum anchor rod length $=13.47 \mathrm{ft}$
$\varepsilon_{\mathrm{r}}:=\frac{\mathrm{d}_{\mathrm{aT}}}{\mathrm{x}_{\mathrm{r}}}$	$\mathrm{d}_{\mathrm{aT}}=0.711 \mathrm{in}$	Anchor rod length used for this analysis
$\mathrm{f}_{\mathrm{y}}:=60 \mathrm{ksi}$	Anchor rod elongation and pile deflection at anchor elevation	
$\varepsilon_{\mathrm{y}}:=\frac{\varepsilon_{r}=0.0040}{29000 \mathrm{ksi}}$	Anchor rod strain	

Therefore:

$$
\sigma_{\mathrm{r}}:=60 \mathrm{ksi}
$$

Anchor rod stress

Assume the axial stiffness of all anchor rods are evenly distributed to the piles.
$N_{r}:=5$
$\phi_{r}:=0.75 \mathrm{in}$
$N=7$
$\mathrm{A}_{\mathrm{rp}}:=\frac{\pi}{4} \cdot \phi_{\mathrm{r}}{ }^{2} \cdot \frac{\mathrm{~N}_{\mathrm{r}}}{\mathrm{N}}$
$F_{a p}:=\sigma_{r} \cdot A_{r p}$

F := 9.00kip Use a new anchor rod force of 9.0 kip/pile instead of 18.93kip
(less than maximum anchor capacity of 10.3 kips).

Determine Depth to Pile Fixity

$f=$ depth to fixity $\quad f:=0.82 \cdot \sqrt{\frac{H}{\gamma_{C} \cdot B \cdot K_{p}}}$

$$
\mathrm{F}=9.00 \mathrm{kip}
$$

$L_{\text {sur }}=4.42$ kip
$B F P=0.31 \mathrm{kip}$
$E D L=4.31 \mathrm{kip}$

$$
\begin{array}{lll}
\mathrm{H}:=\mathrm{BFP}+\mathrm{LL} \mathrm{sur}_{\text {sur }}+\mathrm{EDL}-\mathrm{F} & \mathrm{H}=0.04 \mathrm{kip} & \begin{array}{l}
\text { Total above ground lateral } \\
\text { pile load }
\end{array} \\
\mathrm{f}:=0.82 \cdot \sqrt{\frac{\mathrm{H}}{\gamma_{\mathrm{S}} \cdot \mathrm{~B} \cdot \mathrm{~K}_{\mathrm{p}}}} & \mathrm{f}=0.270 \mathrm{ft} &
\end{array}
$$

Compute the deflection of the pile at the elevation of the anchor rod.

1) DEAD LOAD EARTH PRESSURE

$$
\begin{aligned}
& \mathrm{f}=0.270 \mathrm{ft} \quad \mathrm{ES}=2.00 \mathrm{ft} \quad \mathrm{~h}=8.00 \mathrm{ft} \\
& \mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft} \quad \mathrm{w}_{1}=1.077 \mathrm{klf} \\
& \mathrm{x}:=\mathrm{Z}_{\mathrm{a}}+\mathrm{ES} \quad \mathrm{x}=55.00 \text { in Distance between } \\
& \text { estimated scour line and } \\
& \text { anchor elevation } \\
& E=1600 \mathrm{ksi} \quad \text { Timber modulus of } \\
& \text { elasticity } \\
& \text { Representative moment of } \\
& \text { inertia } \\
& \text { Pile deflection at anchor } \\
& \text { elevation }
\end{aligned}
$$

$$
\begin{array}{lll}
M:=\frac{1}{2} \cdot h \cdot w_{1} \cdot\left(\frac{h}{3}\right) & M=11.49 \mathrm{ft} \cdot \mathrm{kip} & \begin{array}{l}
\text { Moment at estimated } \\
\text { scour line }
\end{array} \\
\mathrm{V}:=\frac{1}{2} \cdot \mathrm{~h} \cdot \mathrm{w}_{1} & \mathrm{~V}=4.31 \mathrm{kip} & \begin{array}{l}
\text { Shear at estimated scour } \\
\text { line }
\end{array} \\
\mathrm{d}_{2}:=\frac{1}{\mathrm{E} \cdot \mathrm{l}}\left[\frac{\left(\mathrm{M} \cdot \mathrm{f}^{2}\right)}{2}+\frac{\left(\mathrm{V} \cdot \mathrm{f}^{3}\right)}{3}\right] & \mathrm{d}_{2}=0.001 \text { in } & \begin{array}{l}
\text { Pile deflection at } \\
\text { estimated scour line }
\end{array} \\
\theta:=\frac{1}{\mathrm{E} \cdot \mathrm{I}}\left[(\mathrm{M}) \cdot f+\frac{\mathrm{V} \cdot\left(\mathrm{f}^{2}\right)}{2}\right] & \theta=0.000 \mathrm{rad} & \begin{array}{l}
\text { Pile slope at estimated } \\
\text { scour line }
\end{array} \\
d_{a 1}:=d_{1}+d_{2}+\theta \cdot\left(\mathrm{Z}_{\mathrm{a}}+\mathrm{ES}\right) & d_{a 1}=0.127 \mathrm{in} & \begin{array}{l}
\text { Total pile deflection at } \\
\text { anchor elevation from } \\
\text { active earth pressure }
\end{array}
\end{array}
$$

2) LIVE LOAD SURCHARGE

$$
\begin{aligned}
& \mathrm{w}_{2}=0.938 \mathrm{klf} \\
& \mathrm{w}_{3}=0.135 \mathrm{klf} \\
& \mathrm{w}_{4}=0.803 \mathrm{klf} \\
& \mathrm{f}=0.270 \mathrm{ft} \\
& \mathrm{ES}=2.00 \mathrm{ft} \\
& \mathrm{BW}=6.00 \mathrm{ft} \\
& \mathrm{~h}=8.00 \mathrm{ft}
\end{aligned}
$$

$$
\mathrm{z}_{\mathrm{a}}=2.583 \mathrm{ft}
$$

Part a)

$x:=Z_{a}+E S$	$x=55.00$ in	Distance between estimated scour line and anchor elevation
$d_{1}:=\frac{w_{3} \cdot\left(x^{2}\right)}{24 \cdot E \cdot 1} \cdot\left(6 \cdot h^{2}-4 \cdot h \cdot x+x^{2}\right)$	$\mathrm{d}_{1}=0.046 \mathrm{in}$	Pile slope at anchor elevation
$M:=\frac{w_{3} \cdot h^{2}}{2}$	$\mathrm{M}=4.31 \mathrm{ft} \cdot \mathrm{kip}$	Moment at estimated scour line
$V:=w_{3} \cdot h$	$\mathrm{V}=1.08 \mathrm{kip}$	Shear at estimated scour line
$d_{2}:=\frac{1}{E \cdot I}\left[\frac{\left(M \cdot f^{2}\right)}{2}+\frac{\left(V \cdot f^{3}\right)}{3}\right]$	$\mathrm{d}_{2}=0.0002$ in	Pile deflection at estimated scour line
$\theta:=\frac{1}{E \cdot 1}\left(M \cdot f+\frac{V \cdot f^{2}}{2}\right)$	$\theta=0.0002$	Pile slope at estimated scour line
$\mathrm{d}_{\mathrm{a} 2}:=\mathrm{d}_{1}+\mathrm{d}_{2}+\theta \cdot \mathrm{x}$	$\mathrm{d}_{\mathrm{a} 2}=0.054 \mathrm{in}$	Total pile deflection at anchor elevation from Part a) of live load surcharge

Part b)

$$
\begin{array}{ll}
L:=E S+B W+f+1 \mathrm{ft} & L=9.270 \mathrm{ft} \\
x:=f+E S+Z_{a} & x=4.853 \mathrm{ft} \\
d_{a 3}:=\frac{w_{2} \cdot(1 \mathrm{ft}) \cdot x^{2}}{2 \cdot E \cdot 1} \cdot\left[\left(\frac{-1}{3}\right) \cdot x-\frac{1}{2} \cdot(1 \mathrm{ft})+L\right] & d_{a 3}=0.119 \mathrm{in}
\end{array}
$$

Distance between point of fixity and 1 ft above roadway elevation

Distance between and anchor elevation and point of fixity

Total pile deflection at anchor elevation from Part b) of live load surcharge

Part c)

$$
\begin{aligned}
& d_{1}:=\frac{w_{4} \cdot z_{a}{ }^{2}}{120 \cdot(6 \mathrm{ft}) \cdot \mathrm{E} \cdot \mathrm{I}} \cdot\left[20 \cdot(6 \mathrm{ft})^{3}-10 \cdot(6 \mathrm{ft})^{2} \cdot \mathrm{Z}_{\mathrm{a}}+\mathrm{Z}_{\mathrm{a}}{ }^{3}\right] \\
& d_{1}=0.038 \text { in } \\
& \mathrm{V}:=\frac{1}{2} \cdot \mathrm{w}_{4} \cdot(6 \mathrm{ft}) \\
& M:=\mathrm{V} \cdot\left(\frac{2}{3}\right) \cdot 6 \mathrm{ft} \quad \mathrm{M}=9.63 \mathrm{ft} \cdot \mathrm{kip} \\
& x:=f+E S \quad x=2.270 f t \\
& d_{2}:=\frac{1}{E \cdot 1}\left(\frac{M \cdot x^{2}}{2}+\frac{V \cdot x^{3}}{3}\right) \quad d_{2}=0.052 \text { in } \\
& \theta:=\frac{1}{E \cdot I}\left(M \cdot x+\frac{V \cdot x^{2}}{2}\right) \\
& d_{a 4}:=d_{1}+d_{2}+\theta \cdot Z_{a} \\
& \theta=0.004 \mathrm{rad} \quad \text { Pile slope at stream } \\
& \text { elevation } \\
& \text { Total pile deflection at } \\
& \text { anchor elevation from } \\
& \text { Part c) of live load } \\
& \text { surcharge } \\
& f=0.270 \mathrm{ft} \\
& E S=2.00 \mathrm{ft} \\
& \mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft} \\
& \mathrm{~F}=9.00 \mathrm{kip} \\
& x:=f+E S+Z_{a} \\
& x=4.853 \mathrm{ft} \\
& d_{a 5}:=\frac{-F \cdot x^{3}}{3 \cdot E \cdot 1} \\
& d_{a 5}=-0.517 \mathrm{in} \\
& \text { Pile deflection at anchor } \\
& \text { elevation } \\
& \text { Shear at stream elevation } \\
& \text { Moment at stream } \\
& \text { elevation } \\
& \text { Distance between pile } \\
& \text { fixity and stream elevation } \\
& \text { Pile deflection at stream } \\
& \text { elevation } \\
& \text { Pile slope at stream } \\
& \text { elevation } \\
& \text { - } \\
& \text { Distance between pile } \\
& \text { fixity and anchor elevation } \\
& \text { Total pile deflection at } \\
& \text { anchor elevation from } \\
& \text { assumed anchor force }
\end{aligned}
$$

4) BRAKING FORCE

$$
\mathrm{x}_{1}:=\mathrm{f}+\mathrm{ES}+\mathrm{Z}_{\mathrm{a}}
$$

$$
x_{1}=4.853 \mathrm{ft}
$$ elevation

$$
x_{2}=5.853 \mathrm{ft}
$$

$x_{2}=5.853 \mathrm{ft}$
$d_{a 6}:=\frac{B F P \cdot x_{1}{ }^{2}}{6 \cdot E \cdot I} \cdot\left[3 \cdot\left(x_{2}\right)-x_{1}\right]$
Distance between point of pile fixity and anchor

Distance between point of pile fixity and bearing elevation

$$
\mathrm{d}_{\mathrm{a} 6}=0.023 \mathrm{in}
$$

Pile deflection at anchor elevation due to braking force

5) PASSIVE EARTH PRESSURE

$$
\mathrm{f}=0.270 \mathrm{ft}
$$

$$
\mathrm{ES}=2.00 \mathrm{ft}
$$

$$
\mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft}
$$

$$
Z_{b}=3.583 \mathrm{ft}
$$

$B F P=0.31 \mathrm{kip}$

$$
\begin{aligned}
& \alpha:=\frac{1.92 \cdot H}{f^{2}} \\
& \alpha=1.123 \mathrm{ksf} \\
& \text { Constants in equation of } \\
& \text { parabolic passive soil } \\
& \xi:=\frac{0.12 \cdot \mathrm{H}}{\mathrm{f}^{3}} \quad \xi=0.260 \mathrm{kcf} \\
& d_{a 7}:=\left(\frac{\alpha \cdot f^{4} \cdot x}{24}+\frac{\xi \cdot f^{5} \cdot x}{60}-\frac{\alpha \cdot f^{5}}{120}-\frac{\xi \cdot f^{6}}{120}\right) \cdot\left(\frac{-1}{E \cdot 1}\right) \\
& d_{a 7}=-1.84 \times 10^{-6} \text { in Pile deflection at anchor } \\
& \text { elevation from passive soil } \\
& \text { reaction } \\
& d_{a T}:=d_{a 1}+d_{a 2}+d_{a 3}+d_{a 4}+d_{a 5}+d_{a 6}+d_{a 7} \\
& d_{a T}=0.006 \text { in Total pile deflection at } \\
& \text { anchor elevation }
\end{aligned}
$$

Pile deflection at the anchor location $\mathbf{= 0 . 0 0 6} \mathbf{i n}$. with assumed anchor force of 9.00 kips per pile.
$\varepsilon_{r}:=\frac{d_{a T}}{x_{r}}$
$\varepsilon_{r}=3.56 \times 10^{-5} \quad$ Anchor rod strain
$\sigma_{r}:=\varepsilon_{r} \cdot 29000 \cdot \mathrm{ksi}$
$\sigma_{r}=1.032 \mathrm{ksi} \quad$ Anchor rod stress
$F:=\sigma_{r} \cdot A_{r p}$
$\mathrm{F}=0.326 \mathrm{kip}$
Calculated anchor force per pile

Using this calculated anchor rod force per pile, the process is repeated to determine the pile deflection at the anchor rod elevation and a new anchor rod force per pile.

The first assumed anchor force of 5 kips was too low. The next assumed value of 9 kips yielded a calculated force of 0.326 kip, thus it was too high. Therefore the next estimate should be between 5 and 9 kips. Repeat this iterative process until the assumed and calculated anchor force are equal.

After several iterations:

$F:=7.628 \mathrm{kip}$
$\mathrm{f}:=1.5549 \mathrm{ft}$
$\delta_{\mathrm{aT}}:=0.1500 \mathrm{in}$

Final anchor force per pile
Final depth to fixity below estimated scour line

Final pile deflection and anchor rod elongation
$\varepsilon_{r}:=\frac{\delta_{a T}}{15 \cdot \mathrm{ft}}$
$\varepsilon_{r}=0.001$
$\sigma:=29000 \mathrm{ksi} \cdot\left(\varepsilon_{\mathrm{r}}\right)$
$\sigma=24.17 \mathrm{ksi}$
$H:=B F P+L L_{\text {sur }}+E D L-F$
$\mathrm{H}=1.41 \mathrm{kip}$

DETERMINE MAXIMUM PILE MOMENT

Longitudinal Moment

*Use superposition and check various points along the pile length
a) point of pile fixity $(x=0)$
b) anchor location (x_{b})
c) $\left(x_{c}\right)$

ES $=2.00 \mathrm{ft}$	$z_{a}=2.583 \mathrm{ft}$
$x_{b}:=f+E S+z_{a}$	$x_{b}=6.138 \mathrm{ft}$
$x_{c}:=\frac{x_{b}}{2}$	$x_{c}=3.069 \mathrm{ft}$
	$x_{c}:=3.00 \mathrm{ft}$

EARTH DEAD LOAD

$\mathrm{w}_{1}=1.077 \mathrm{klf}$
$h=8.00 \mathrm{ft}$
$\mathrm{w}_{\mathrm{B}}:=0.460 \mathrm{klf}$
$\mathrm{f}=1.555 \mathrm{ft}$
$\mathrm{w}_{\mathrm{C}}:=0.883 \mathrm{klf}$

Final anchor rod strain

Final anchor rod stress (OK if 60 ksi steel is used)
Total lateral pile load

Distance between pile fixity and anchor elevation Halfway between pile fixity and anchor elevation

Use $x_{c}=3 \mathrm{ft}$
$Z_{a}=2.583 \mathrm{ft}$
$E S=2.00 \mathrm{ft}$

$$
\begin{array}{ll}
M_{A 1}:=\frac{1}{2} \cdot w_{1} \cdot h \cdot\left(f+\frac{h}{3}\right) & M_{A 1}=18.19 \mathrm{ft} \cdot \mathrm{kip} \\
M_{\mathrm{B} 1}:=\frac{1}{2} \cdot w_{\mathrm{B}} \cdot\left(\mathrm{~h}-\mathrm{ES}-\mathrm{Z}_{\mathrm{a}}\right)^{2} \cdot \frac{1}{3} & \mathrm{M}_{\mathrm{B} 1}=0.895 \mathrm{ft} \cdot \mathrm{kip} \\
\mathrm{M}_{\mathrm{C} 1}:=\frac{1}{2} \cdot w_{\mathrm{C}} \cdot\left(\mathrm{~h}+\mathrm{f}-\mathrm{x}_{\mathrm{C}}\right)^{2} \cdot\left(\frac{1}{3}\right) & \mathrm{M}_{\mathrm{C} 1}=6.32 \mathrm{ft} \cdot \mathrm{kip}
\end{array}
$$

LIVE LOAD SURCHARGE

$$
\begin{array}{lll}
\mathrm{f}=1.555 \mathrm{ft} & \mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft} & \mathrm{w}_{4}=0.803 \mathrm{klf} \\
\mathrm{ES}=2.00 \mathrm{ft} & \mathrm{w}_{2}=0.938 \mathrm{klf} & \\
\mathrm{~h}=8.00 \mathrm{ft} & \mathrm{w}_{3}=0.135 \mathrm{klf} &
\end{array}
$$

Part a)

$$
\begin{array}{ll}
x_{1}:=f+h & x_{1}=9.555 \mathrm{ft} \\
x_{2}:=f+E S+Z_{a} & x_{2}=6.138 \mathrm{ft} \\
M_{A 2}:=w_{3} \cdot\left(x_{1}-f\right) \cdot\left[f+\frac{\left(x_{1}-f\right)}{2}\right] & M_{A 2}=5.98 \mathrm{ft} \cdot \mathrm{kip} \\
M_{B 2}:=w_{3} \cdot \frac{\left(x_{1}-x_{2}\right)^{2}}{2} & M_{B 2}=0.79 \mathrm{ft} \cdot \mathrm{kip} \\
M_{C 2}:=w_{3} \cdot \frac{\left(x_{1}-x_{c}\right)^{2}}{2} & M_{C 2}=2.89 \mathrm{ft} \cdot \mathrm{kip}
\end{array}
$$

Distance between pile fixity and roadway

Distance between pile fixity and anchor elevation

Part b)

$x_{1}:=f+h$
$x_{1}=9.555 \mathrm{ft}$

$$
x_{2}:=f+E S+z_{a}
$$

$$
x_{2}=6.138 \mathrm{ft}
$$

$$
\begin{array}{ll}
M_{A 3}:=w_{2} \cdot(1 \mathrm{ft}) \cdot\left(x_{1}+\frac{1 \mathrm{ft}}{2}\right) & M_{A 3}=9.43 \mathrm{ft} \cdot \mathrm{kip} \\
M_{\mathrm{B} 3}:=w_{2} \cdot(1 \mathrm{ft}) \cdot\left(x_{1}-x_{2}+\frac{1 \mathrm{ft}}{2}\right) & M_{\mathrm{B} 3}=3.67 \mathrm{ft} \cdot \mathrm{kip} \\
M_{\mathrm{C} 3}:=w_{2} \cdot(1 \mathrm{ft}) \cdot\left(x_{1}-x_{C}+\frac{1 \mathrm{ft}}{2}\right) & M_{C 3}=6.61 \mathrm{ft} \cdot \mathrm{kip}
\end{array}
$$

Distance between pile fixity and roadway elevation

Distance between pile fixity and anchor elevation

Part c)

$$
w_{B}:=0.346 \mathrm{klf}
$$

$$
\begin{array}{ll}
x_{1}:=f+h & x_{1}=9.555 \mathrm{ft} \\
x_{2}:=f+E S+Z_{a} & x_{2}=6.138 \mathrm{ft} \\
x_{3}:=x_{1}-6 \mathrm{ft} & x_{3}=3.555 \mathrm{ft} \\
M_{A 4}:=\frac{1}{2} \cdot w_{4} \cdot(6 \mathrm{ft}) \cdot\left[x_{3}+\left(\frac{2}{3}\right) \cdot 6 \mathrm{ft}\right] & M_{A 4}=18.20 \mathrm{ft} \cdot \mathrm{kip} \\
M_{B 4}:=w_{B} \cdot \frac{\left(x_{1}-x_{2}\right)^{2}}{2}+\frac{1}{2} \cdot\left(w_{4}-w_{B}\right) \cdot\left(x_{1}-x_{2}\right)^{2} \cdot\left(\frac{2}{3}\right) \\
M_{C 4}:=\frac{1}{2} \cdot w_{4} \cdot(6 \mathrm{ft}) \cdot\left[x_{3}-x_{C}+\left(\frac{2}{3}\right) \cdot 6 \mathrm{ft}\right] & M_{B 4}=3.80 \mathrm{ft} \cdot \mathrm{kip} \\
M_{C 4}=10.97 \mathrm{ft} \cdot \mathrm{kip}
\end{array}
$$

ANCHOR FORCE

$x:=f+E S+Z_{a}$
$x=6.138 \mathrm{ft}$
$M_{A 5}:=-F \cdot x$
$\mathrm{M}_{\mathrm{A} 5}=-46.82 \mathrm{ft} \cdot \mathrm{kip}$
$M_{B 5}:=0.00 f t \cdot k i p$
$M_{B 5}=0.00 \mathrm{ft} \cdot \mathrm{kip}$
$M_{C 5}:=-F \cdot\left(x-x_{C}\right)$
$M_{C 5}=-23.94 \mathrm{ft} \cdot \mathrm{kip}$
$\mathrm{f}=1.555 \mathrm{ft}$
$E S=2.00 \mathrm{ft}$
$\mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft}$
$F=7.63$ kip
Distance between pile fixity and roadway elevation

Distance between pile fixity and anchor elevation

Distance between pile fixity and bottom of triangular load

Distance between pile fixity and anchor elevation

BRAKING FORCE

$x_{1}:=f+E S+Z_{b}$
$x_{1}=7.138 \mathrm{ft}$
Distance between pile fixity and bearing elevation
$x_{2}:=f+E S+Z_{a}$
$x_{2}=6.138 \mathrm{ft}$
Distance between pile fixity and anchor elevation
$M_{A 6}:=B F P \cdot x_{1}$
$M_{A 6}=2.22 \mathrm{ft} \cdot \mathrm{kip}$
$M_{B 6}:=\operatorname{BFP} \cdot\left(x_{1}-x_{2}\right)$
$M_{B 6}=0.31 \mathrm{ft} \cdot \mathrm{kip}$
$M_{C 6}:=\operatorname{BFP} \cdot\left(x_{1}-x_{C}\right)$
$\mathrm{M}_{\mathrm{C} 6}=1.29 \mathrm{ft} \cdot \mathrm{kip}$

PASSIVE EARTH PRESSURE

$\mathrm{f}=1.555 \mathrm{ft}$
$\mathrm{H}=1.41$ kip

$$
\begin{aligned}
& \alpha:=\frac{1.92 \cdot \mathrm{H}}{\mathrm{f}^{2}} \\
& \xi:=0.12 \cdot \frac{\mathrm{H}}{\mathrm{f}^{3}}
\end{aligned}
$$

$$
\mathrm{w}\left(\mathrm{x}^{\prime}\right)=\alpha^{*}\left(\mathrm{x}^{\prime}\right)+\xi^{*}\left(\mathrm{x}^{\prime}\right)^{2}
$$

$$
V\left(x^{\prime}\right)=\int w\left(x^{\prime}\right) d x
$$

$$
\mathrm{M}\left(\mathrm{x}^{\prime}\right)=\int \mathrm{V}\left(\mathrm{x}^{\prime}\right) \mathrm{dx} \quad \text { for } 0 \leq \mathrm{x} \leq \mathrm{f}
$$

$$
M_{A 7}:=\frac{-\alpha \cdot f^{3}}{6}-\frac{\xi \cdot f^{4}}{12}
$$

$$
M_{B 7}:=0.00 \mathrm{ft} \cdot \mathrm{kip} \quad M_{B 7}=0.00 \mathrm{ft} \cdot \mathrm{kip}
$$

$$
\mathrm{M}_{\mathrm{C} 7}:=0.00 \mathrm{ft} \cdot \mathrm{kip}
$$

$$
\mathrm{M}_{\mathrm{C} 7}=0.00 \mathrm{ft} \cdot \mathrm{kip}
$$

$$
M_{A T}:=M_{A 1}+M_{A 2}+M_{A 3}+M_{A 4}+M_{A 5}+M_{A 6}+M_{A 7}
$$

$$
\mathrm{M}_{\mathrm{AT}}=6.47 \mathrm{ft} \cdot \mathrm{kip}
$$

$$
M_{B T}:=M_{B 1}+M_{B 2}+M_{B 3}+M_{B 4}+M_{B 5}+M_{B 6}+M_{B 7}
$$

$$
\mathrm{M}_{\mathrm{BT}}=9.46 \mathrm{ft} \cdot \mathrm{kip}
$$

$$
M_{C T}:=M_{C 1}+M_{C 2}+M_{C 3}+M_{C 4}+M_{C 5}+M_{C 6}+M_{C 7}
$$

$$
\mathrm{M}_{\mathrm{CT}}=4.15 \mathrm{ft} \cdot \mathrm{kip}
$$

M := 9.46ft•kip

Constants in equation of parabolic passive soil reaction distribution

Derived equation for pile moement as a function of x^{\prime}
for $x^{\prime}=f$

Total pile moment at point of fixity

Total pile moment at anchor location

Total pile moment halfway between anchor and fixity elevations

Maximum total pile
 moment

Transverse Pile Moments

	$\mathrm{f}=1.555 \mathrm{ft}$	$\mathrm{Z}_{\mathrm{b}}=3.583 \mathrm{ft}$		
	$\mathrm{ES}=2.00 \mathrm{ft}$	$\mathrm{WS}=0.60 \mathrm{kip}$		Wind on superstructure
:---				
force per pile				

PILE SELF-WEIGHT

For friction piles, the gravity load is disipated as the depth below ground increases. Therefore, only consider pile self-weight for the length above point of pile fixity.

$x:=f+E S+Z_{b}$	$x=7.138 \mathrm{ft}$	Distance between point of fixity and bearing elevation
$P_{\text {SW }}:=0.033 \mathrm{klf}$		Pile self-weight per foot
$P_{\text {SWT }}:=P_{\text {SW }} \cdot x$	$P_{\text {SWT }}=0.24 \mathrm{kip}$	Pile weight

LOAD SUMMARY

$\mathrm{DL}_{\mathrm{g}}=130.00 \mathrm{kip}$	Dead load abutment reaction
$\mathrm{pf}=1.4$	Nominal axial pile factor (Chapter 2, Volume 2)
$\mathrm{N}=7$	Number of piles
$\mathrm{P}_{\mathrm{DL}}=26.00 \mathrm{kip}$	Pile axial dead load
$\mathrm{P}_{\mathrm{LL}}=22.08 \mathrm{kip}$	Pile axial live load
$\mathrm{P}_{\mathrm{T}}=48.08 \mathrm{kip}$	Pile total axial load

DESIGN CHECKS

Pile Length

	$Z_{b}=3.583 \mathrm{ft}$	$E S=2.00 \mathrm{ft}$	
		$B=10.99$ in	Representative pile diameter
		$\mathrm{P}_{\mathrm{T}}=48.08 \mathrm{kip}$	Total axial pile load
		$\mathrm{FB}:=0.7 \cdot \frac{\mathrm{ton}}{\mathrm{ft}}$	Friction bearing resistance (lowa DOT FSIC)
$A F B:=\frac{B}{10 \mathrm{in}} \cdot F B$		$\mathrm{AFB}=0.77 \frac{\mathrm{ton}}{\mathrm{ft}}$	Adjusted friction bearing resistance (Iowa DOT FSIC)
$\mathrm{PL}:=\frac{\mathrm{P}_{\mathrm{T}} \cdot\left(\frac{1 \text { ton }}{2 \mathrm{kip}}\right)}{\mathrm{AFB}}$		$\mathrm{PL}=31.249 \mathrm{ft}$	Required miminum embedded pile length
TPL $:=P L+E S+Z_{b}$		TPL $=36.833 \mathrm{ft}$	Required minimum total pile length
	Roundup to ne	t, $40 \mathrm{ft}<55 \mathrm{ft}$ OK	(Iowa DOT BDM 6.2.6.3)

Allowable Axial Pile Load

25 tons for piles 30 ft and longer
(lowa DOT BDM 6.2.6.3)
20 tons for piles less than 30 ft

Since required embedded length of 31.2 ft is greater than 30 ft , the 25 ton per pile limit applies.

$$
\mathrm{P}_{\mathrm{T}} \cdot\left(\frac{1 \text { ton }}{2 \text { kip }}\right)=24.04 \text { ton } \quad 24.04 \text { tons }<25 \text { tons } \quad \text { OK }
$$

Vertical Bearing Capacity

If the embedded length is greater than or equal to 31.2 ft , then the vertical bearing capacity will be sufficient. Therefore this check is OK

Anchor Location

Minimum anchor rod length $=13.48 \mathrm{ft}$

Anchor length used $=15 \mathrm{ft}$
(previously calculated)
$13.48 \mathrm{ft}<15 \mathrm{ft}$

OK

Combined Axial and Lateral Loading Check

For combined bending and axial loads, AASHTO recommends the interaction equation from the NDS Manual. Note the x and y axis are assumed to be parallel and perpendicular to the backwall face, respectively
(AASHTO 13.7.2)

$$
\begin{equation*}
\left(\frac{\left.f_{c}\right)^{2}}{F_{c}^{1}}\right)+\frac{f_{b x}}{F_{b x}^{\prime}\left(1-\frac{f_{c}}{F_{c E x}}\right)}+\frac{f_{b y}}{F_{b y}^{\prime} \cdot\left(1-\frac{f_{c}}{F_{c E y}}-\frac{\left.f_{b x}\right)}{F_{b E}}\right)}<1.0 \tag{NDS3.9}
\end{equation*}
$$

For the given loads, three different load combinations given in section 6.6.3.1 of the lowa DOT BDM are applicable.

Group I: 1.0(DL)+1.0(LL)+1.0(E)+1.0(BF)
Group II: 1.0(DL)+1.0(E)+1.0(WS) Group III: $1.0(\mathrm{DL})+1.0(\mathrm{LL})+1.0(\mathrm{E})+1.0(\mathrm{BF})+0.3(\mathrm{WS})+1.0(\mathrm{WL})$

DL = Dead load
LL = Live load
E = Earth load
$\mathrm{BF}=$ Longitudinal braking force
WS = Wind on superstructure
WL = Wind on live load

APPLIED STRESSES

$\mathrm{f}_{\mathrm{c}}=$ axial compressive force
$P_{L L}=22.08$ kip Pile axial live load
$P_{\text {DL }}=26.00 \mathrm{kip}$
$\mathrm{P}_{\mathrm{T}}=48.08$ kip
$A=94.86$ in 2
using 100\% of the allowable stress using 125% of the allowable stress using 125% of the allowable stress

$$
\mathrm{A}=94.86 \mathrm{in}^{2}
$$

Pile axial dead load

Pile total axial load
Representative pile area

Group I and III (with Live Load)

$\mathrm{f}_{\mathrm{CT}}:=\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{A}}$
$\mathrm{f}_{\mathrm{C} T}=0.507 \mathrm{ksi}$
Group I and III axial compressive stress

Group II (without Live Load)
$\mathrm{f}_{\mathrm{cDL}}:=\frac{\mathrm{P}_{\mathrm{DL}}}{\mathrm{A}}$

$$
\mathrm{f}_{\mathrm{cDL}}=0.274 \mathrm{ksi}
$$

Group II axial compressive stress

When computing the applied x -axis bending stress, the live and dead loads were not separated. Therefore, the live load surcharge and braking force is also included in the second load combination recommended by the lowa DOT BDM (i.e., Group II) and $f_{b x}$ is the same for all load combinations. However, the pile axial live and dead load can be separtated as demonstrated on the previous page.

	$\mathrm{I}=716.1 \mathrm{in}^{4}$	Representative moment of inertia
$\mathrm{SM}:=\frac{1}{\left(\frac{\mathrm{~B}}{2}\right)}$	$B=10.99$ in	Representative pile diameter
	$S M=130.3 \mathrm{in}^{3}$	Section modulus
	$\mathrm{M}=9.46 \mathrm{ft} \cdot \mathrm{kip}$	Maximum pile moment (x-axis bending)
	$\mathrm{M}_{\mathrm{WS}}=4.25 \mathrm{ft} \cdot \mathrm{kip}$	Wind on superstructure pile moment (y -axis bending)
	$\mathrm{M}_{\mathrm{WL}}=2.04 \mathrm{ft} \cdot \mathrm{kip}$	Wind on live load pile moment (y -axis bending)
$f_{b x}:=\frac{M}{S M}$	$\mathrm{f}_{\mathrm{bx}}=0.871 \mathrm{ksi}$	Groups I, II, and III applied x -axis bending stress
$\mathrm{f}_{\mathrm{byW}}:=\frac{\mathrm{M}_{\mathrm{WS}}}{\mathrm{SM}}$	$\mathrm{f}_{\text {byW }}=0.391 \mathrm{ksi}$	Group II and III applied y-axis bending bending stress from wind on superstructure
$f_{b y W L}:=\frac{M_{W L}}{S M}$	$\mathrm{f}_{\text {byWL }}=0.188 \mathrm{ksi}$	Group III applied y-axis bending stress from wind on live load

ALLOWABLE STRESSES

When necessary, round piles shall be designed as square columns with an equivalent cross sectional area.
(AASHTO 13.7.3.5)

$$
\begin{array}{ll}
A=94.86 \mathrm{in}^{2} \\
d:=\sqrt{A} & d=9.74 \mathrm{in} \quad \text { Equivalent square }
\end{array}
$$

dimension

Allowable Compressive Stress

$$
F_{C^{\prime}}=F_{C} \cdot C_{m} \cdot C_{D} \cdot C_{F} \cdot C_{P}
$$

(AASHTO 13.7.3.2)

Use southern pine timber piles, obtain material properties from AASHTO Table 13.5.1A.

$\mathrm{F}_{\mathrm{C}}:=1100 \mathrm{psi} \quad \mathrm{E}=1600 \mathrm{ksi}$		Tabulated timber modulus of elasticity
		Tabulated timber compressive stress
$\mathrm{F}_{\mathrm{b}}:=1750 \mathrm{psi}$		Tabulated timber bending stress
$C_{M}:=1.0$		Wet service compression factor (AASHTO Table 13.5.1A)
$C_{F}:=1.0$		For sawn lumber only
$C_{D}:=0.90$		Load duration factor for permanent loading (AASHTO Table 13.5.5A)
$C_{p}=\frac{\left(1+\frac{F_{C E x}}{F_{C^{\prime}}}\right)}{2 \cdot c}-\sqrt{ }$	$\frac{\left(1+\frac{F_{C E x}}{F_{c^{\prime}}}\right)}{(2 \cdot c)^{2}}-\frac{\left(\frac{\left.F_{C E x}\right)}{F_{c^{\prime}}}\right)}{c}$	Column stability factor (AASHTO 13.7.3.3.5)
$\mathrm{c}:=0.85$		For round piles
$\mathrm{K}_{\mathrm{CE}}:=0.30$		For visually graded lumber

$\mathrm{E}^{\prime}:=\mathrm{E} \cdot \mathrm{C}_{\mathrm{M}}$
X -axis Bending:
$\mathrm{I}_{\mathrm{e}}=(\mathrm{k}) *$ (length between braced points)
$\mathrm{k}_{\mathrm{X}}:=0.7$
$\mathrm{E}^{\prime}=1600 \mathrm{ksi}$ elasticity

Equivalent square dimension

Distance between point of fixity and anchor elevation

Effective pile length for x-axis bending
$F_{C E x}=17.13 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{CEx}}:=\frac{\mathrm{K}_{\mathrm{CE}} \cdot \mathrm{E}^{\prime}}{\left(\frac{\left.\mathrm{l}_{\mathrm{ex}}\right)^{2}}{\mathrm{~d}}\right)^{2}}$
$\mathrm{f}=1.555 \mathrm{ft}$
$\mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft}$
$\mathrm{ES}=2.00 \mathrm{ft}$
$I_{x}=6.138 \mathrm{ft}$
$l_{e x}=4.297 \mathrm{ft}$
Y-axis Bending:
$k_{y}:=0.7$
$I_{y}:=f+E S+Z_{b}$
$l_{\text {ey }}:=k_{y} \cdot{ }^{-1} y$
$\mathrm{F}_{\mathrm{CEy}}:=\frac{\mathrm{K}_{\mathrm{CE}} \cdot \mathrm{E}^{\prime}}{\left(\frac{\mathrm{l}_{\mathrm{ey}}}{\mathrm{d}}\right)^{2}}$
$\mathrm{F}_{\mathrm{C}^{\prime}}:=\mathrm{F}_{\mathrm{C}} \cdot \mathrm{C}_{\mathrm{M}} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{F}}$
$Z_{b}=3.583 \mathrm{ft}$
$\mathrm{I}_{\mathrm{y}}=7.138 \mathrm{ft}$
$l_{\text {ey }}=4.997 \mathrm{ft}$
$F_{C E y}=12.66 \mathrm{ksi} \quad y$-axis buckling stress
$\mathrm{F}_{\mathrm{C}^{\prime}}=0.990 \mathrm{ksi}$

Distance between point of fixity and bearing elevation

Effective pile length for y-axis bending

Allowable axial stress without column stability factor

$$
\begin{aligned}
& C_{p x}:=\frac{\left(1+\frac{\left.F_{C E x}\right)}{F_{\mathrm{C}^{\prime}}}\right)}{2 \cdot c}-\sqrt{\frac{\left(1+\frac{\left.F_{C E x}\right)^{2}}{F_{\mathrm{C}^{\prime}}}\right)}{(2 \cdot c)^{2}}-\frac{\left(\frac{\left.\mathrm{F}_{\mathrm{CEx}}\right)}{\left.\mathrm{F}_{\mathrm{C}^{\prime}}\right)}\right.}{\mathrm{c}}} \quad C_{\mathrm{px}}=0.991 \quad \begin{array}{l}
\text { factor column stability } \\
\text { f-axis }
\end{array} \\
& C_{p y}:=\frac{\left(1+\frac{\left.F_{C E y}\right)}{F_{C^{\prime}}}\right)}{2 \cdot c}-\sqrt{\frac{\left(1+\frac{\left.F_{C E y}\right)^{2}}{F_{\mathrm{C}^{\prime}}}\right)}{(2 \cdot c)^{2}}-\frac{\left(\frac{\left.F_{C E y}\right)}{F_{\mathrm{C}^{\prime}}}\right)}{c}} \quad C_{p y}=0.988 \quad \begin{array}{l}
\text { factor column stability }
\end{array} \\
& C_{p y}=0.988 \quad \text { Controls } \\
& F_{C^{\prime}}:=F_{C} \cdot C_{M} \cdot C_{D} \cdot C_{F} \cdot C_{p y} \\
& \mathrm{~F}_{\mathrm{C}^{\prime}}=0.978 \mathrm{ksi}
\end{aligned}
$$

Allowable Bending Stress

$F_{b^{\prime}}=F_{b} \cdot C_{m} \cdot C_{D} \cdot C_{F} \cdot C_{V} \cdot C_{L} \cdot C_{f} \cdot C_{f u} \cdot C_{r}$	Tabulated timber bending stress (AASHTO 13.6.4.1)
$C_{M}:=1.0$	Wet service bending factor for members $5 " \times 5 "$ or larger (AASHTO Table 13.5.1A)
$C_{D}:=0.90$	Load duration factor for permanent loading (AASHTO Table 13.5.5A)
$C_{F}:=1.0$	For sawn lumber only
$C_{V}:=1.0$	For glued laminated timber only
$C_{L}:=1.0$	Equal to 1.0 for members whose depth does not exceed its width (AASHTO 13.6.4.4.2)
$C_{f}:=1.18$	Round member factor
(AASHTO 13.6.4.5)	

$\mathrm{C}_{\mathrm{fu}}:=1.0 \quad$ For sawn lumber only
$C_{r}:=1.0$
For sawn lumber only
$F_{b^{\prime}}:=F_{b} \cdot C_{M} \cdot C_{D} \cdot C_{F} \cdot C_{V} \cdot C_{L} \cdot C_{f} \cdot C_{f u} \cdot C_{r}$
$\mathrm{F}_{\mathrm{b}^{\prime}}=1.859 \mathrm{ksi}$

Allowable bending stress

INTERACTION EQUATION VALIDATION CHECK

$F_{B E}=\frac{K_{b E} \cdot E^{\prime}}{R_{B}{ }^{2}}$
Bending buckling stress (NDS 3.9)
$\mathrm{K}_{\mathrm{bE}}:=0.439$
For visually graded lumber (NDS Manual 3.3.3.6)
$\mathrm{E}^{\prime}=1600 \mathrm{ksi}$
$R_{B}=\sqrt{\frac{\mathrm{e}^{\cdot} \cdot d}{\mathrm{~b}^{2}}}$
(NDS Manual 3.3.3.6)
$b=d=9.75$ in (for square cross section)
$F_{B E}$ is used in the interaction equation with the x-axis bending stress, therefore use the x-axis effective length of the R_{B} term.

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{B}}:=\sqrt{\frac{\mathrm{l}_{\mathrm{ex}}}{\mathrm{~d}}} & \mathrm{R}_{\mathrm{B}}=2.30 \\
\mathrm{~F}_{\mathrm{BE}}:=\frac{\mathrm{K}_{\mathrm{bE}} \cdot \mathrm{E}^{\prime}}{\mathrm{R}_{\mathrm{B}}^{2}} & \mathrm{~F}_{\mathrm{BE}}=132.69 \mathrm{ksi}
\end{array}
$$

To account for secondary bending effects, a $\mathrm{P}-\Delta$ factor is used. This value must be greater than 1.0.

x -axis bending

Group I and Group III (with Live Load)
$\mathrm{P} \Delta_{\mathrm{x} 1}:=\frac{1}{1-\frac{\mathrm{f}_{\mathrm{CT}}}{\mathrm{F}_{\mathrm{CEx}}}}$
$\mathrm{P} \Delta_{\mathrm{x} 1}=1.03$
>1.0, therefore OK

Group II (without Live Load)

$P \Delta_{x 2}:=\frac{1}{\left(1-\frac{f_{C D L}}{F_{C E x}}\right)}$
$\mathrm{P} \Delta_{\mathrm{x} 2}=1.02$
> 1.0, therefore OK

y-axis bending

Group III (with Live Load)
$P \Delta_{y 1}:=\frac{1}{1-\left(\frac{f_{c T}}{F_{c E y}}\right)-\left(\frac{f_{b x}}{F_{B E}}\right)^{2}}$
$\mathrm{P} \Delta_{\mathrm{y} 1}=1.04$
> 1.0, therefore OK

Group II (without Live Load)

$$
\mathrm{P} \Delta_{\mathrm{y} 2}:=\frac{1}{1-\left(\frac{\mathrm{f}_{\mathrm{cDL}}}{\mathrm{~F}_{\mathrm{cEy}}}\right)-\left(\frac{\mathrm{f}_{\mathrm{bx}}}{\mathrm{~F}_{\mathrm{BE}}}\right)^{2}}
$$

$P \Delta_{y 2}=1.02$
> 1.0, therefore OK

Group I Interaction equation

$$
\begin{array}{lll}
& \mathrm{f}_{\mathrm{c} T}=0.507 \mathrm{ksi} & \text { Applied total axial stress } \\
& \mathrm{F}_{\mathrm{c}^{\prime}}=0.978 \mathrm{ksi} & \text { Allowable axial stress } \\
& \mathrm{f}_{\mathrm{bx}}=0.871 \mathrm{ksi} & \begin{array}{l}
\text { Applied x-axis bending } \\
\text { stress }
\end{array} \\
\mathrm{F}_{\mathrm{b}^{\prime}}=1.859 \mathrm{ksi} & \text { Allowable bending stress } \\
\left(\frac{\mathrm{P} \Delta_{\mathrm{x} 1}=1.03}{\left.\mathrm{~F}_{\mathrm{c}^{\prime}}\right)^{2}}+\frac{\mathrm{f}_{\mathrm{bx}} \cdot \mathrm{P} \Delta_{\mathrm{x} 1}}{\mathrm{~F}_{\mathrm{b}^{\prime}}}=0.75\right. & 0.75 \leq 1.0 & \begin{array}{l}
\text { x-axis secondary moment } \\
\text { factor }
\end{array} \\
& & \text { OK }
\end{array}
$$

Group II Interaction equation

$$
\begin{array}{ll}
& \begin{array}{l}
\mathrm{f}_{\mathrm{cDL}}=0.274 \mathrm{ksi} \\
\mathrm{P}_{\mathrm{x} 2}=1.02
\end{array} \\
\mathrm{f}_{\mathrm{byW}}=0.391 \mathrm{ksi} & \begin{array}{l}
\text { Applied dead load axial } \\
\text { stress }
\end{array} \\
\begin{array}{l}
\mathrm{x} \text {-axis secondary moment } \\
\text { factor for dead load stress }
\end{array} \\
\mathrm{P} \Delta_{\mathrm{y} 2}=1.02 & \begin{array}{l}
\text { Applied } \mathrm{y} \text {-axis bending } \\
\text { stress from wind on } \\
\text { superstructure }
\end{array} \\
\text { y-axis secondary moment } \\
\text { factor for dead load stress }
\end{array}
$$

Group III Interaction Equation

$$
\begin{array}{cl}
P \Delta_{x 1}=1.03 & \begin{array}{l}
x \text {-axis secondary moment } \\
\text { factor }
\end{array} \\
f_{b y W L}=0.188 \mathrm{ksi} & \begin{array}{l}
\text { Applied } y \text {-axis bending } \\
\text { stress from wind on live } \\
\text { load }
\end{array} \\
P \Delta_{y 1}=1.04 & \begin{array}{l}
y \text {-axis secondary moment } \\
\text { factor }
\end{array} \\
{\left[\left(\frac{f_{c T}}{F_{\mathrm{c}^{\prime}}}\right)^{2}+\frac{f_{b x} \cdot P \Delta_{x 1}}{F_{b^{\prime}}}+\frac{0.3 \cdot f_{b y W} \cdot P \Delta_{y 1}}{F_{b^{\prime}}}+\frac{f_{b y W L} \cdot P \Delta_{y 1}}{F_{b^{\prime}}}\right] \cdot \frac{1}{1.25}=0.74} & \begin{array}{l}
1.25 \text { allowable overstress } \\
\text { factor }
\end{array} \\
0.74 \leq 1.0 & \text { OK }
\end{array}
$$

Anchor Rod Stress

$$
\sigma=24.17 \mathrm{ksi} \quad \text { Applied anchor rod stress }
$$

$\mathrm{f}_{\mathrm{y}}:=60 \cdot \mathrm{ksi}$
$\sigma_{\mathrm{a}}:=0.55 \cdot \mathrm{f}_{\mathrm{y}}$

Anchor Block Lateral Capacity

FMP $=10.27$ kip	Maximum allowable anchor force per pile
$\mathrm{F}=7.63 \mathrm{kip}$	Applied anchor force per pile
$7.63 \mathrm{kip}<10.27 \mathrm{kip}$	OK

Maximum Abutment Displacement

Maximum horizontal displacement $=1.5$ in
(AASHTO 4.4.7.2.5 via 4.5.12)

$$
\begin{aligned}
& \delta_{\mathrm{aT}}=0.150 \mathrm{in} \\
& 0.150 \mathrm{in}<1.50 \mathrm{in}
\end{aligned}
$$

Pile deflection at anchor elevation OK

Must check displacement at roadway elevation

1) DEAD LOAD EARTH PRESSURE

	$\mathrm{f}=1.555 \mathrm{ft}$	$\mathrm{h}=8.00 \mathrm{ft}$
	$\mathrm{ES}=2.00 \mathrm{ft}$	$\mathrm{BW}=6.00 \mathrm{ft}$
	$\mathrm{w}_{1}=1.077 \mathrm{klf}$	
$x:=E S+B W$	$x=96.0$ in	Distance between anchor elevation and estimated scour line
	$\mathrm{E}=1600 \mathrm{ksi}$	
	$\mathrm{I}=716.1 \mathrm{in}^{4}$	
$d_{1}:=\frac{w_{1} \cdot\left(x^{2}\right)}{120 \cdot h \cdot E \cdot 1} \cdot 4 \cdot x^{3}$	$\mathrm{d}_{1}=0.222 \mathrm{in}$	Pile deflection at roadway elevation
$M:=\frac{1}{2} \cdot h \cdot w_{1} \cdot\left(\frac{h}{3}\right)$	$\mathrm{M}=11.49 \mathrm{ft} \cdot \mathrm{kip}$	Moment at estimated scour line
$\mathrm{V}:=\frac{1}{2} \cdot h \cdot \mathrm{w}_{1}$	$\mathrm{V}=4.31 \mathrm{kip}$	Shear at estimated scour line
$d_{2}:=\frac{1}{E \cdot I}\left[\frac{\left(M \cdot f^{2}\right)}{2}+\frac{\left(V \cdot f^{3}\right)}{3}\right]$	$\mathrm{d}_{2}=0.029$ in	Pile deflection at estimated scour line
$\theta:=\frac{1}{E \cdot I}\left(M \cdot f+\frac{V \cdot f^{2}}{2}\right)$	$\theta=0.003 \mathrm{rad}$	Pile slope at estimated scour line
$\mathrm{d}_{\mathrm{r} 1}:=\left(\mathrm{d}_{1}+\mathrm{d}_{2}+\theta \cdot \mathrm{x}\right)$	$\mathrm{d}_{\mathrm{r} 1}=0.529 \mathrm{in}$	Total pile deflection at roadway elevation from active earth pressure

2) LIVE LOAD SURCHARGE

Part a)

$d_{1}:=\frac{w_{3} \cdot\left(x^{2}\right)}{24 \cdot E \cdot 1} \cdot\left(3 \cdot x^{2}\right)$
$d_{1}=0.104$ in
Pile deflection at roadway elevation
$M:=\frac{w_{3} \cdot h^{2}}{2}$
$M=4.31 \mathrm{ft} \cdot \mathrm{kip}$
Moment at estimated scour line
$V:=w_{3} \cdot h$
$\mathrm{V}=1.08$ kip
Shear at estimated scour line

$$
\begin{array}{ll}
d_{2}:=\frac{1}{E \cdot 1}\left[\frac{\left(M \cdot f^{2}\right)}{2}+\frac{\left(V \cdot f^{3}\right)}{3}\right] & d_{2}=0.010 \mathrm{in} \\
\theta:=\frac{1}{E \cdot 1} \cdot\left(M \cdot f+\frac{\left.V \cdot f^{2}\right)}{2}\right) & \theta=0.001 \mathrm{rad} \\
d_{r 2}:=d_{1}+d_{2}+\theta \cdot x & d_{r 2}=0.210 \mathrm{in}
\end{array}
$$

Pile deflection at estimated scour line

Pile slope at estimated scour line

Total pile deflection at roadway elevation from Part a) of live load surcharge

Part b)

$$
\begin{array}{ll}
\mathrm{L}:=\mathrm{f}+\mathrm{ES}+\mathrm{BW}+1 \cdot \mathrm{ft} & \mathrm{~L}=10.555 \mathrm{ft} \\
\mathrm{x}:=\mathrm{f}+\mathrm{ES}+\mathrm{BW} & \mathrm{x}=9.555 \mathrm{ft} \\
\mathrm{~d}_{\mathrm{r} 3}:=\frac{\mathrm{w}_{2} \cdot 1 \cdot \mathrm{ft} \cdot \mathrm{x}^{2}}{2 \cdot \mathrm{E} \cdot 1} \cdot\left[\left(\frac{-1}{3}\right) \cdot \mathrm{x}-\frac{1}{2} \cdot 1 \cdot \mathrm{ft}+\mathrm{L}\right] & \mathrm{d}_{\mathrm{r} 3}=0.443 \mathrm{in}
\end{array}
$$

Distance between point of fixity and 1 ft above roadway

Roadway elevation above point of fixity

Pile deflection from Part b) of live load surcharge

Part c)

$$
\mathrm{d}_{1}:=\frac{\mathrm{w}_{4} \cdot(6 \cdot \mathrm{ft})^{2}}{120 \cdot(6 \cdot \mathrm{ft}) \cdot \mathrm{E} \cdot \mathrm{l}} \cdot 11 \cdot[6 \cdot(\mathrm{ft})]^{3} \quad \mathrm{~d}_{1}=0.144 \mathrm{in}
$$

Pile deflection at roadway elevation
$\mathrm{V}:=\frac{1}{2} \cdot \mathrm{w}_{4} \cdot 6 \cdot \mathrm{ft}$

$$
\mathrm{V}=2.41 \mathrm{kip}
$$

Shear at stream elevation
$\mathrm{M}:=\mathrm{V} \cdot\left(\frac{2}{3}\right) \cdot 6 \cdot \mathrm{ft}$
$M=9.63 \mathrm{ft} \cdot \mathrm{kip}$
Moment at stream elevation
$x:=f+E S$
$x=3.555 \mathrm{ft}$
$d_{2}:=\frac{1}{E \cdot 1} \cdot\left(\frac{M \cdot x^{2}}{2}+\frac{V \cdot x^{3}}{3}\right)$
$d_{2}=0.146$ in
Pile deflection at stream elevation
$\theta:=\frac{1}{E \cdot I} \cdot\left(M \cdot x+\frac{V \cdot x^{2}}{2}\right)$
$\theta=0.006 \mathrm{rad}$
Pile slope at stream elevation
$\mathrm{d}_{\mathrm{r} 4}:=\mathrm{d}_{1}+\mathrm{d}_{2}+\theta \cdot 6 \cdot \mathrm{ft}$
$\mathrm{d}_{\mathrm{r} 4}=0.738 \mathrm{in}$
Total pile deflection from Part c) of live load surcharge

3) ANCHOR FORCE

$$
\begin{aligned}
& \mathrm{f}=1.555 \mathrm{ft} \\
& \mathrm{ES}=2.00 \mathrm{ft} \\
& \mathrm{BW}=6.00 \mathrm{ft} \\
& \mathrm{Z}_{\mathrm{a}}=2.583 \mathrm{ft} \\
& \mathrm{~F}=7.63 \mathrm{kip}
\end{aligned}
$$

$x_{1}:=f+E S+Z_{a}$
$x_{1}=6.138 \mathrm{ft}$
Distance between pile fixity and anchor elevation
$x_{2}:=f+E S+B W$
$x_{2}=9.555 \mathrm{ft}$
$d_{r 5}:=\frac{-F \cdot x_{1}{ }^{2}}{6 \cdot E \cdot 1} \cdot\left(3 \cdot x_{2}-x_{1}\right)$
$d_{r 5}=-1.627$ in
Distance between pile fixity and roadway elevation
Total pile deflection from anchor force
4) BRAKING FORCE

$$
\mathrm{f}=1.555 \mathrm{ft}
$$

$$
E S=2.00 \mathrm{ft}
$$

$$
\mathrm{BW}=6.00 \mathrm{ft}
$$

$$
\mathrm{Z}_{\mathrm{b}}=3.583 \mathrm{ft}
$$

$$
\mathrm{BFP}=0.31 \mathrm{kip}
$$

$x_{1}:=f+E S+Z_{b}$
$\mathrm{x}_{1}=7.138 \mathrm{ft}$

Distance between point of pile fixity and bearing elevation
$x_{2}:=f+E S+B W$
$x_{2}=9.555 \mathrm{ft}$
$\mathrm{d}_{\mathrm{r} 6}:=\frac{\mathrm{BFP} \cdot \mathrm{x}_{1}{ }^{2}}{6 \mathrm{E} \cdot \mathrm{I}} \cdot\left(3 \cdot \mathrm{x}_{2}-\mathrm{x}_{1}\right)$
$d_{r 6}=0.086$ in

Distance between point of pile fixity and roadway elevation

Total pile deflection from braking force
$E S=2.00 \mathrm{ft}$
$B W=6.00 \mathrm{ft}$
$\mathrm{H}=1.41 \mathrm{kip}$

Constants in equation of parabolic passive soil reaction distribution

Distance between pile fixity and roadway elevation

Total pile deflection from passive soil reaction

Total pile deflection at roadway elevation

OK

ANCHOR BLOCK DESIGN

(AASHTO, Section 8)

$$
\begin{aligned}
& \mathrm{S}=3.75 \mathrm{ft} \\
& \mathrm{~F}=7.63 \mathrm{kip} \\
& \mathrm{~N}_{\mathrm{r}}=5 \\
& \mathrm{~N}=7 \\
& \mathrm{~b}=3.00 \mathrm{ft} \\
& \mathrm{~h}_{\mathrm{a}}:=12 \mathrm{in} \\
& \mathrm{f}_{\mathrm{c}} \mathrm{c}:=3 \mathrm{ksi} \\
& \mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}
\end{aligned}
$$

Pile spacing
Anchor force per pile
Number of anchor rods
Number of piles
Anchor height
Anchor width
Concrete compressive strength

Reinforcing steel yield strength

Total anchor force per abutment

Minimum anchor block length

Anchor block length used for analysis

Anchor block plan view

ED := 1.5ft
$S_{A R}:=\frac{A B L-2 \cdot E D}{N_{r}-1}$
$S_{A R}=6.000 \mathrm{ft}$
Distance between end of the anchor block and exterior anchor rod

Anchor rod spacing

STRUCTURAL MODEL

$\mathrm{w}_{\mathrm{a}}:=\frac{\mathrm{F}_{\mathrm{aT}}}{\mathrm{ABL}}$

$$
\mathrm{w}_{\mathrm{a}}=1.978 \mathrm{klf}
$$

Passive soil reaction distribution imparted on anchor block

From indeterminate structural analysis:

M := 7.00ft•kip

Maximum anchor block moment

V := 6.73kip

Maximum anchor block shear

AASHTO LOAD COMBINATIONS

Since dead and live load anchor forces are not separated, use earth load factors.

Group I Loading: 1.3(1.3E) $=1.69 \mathrm{E}$
$M_{u}:=1.69 \cdot M$
$\mathrm{V}_{\mathrm{u}}:=1.69 \cdot \mathrm{~V}$
$\phi_{\mathrm{b}}:=0.9$
$\phi_{V}:=0.85$
(AASHTO 3.22)
$\mathrm{M}_{\mathrm{u}}=11.83 \mathrm{ft}$-kip Factored anchor block moment

Factored anchor block shear

Resistance factor for bending
(AASHTO 8.16.1.2.2)

Resistance factor for shear (AASHTO 8.16.1.2.2)

Design Checks

FLEXURAL CAPACITY

$$
\phi M_{n}=\phi_{b} \cdot A_{s} \cdot f_{y} \cdot\left(d-0.60 \cdot \frac{A_{s} \cdot f_{y}}{f_{c}^{\prime} \cdot b}\right)
$$

Design flexural capacity (AASHTO 8.16.3.2)

Assume \# 3 stirrup is used

$$
\begin{aligned}
\mathrm{h}_{\mathrm{a}} & =12.0 \mathrm{in} \\
\mathrm{~d}_{3} & :=\frac{3}{8} \cdot \mathrm{in} \\
\mathrm{~d}_{4} & :=\frac{4}{8} \mathrm{in}
\end{aligned}
$$

$$
\mathrm{d}:=\mathrm{h}_{\mathrm{a}}-2 \cdot \mathrm{in}-\mathrm{d}_{3}-\frac{1}{2} \cdot \mathrm{~d}_{4} \quad \mathrm{~d}=9.37 \mathrm{in}
$$

$$
\mathrm{b}=3.00 \mathrm{ft}
$$

$$
\mathrm{b}=36.00 \mathrm{in}
$$

$\mathrm{f}^{\prime} \mathrm{C}=3 \mathrm{ksi}$
$f_{y}=60 k s i$

Anchor block width

Diameter of \# 3 stirrup

Diameter of \# 4 bar (assumed)

Effective concrete depth

Width of compression block
Concrete compressive strength

Reinforcing steel yield strength

Set M_{U} equal to ϕM_{n} and determine the area of steel required by solving the resulting quadratic equation.

$$
\mathrm{A}_{\mathrm{SREQ}}:=0.28 \mathrm{in}^{2}
$$

Use 3 - \# 4 bars on each vertical face

$$
A_{s}:=3 \cdot 0.20 \cdot \mathrm{in}^{2}
$$

$\phi M_{n}:=\phi_{b} \cdot A_{s} \cdot f_{y} \cdot\left(d-0.60 \cdot \frac{A_{s} \cdot f_{y}}{f^{\prime}{ }_{c} \cdot b}\right)$

REINFORCEMENT RATIO
$\rho:=\frac{\mathrm{A}_{\mathrm{S}}}{\mathrm{b} \cdot \mathrm{d}}$
$\beta_{1}:=0.85$
$\rho_{b}:=\frac{0.85 \cdot \beta_{1} \cdot f^{\prime} c}{f_{y}} \cdot\left(\frac{87 k s i}{87 k s i+f_{y}}\right)$
$0.75 \cdot \rho_{b}=0.0160$

MINIMUM REINFORCEMENT
$\mathrm{A}_{\text {SREQ }}=0.28 \mathrm{in}^{2}$
$A_{S}=0.60 \mathrm{in}^{2}$
$\frac{4}{3} \cdot \mathrm{~A}_{\text {SREQ }}=0.37 \mathrm{in}^{2}$
$A_{S}=0.60$ in $^{2} \quad$ Tension steel area provided
$\phi \mathrm{M}_{\mathrm{n}}=24.77 \mathrm{ft} \cdot \mathrm{kip} \quad$ Flexure design capacity
$24.77 \mathrm{ft} \cdot \mathrm{kip}>11.83 \mathrm{ft} \cdot \mathrm{kip} \quad$ OK
(AASHTO 8.16.3.2.2)
$\rho=0.0018$
Reinforcement ratio
(AASHTO 8.16.2.7)

Balanced reinforcement ratio
(AASHTO 8.16.3.2.2)
$0.75 \cdot \rho_{b}>\rho=0.0018$
OK
(AASHTO 8.17)

Required area of steel for flexural strength

Area of steel provided
$0.39 \mathrm{in}^{2}<0.60 \mathrm{in}^{2}$
Therefore the minimum reinforcement requirement is satisfied. OK

SHEAR CAPACITY

$\phi V_{n}>V_{u}$
$\phi \mathrm{V}_{\mathrm{n}}=\phi \mathrm{V}_{\mathrm{C}}+\phi \mathrm{V}_{\mathrm{s}}$
$\mathrm{V}_{\mathrm{c}}:=\left(2 \cdot \sqrt{\mathrm{f}_{\mathrm{c}} \cdot \mathrm{psi} \cdot} \cdot \mathrm{b} \cdot \mathrm{d}\right)$
$\mathrm{V}_{\mathrm{C}}=36.97 \mathrm{kip}$
Concrete shear strength (AASHTO 8.16.6.2.3)
$\phi_{\mathrm{V}} \cdot \mathrm{V}_{\mathrm{C}}=31.43 \mathrm{kip} \quad \begin{aligned} & \text { Design concrete shear } \\ & \text { strength }\end{aligned}$ strength
31.43kip > 11.37kip OK

Stirrups not required for strength. Must check minimum reinforcement requirement.

Minimum stirrups required when $\frac{\phi \mathrm{V}_{\mathrm{c}}}{2}<\mathrm{V}_{\mathrm{u}}$
(AASHTO 8.19.1.1)
$\frac{\phi_{\mathrm{V}} \cdot \mathrm{V}_{\mathrm{C}}}{2}=15.71 \mathrm{kip}$
15.71kip >11.37 kip \quad OK

Therefore, no shear reinforcement (i.e., stirrups) required.

County:
Project No:
Description:
computed by: checked by:
date: 8/30/2004

THIS WORKSHEET IS ONLY FOR TIMBER PILES IN A COHESIONLESS SOIL.

Check Pile
 Design

County:
Project No:

Description:
THIS WORKSHEET IS ONLY FOR TIMBER PILES IN A COHESIONLESS SOIL.

Design Checks	1	Axial pile load $\quad \mathrm{P} \leq \mathrm{P}_{\text {ALLowable }}$	48.0 kip	OK
	2	Pile length Length $\leq 55 \mathrm{ft}$	37 ft	OK
	3	Pile bearing capacity Axial Pile Load \leq Capacity	sufficient if pile is embedded at least	34 ft
	4	Interaction equation validation $\frac{1}{\left(1-\mathrm{f}_{\mathrm{C}} / \mathrm{F}_{\mathrm{e}}\right)}>1.0$	1.04	OK
	5	Combined loading interaction requirement $\left(\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{~F}_{\mathrm{C}}^{\prime}}\right)^{2}+\frac{\mathrm{f}_{\mathrm{bx}}}{\mathrm{~F}_{\mathrm{b}}\left(1-\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{~F}_{\mathrm{ex}}}\right)}+\frac{\mathrm{f}_{\mathrm{by}}}{\mathrm{~F}_{\mathrm{b}}^{\prime}\left(1-\frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{~F}_{\mathrm{ey}}}-\left(\frac{\mathrm{f}_{\mathrm{bx}}}{\mathrm{~F}^{\prime}{ }_{\mathrm{bE}}}\right)^{2}\right)} \leq 1.0$	0.75	OK
	6	Buried anchor block location Anchor rod length \geq minimum	15.00 ft	OK
	7	Anchor rod stress $\quad \sigma \leq 0.55 \mathrm{~F}_{\mathrm{Y}}$	24.2 ksi	OK
	8	Anchor block capacity Total Anchor Force \leq Capacity	10.3 kip per pile	OK
	9	Maximum displacement $\mathrm{d}_{\text {MAX }} \leq 1.5 \mathrm{in}$.	0.38 in .	OK

Anchor Design

Worksheet

County:
Project No:
Description:

THIS WORKSHEET IS ONLY TO BE USED AFTER THE PILE SYSTEM HAS BEEN DESIGNED AND ALL DESIGN REQUIREMENTS HAVE BEEN SATISFIED.

Return to Pile Design
 Worksheet

Go to Pile and Soil Selection Worksheet

The design in this worksheet is based on Section 8 of the AASHTO Standard Specifications.
Once the instructions on this sheet have been reviewed, proceed to the input section of this worksheet below.

Data required is to be entered in the highlighted cells of the Input Information section; all circled numbers are shown on the figure below.

Instructions	Cell No.	Description
	(1)	Enter the total length of the anchor block.
	(2)	Enter the distance between the end of the anchor block and the exterior anchor rod.
	3	Enter the anchor block concrete compressive strength.
	4	Use the pull-down menu provided to select the yield strength of the reinforcing steel.
	(5)	Enter the number of tension steel reinforcing bars on one vertical anchor block face.
	(6)	Use the pull-down menu provided to select the tension steel bar size.
	(7)	If applicable, use the pull-down menu provided to select the stirrup bar size.
	(8)	If applicable, enter the number of stirrup legs per section.
	(9)	If applicable, enter the stirrup spacing for this analysis. This value must be less than the value in the cell directly above this input cell.

County:
Project No:
Description:

THIS WORKSHEET IS ONLY TO BE USED AFTER THE PILE SYSTEM HAS BEEN DESIGNED AND ALL DESIGN REQUIREMENTS HAVE BEEN SATISFIED.

Input	1	Anchor block length Distance from end of anchor block to exterior anchor rod	27.00 ft
Information	2		1.50 ft
	3	Concrete compressive strength	3.0 ksi
	4	Yield strength of reinforcing steel	60 ksi
		Tension steel area required	$0.28 \mathrm{in}^{2}$
	5	Number of reinforcing bars per vertical anchor block face	3 bars
	6	Tension steel bar size Tension steel area provided Are stirrups required?	$\begin{gathered} 4 \# \\ 0.60 \text { in }^{2} \\ \text { No } \end{gathered}$

Design Checks	1	Design flexural capacity	$\mathrm{M}_{\mathrm{U}}<\phi \mathrm{M}_{\mathrm{N}}$	24.78 ft-kips	OK	\{AASHTO 8.16.3.2\}
	2	Reinforcement ratio	$\rho<0.75 \rho_{\text {b }}$	0.0018	OK	\{AASHTO 8.16.3.2.2\}
	3	Minimum reinforcement			OK	\{AASHTO 8.17\}
	4	Design shear capacity	$\mathrm{V}_{\mathrm{U}}<\phi \mathrm{V}_{\mathrm{N}}$	31.4 kip	OK	\{AASHTO 8.16.6.1.1\}

Anchor	1	Number of anchor rods	5	
System	2	Anchor rod steel yield stress	60 ksi	
Summary	3	Anchor rod diameter	0.750 in .	
	4	Anchor rod length	15.00 ft	
	5	Anchor rod spacing	6.00 ft	
	6	Vertical distance between bottom of anchor block and roadway grade	4.92 ft	
	7	Anchor block length	27.00 ft	
	8	Anchor block height	3.0 ft	
	9	Anchor block width	12.0 in.	
	10	Concrete compressive strength	3.0 ksi	
	11	Details of reinforcement on one vertical anchor block face		\# 4 bars

EXAMPLE 2
STEEL PILE ABUTMENT WITHOUT ANCHORS IN A COHESSIVE SOIL

EXAMPLE 2: STEEL PILE ABUTMENT WITHOUT AN ANCHOR IN A COHESIVE SOIL

BRIDGE INFORMATION

Prestressed concrete girder superstructure (see lowa DOT H24S-87 County standards)

SPAN $:=60 \mathrm{ft}$	Span length
RDWY $:=24 \mathrm{ft}$	Roadway width
BW $:=6 \mathrm{ft}$	Backwall height

$\mathrm{ES}:=2 \mathrm{ft}$	Estimated depth of scour
	below stream elevation

Slab depth $=8$ in
LXC := 3.75ft
$\mathrm{Z}_{\mathrm{b}}:=\mathrm{BW}$ - 8in - LXC

SPT := 11
$\mathrm{FB}_{1}:=0.7 \cdot \frac{\mathrm{ton}}{\mathrm{ft}}$
$\mathrm{FB}_{2}:=0.80 \cdot \frac{\text { ton }}{\mathrm{ft}}$

DB := 40ft
$\mathrm{N}_{\text {rock }}:=150$

NA := 2

$$
\mathrm{Z}_{\mathrm{b}}=1.583 \mathrm{ft}
$$

lowa DOT LXC girder depth

Distance between stream and bearing elevation

Standard penetration test blow count for a soil best described as a firm glacial clay in the lowa DOT FSIC

Pile friction bearing resistance for soil within 30 ft of the natural ground line (lowa DOT FSIC)

Pile friction bearing resistance for soil not within 30 ft of the natural ground line (lowa DOT FSIC)

Depth to bedrock below stream elevation

End bearing SPT blow count

Number of abutments

GRAVITY LOADS

Dead Loads

$\mathrm{GL}:=\mathrm{SPAN}+2 \cdot(6 \mathrm{in})$	$\mathrm{GL}=61.00 \mathrm{ft}$	Girder length
$\mathrm{BL}:=\mathrm{GL}+2 \cdot(6 \mathrm{in})$	$\mathrm{BL}=62.00 \mathrm{ft}$	Bridge length
$\mathrm{G}:=447.0 \mathrm{plf}$	lowa DOT LXC girder weight per foot	
$\mathrm{N}_{\mathrm{G}}:=4$	Number of girders	
$\mathrm{BR}:=50 \mathrm{plf}$	Conservatively assumed thrie-beam weight per ft	
$\mathrm{P}_{\mathrm{SW}}:=0.042 \mathrm{klf}$		HP10 x 42 wt. per foot

Diaphragm := (18in) $\cdot \mathrm{LXC} \cdot \mathrm{RDWY} \cdot \gamma_{\mathrm{C}} \cdot \mathrm{NA}$	Diaphragm $=40.50 \mathrm{kip}$	Calculated end diaphragm weight (for conservative weight calculations only

Live Load

AASHTO HS20-44 design truck
(AASHTO 3.7)

$$
\Sigma \mathrm{M}_{\mathrm{B}}=0=(8 \mathrm{kip}) \cdot(60 \mathrm{ft}-28 \mathrm{ft})+(32 \mathrm{kip}) \cdot(60 \cdot \mathrm{ft}-14 \cdot \mathrm{ft})+(32 \mathrm{kip}) \cdot(60 \cdot \mathrm{ft})-\mathrm{R}_{\mathrm{A}} \cdot(60 \mathrm{ft})
$$

$$
\mathrm{R}_{\mathrm{A}}:=\frac{8 \mathrm{kip} \cdot(60 \mathrm{ft}-28 \mathrm{ft})+32 \mathrm{kip} \cdot(60 \mathrm{ft}-14 \mathrm{ft})+(32 \mathrm{kip}) \cdot 60 \mathrm{ft}}{60 \mathrm{ft}} \quad \mathrm{R}_{\mathrm{A}}=60.80 \mathrm{kip}
$$

For 1 traffic lane, maximum live load abutment reaction $=60.80$ kips.

$$
\frac{\mathrm{RDWY}}{10 \mathrm{ft}}=2.4
$$

Number of 10 ft design traffic lanes (AASHTO 3.6.1)

LN := 2

Therefore, no lane reduction factor needed.
$\mathrm{LL}_{\mathrm{g}}:=\mathrm{LN} \cdot \mathrm{R}_{\mathrm{A}}$
$\mathrm{N}:=8$
pf := 1.30
$\mathrm{P}_{\mathrm{swt}}:=\mathrm{P}_{\mathrm{sw}} \cdot\left(\mathrm{DB}+\mathrm{Z}_{\mathrm{b}}+\mathrm{ES}\right)$
$P_{D L}:=\frac{\mathrm{DL}_{\mathrm{g}}}{\mathrm{N}} \cdot \mathrm{pf}+\mathrm{P}_{\mathrm{swt}}$
$\mathrm{P}_{\mathrm{LL}}:=\frac{\mathrm{LL}_{\mathrm{g}} \cdot \mathrm{pf}}{\mathrm{N}}$
$\mathrm{P}_{\mathrm{T}}:=\mathrm{P}_{\mathrm{DL}}+\mathrm{P}_{\mathrm{LL}}$
$S:=\frac{\text { RDWY }-2 \cdot(0.9167 \mathrm{ft})}{(\mathrm{N}-1)}$

Round down to 2 traffic lanes
(AASHTO 3.12.1)
$\mathrm{LL}_{\mathrm{g}}=121.60 \mathrm{kip}$
Calculated live load abutment reaction

Assume 8 piles

Nominal axial pile factor (Volume 2, Chapter 2)
$\mathrm{P}_{\mathrm{swt}}=1.83 \mathrm{kip} \quad$ (per pile)
$\mathrm{P}_{\mathrm{DL}}=36.04 \mathrm{kip}$
$\mathrm{P}_{\mathrm{LL}}=19.76$ kip
$\mathrm{P}_{\mathrm{T}}=55.80 \mathrm{kip}$
$\mathrm{S}=3.167 \mathrm{ft}$
Pile spacing with 11 in. between edge of roadway and first exterior pile

LATERAL LOADS

Transverse Loads

Transverse wind loads are assumed to be divided equally among all piles and are transferred through shear at the bridge bearings.

WIND ON SUPERSTRUCTURE

(Iowa DOT BDM 6.6.2.6.1)
$\mathrm{EA}:=(1.75 \mathrm{ft}+8 \mathrm{in}+\mathrm{LXC}) \cdot$ SPAN
$\mathrm{EA}=370.00 \mathrm{ft}^{2}$
WS $:=\frac{E A \cdot(50 \mathrm{psf})}{\mathrm{NA} \cdot \mathrm{N}}$

$$
\text { WS = } 1.16 \text { kip }
$$

Wind on superstructure force per pile

WIND ON LIVE LOAD
$L L_{W}:=100$ plf
Line load applied to entire bridge length (Iowa DOT BDM 6.6.2.6.2)
$\mathrm{WL}:=\mathrm{LL}_{\mathrm{w}} \cdot \frac{\mathrm{SPAN}}{(\mathrm{NA} \cdot \mathrm{N})}$

$$
\mathrm{WL}=0.38 \mathrm{kip}
$$

Wind on live load force per pile

Longitudinal Loads

BRAKING FORCE
5% of the AASHTO lane gravity loading multiplied by the number of 10 ft design lanes.
$\mathrm{W}:=0.64 \mathrm{klf}$

F := 18kip
$\mathrm{BFP}:=\frac{\mathrm{LN} \cdot(\mathrm{W} \cdot \mathrm{SPAN}+\mathrm{F}) \cdot 0.05}{\mathrm{NA} \cdot \mathrm{N}} \quad \quad \mathrm{BFP}=0.35 \mathrm{kip} \quad$ Braking force per pile

DEAD LOAD EARTH PRESSURE

$\mathrm{w}_{2}:=(250 \mathrm{psf}) \cdot \mathrm{S}$	$\mathrm{w}_{2}=0.792 \mathrm{klf}$	Convert soil pressures into distributed loads
$\mathrm{w}_{3}:=(35.9 \mathrm{psf}) \cdot \mathrm{S}$	$\mathrm{w}_{3}=0.114 \mathrm{klf}$	
$\mathrm{w}_{4}:=\mathrm{w}_{2}-\mathrm{w}_{3}$	$\mathrm{w}_{4}=0.678 \mathrm{klf}$	
$\mathrm{LL}_{\text {sur }}:=(1 \mathrm{ft}) \cdot \mathrm{w}_{2}+\frac{1}{2} \cdot\left(\mathrm{w}_{4}\right) \cdot \mathrm{BW}+\mathrm{h} \cdot \mathrm{w}_{3}$	$\mathrm{LL}_{\text {sur }}=3.74 \mathrm{kip}$	Total lateral force per pile from live load surcharge

DETERMINE DEPTH TO PILE FIXITY

$\mathrm{L}_{\mathrm{f}}=\mathrm{f}+1.5 \cdot \mathrm{~B}$
$f=\frac{H}{9 \cdot C_{u} \cdot B}$
$\mathrm{H}:=\mathrm{BFP}+\mathrm{LL}_{\text {sur }}+\mathrm{EDL}$
$\mathrm{H}=7.73$ kip
$\mathrm{P}_{\text {ATM }}:=14.69 \mathrm{psi}$
$\mathrm{C}_{\mathrm{u}}:=0.06 \cdot \mathrm{SPT} \cdot \mathrm{P}_{\mathrm{ATM}}$
$C_{u}=1396 \mathrm{psf}$
For a cohesive soil (Broms, 1964)

Total lateral force per pile

Atmospheric pressure

Undrained soil shear strength
$B:=10.1$ in
HP 10x42 pile width
$\mathrm{f}:=\frac{\mathrm{H}}{9 \cdot \mathrm{C}_{\mathrm{u}} \cdot \mathrm{B}}$
$\mathrm{f}=8.8$ in
$\mathrm{L}_{\mathrm{f}}:=\mathrm{f}+1.5 \cdot \mathrm{~B}$
$\mathrm{L}_{\mathrm{f}}=1.993 \mathrm{ft}$
Depth below estimated scour line to pile fixity

DETERMINE MAXIMUM PILE MOMENT

For cantilever system, the maximum moment will occur at the point of fixity.

Longitudinal Bending Moment

EARTH DEAD LOAD

$\mathrm{M}_{\mathrm{EDL}}:=\frac{1}{2} \cdot \mathrm{~h} \cdot \mathrm{w}_{1} \cdot\left(\mathrm{~L}_{\mathrm{f}}+\frac{1}{3} \cdot \mathrm{~h}\right) \quad \mathrm{M}_{\mathrm{EDL}}=16.95 \mathrm{ft} \cdot \mathrm{kip}$

Part a)

$\mathrm{M}_{\mathrm{LLA}}:=\mathrm{w}_{3} \cdot(\mathrm{~h}) \cdot\left(\mathrm{L}_{\mathrm{f}}+\frac{\mathrm{h}}{2}\right) \quad \mathrm{M}_{\mathrm{LLA}}=5.45 \mathrm{ft} \cdot \mathrm{kip}$

Part b)

$\mathrm{M}_{\mathrm{LLB}}:=\mathrm{w}_{2} \cdot(1 \mathrm{ft}) \cdot\left(\mathrm{h}+\frac{1 \mathrm{ft}}{2}+\mathrm{L}_{\mathrm{f}}\right) \quad \mathrm{M}_{\mathrm{LLB}}=8.31 \mathrm{ft} \cdot \mathrm{kip}$

Part c)

$\mathrm{M}_{\mathrm{LLC}}:=\frac{1}{2} \cdot \mathrm{w}_{4} \cdot(6 \mathrm{ft}) \cdot\left[\mathrm{h}-6 \mathrm{ft}+\mathrm{L}_{\mathrm{f}}+\left(\frac{2}{3}\right) \cdot 6 \mathrm{ft}\right] \quad \mathrm{M}_{\mathrm{LLC}}=16.26 \mathrm{ft} \cdot \mathrm{kip}$

BRAKING FORCE

$$
\begin{aligned}
& \mathrm{BFP}=0.35 \mathrm{kip} \\
& \mathrm{~L}_{\mathrm{f}}=1.993 \mathrm{ft} \\
& \mathrm{ES}=2.0 \mathrm{ft} \\
& \mathrm{Z}_{\mathrm{b}}=1.583 \mathrm{ft}
\end{aligned}
$$

$\mathrm{x}_{4}:=\mathrm{L}_{\mathrm{f}}+\mathrm{ES}+\mathrm{Z}_{\mathrm{b}}$
$\mathrm{x}_{4}=5.576 \mathrm{ft}$
Distance between pile fixity and bearing elevation

PASSIVE EARTH PRESSURE

$w_{5}:=9 \cdot C_{u} \cdot B$
$\mathrm{w}_{5}=10.576 \mathrm{klf}$
Passive soil pressure
$M_{P E}:=\frac{-w_{5} \cdot \mathrm{f}^{2}}{2}$
$M_{\text {PE }}=-2.82 \mathrm{ft} \cdot \mathrm{kip}$
$\mathrm{M}:=\mathrm{M}_{\mathrm{EDL}}+\mathrm{M}_{\mathrm{LLA}}+\mathrm{M}_{\mathrm{LLB}}+\mathrm{M}_{\mathrm{LLC}}+\mathrm{M}_{\mathrm{BF}}+\mathrm{M}_{\mathrm{PE}}$

$$
\mathrm{M}=46.11 \mathrm{ft} \cdot \mathrm{kip}
$$

Total longitudinal pile moment

Transverse Pile Moments

WS $=1.16 \mathrm{kip}$	Wind on superstructure force per pile		
$\mathrm{M}_{\mathrm{WS}}:=\mathrm{WS} \cdot\left(\mathrm{L}_{\mathrm{f}}+\mathrm{ES}+\mathrm{Z}_{\mathrm{b}}\right)$	$\mathrm{M}_{\mathrm{WS}}=6.45 \mathrm{ft} \cdot \mathrm{kip}$		Wind on live load force
:---			
per pile			

Load Summary

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{DL}}=36.04 \mathrm{kip} & \text { Pile axial dead load } \\
\mathrm{P}_{\mathrm{LL}}=19.760 \mathrm{kip} & \text { Pile axial live load }
\end{array}
$$

$$
\mathrm{P}_{\mathrm{T}}:=\mathrm{P}_{\mathrm{DL}}+\mathrm{P}_{\mathrm{LL}} \quad \mathrm{P}_{\mathrm{T}}=55.80 \text { kip } \quad \text { Pile total axial load }
$$

DESIGN CHECKS

Allowable Axial Pile Stress

For combination friction and end bearing piles, the maximum allowable axial stress $=9 \mathrm{ksi}$ for steel piles seated in bedrock with an estimated SPT blow count between 100 and 200.
(Iowa DOT BDM 6.2.6.1)
$\mathrm{A}:=12.4 \mathrm{in}^{2}$
HP10 x 42 area
$\mathrm{fa}:=\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{A}}$
$\mathrm{fa}=4.50 \mathrm{ksi}$
Total axial pile stress
4.50ksi < 9ksi
OK

Pile Bearing Capacity

Allowable end bearing stress $=9 \mathrm{ksi}$
(lowa DOT FSIC)

Maximum pile load $=(9 \mathrm{ksi})^{*} A=111.6 \mathrm{kips} /$ pile

$$
111.6 \frac{\mathrm{kips}}{\text { pile }}>55.80 \cdot \frac{\mathrm{kips}}{\text { pile }} \text { OK }
$$

Combined Axial and Lateral Loading Check

Two interaction equations are cited in AASHTO.
$\frac{f_{a}}{F_{a}}+\frac{C_{m x} \cdot\left(f_{b x}\right)}{F_{b x} \cdot\left(1-\frac{f_{a}}{F_{e x}^{\prime}}\right)}+\frac{C_{m y} \cdot f_{b y}}{F_{b y}^{\prime} \cdot\left(1-\frac{f_{c}}{F_{c E y}}\right)} \leq 1.0$
(AASHTO 10.36\})
(AASHTO 10.36)
$\frac{f_{a}}{0.472 \cdot F_{a}}+\frac{f_{b x}}{F_{b x}}+\frac{f_{b y}}{F_{b y}} \leq 1.0$

Note: The x-axis for the pile is assumed to be parallel to the backwall
(Iowa DOT BDM 6.6.3.1) face. Additionally, the lowa DOT specifies three group loading combinations that apply to this application.

For the given loads, three different load combinations given in Section 6.6.3.1 of the lowa DOT BDM are applicable.

Group I: 1.0(DL)+1.0(LL)+1.0(E)+1.0(BF)
Group II: 1.0(DL)+1.0(E)+1.0(WS)
using 100\% of the allowable stress using 125\% of the allowable stress using 125\% of the allowable stress

DL = Dead load
LL = Live load
E = Earth load
$B F=$ Longitudinal braking force
WS = Wind on superstructure
WL = Wind on live load

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{LL}}=19.76 \text { kip } & \text { Axial pile live load } \\
\mathrm{P}_{\mathrm{DL}}=36.04 \mathrm{kip} & \text { Axial pile dead load } \\
\mathrm{P}_{\mathrm{T}}=55.80 \mathrm{kip} & \text { Axial pile total load } \\
\mathrm{A}=12.40 \mathrm{in}^{2} & \text { Pile area }
\end{array}
$$

GROUP I AND III (with live load)
$\mathrm{f}_{\mathrm{a}}:=\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{A}}$
$\mathrm{f}_{\mathrm{a}}=4.50 \mathrm{ksi}$
Group I and III axial compressive stress

GROUP II (without live load)
$f_{a D L}:=\frac{P_{D L}}{A}$
$\mathrm{f}_{\mathrm{aDL}}=2.91 \mathrm{ksi}$
Group II axial compressive stress

When computing to applied x-axis applied bending stress, the live and dead loads were not separated. Therefore, the live load surcharge and braking force is also included in the second load combination recommended by the lowa DOT BDM (i.e., Group II) and $f_{b x}$ is the same for all load combinations. However, the pile axial live and dead load can be separated.

Pile properties

$\mathrm{F}_{\mathrm{y}}:=36 \mathrm{ksi}$		Pile steel yield stress
$\mathrm{E}:=29000 \mathrm{ksi}$		Modulus of elasticity
$\mathrm{d}:=9.7 \mathrm{in}$		HP10 x 47 depth
$\mathrm{t}_{\mathrm{f}}:=0.420 \mathrm{in}$		Flange thickness
B := 10.1in		Pile width
$D:=d-2 \cdot t_{f}$	$\mathrm{D}=8.860$ in	Depth of web
$\mathrm{t}_{\mathrm{W}}:=0.415 \mathrm{in}$		Web thickness
$\mathrm{I}:=210 \mathrm{in}^{4}$		Pile moment of inertia
$\mathrm{SM}_{\mathrm{X}}:=43.4 \mathrm{in}^{3}$		Strong axis section modulus
$\mathrm{SM}_{\mathrm{y}}:=14.2 \mathrm{in}^{3}$		Weak axis section modulus
$\mathrm{r}_{\mathrm{X}}:=4.13 \mathrm{in}$		Strong axis radius of gyration
$\mathrm{r}_{\mathrm{y}}:=2.41 \mathrm{in}$		Weak axis radius of gyration
$\mathrm{M}=46.11 \mathrm{ft} \cdot \mathrm{kip}$		Maximum pile moment (x-axis bending)
$\mathrm{M}_{\mathrm{WS}}=6.45 \mathrm{ft} \cdot \mathrm{kip}$		Wind on superstructure pile moment (y-axis bending)
$\mathrm{M}_{\mathrm{WL}}=2.09 \mathrm{ft} \cdot \mathrm{kip}$		Wind on live load pile moment (y-axis bending)
$\mathrm{f}_{\mathrm{bx}}:=\frac{\mathrm{M}}{\mathrm{SM}_{\mathrm{x}}}$	$\mathrm{f}_{\mathrm{bx}}=12.75 \mathrm{ksi}$	Groups I, II, and III applied x -axis bending stress
$\mathrm{f}_{\mathrm{byWS}}:=\frac{\mathrm{M}_{\mathrm{WS}}}{\mathrm{SM}_{\mathrm{y}}}$	$\mathrm{f}_{\text {byWS }}=5.45 \mathrm{ksi}$	Group II and III applied y-axis bending bending stress from wind on superstructure
$\mathrm{f}_{\mathrm{byWL}}:=\frac{\mathrm{M}_{\mathrm{WL}}}{\mathrm{SM}_{\mathrm{y}}}$	$\mathrm{f}_{\text {byWL }}=1.77 \mathrm{ksi}$	Group III applied y-axis bending stress from wind on live load

$$
\mathrm{F}_{\mathrm{e}}=\frac{\pi \cdot \mathrm{E}}{2.12\left(\frac{\mathrm{k} \cdot \mathrm{l}}{\mathrm{r}}\right)^{2}}
$$

If no lateral pile restraint is used, consider the pile cap a braced point for y-axis bending.

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{f}}=1.993 \mathrm{ft} & \mathrm{~h}=8.0 \mathrm{ft} \\
\mathrm{ES}=2.0 \mathrm{ft} & \mathrm{Z}_{\mathrm{b}}=1.583 \mathrm{ft}
\end{array}
$$

$$
\mathrm{k}_{\mathrm{X}}:=2.0
$$

$$
\mathrm{k}_{\mathrm{y}}:=0.7
$$

$\mathrm{l}_{\mathrm{X}}:=\mathrm{L}_{\mathrm{f}}+\mathrm{h} \quad \mathrm{l}_{\mathrm{X}}=9.993 \mathrm{ft}$
$\mathrm{l}_{\mathrm{y}}:=\mathrm{L}_{\mathrm{f}}+\mathrm{ES}+\mathrm{Z}_{\mathrm{b}}$
$\mathrm{l}_{\mathrm{y}}=5.576 \mathrm{ft}$
$S R_{X}=58.07$
$S R_{y}=19.44$
$\mathrm{F}_{\mathrm{ex}}=40.04 \mathrm{ksi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{ey}}=357.39 \mathrm{ksi}$

Distance between point of fixity and roadway elevation

Distance between point of fixity and pile cap
x -axis slenderness ratio
y-axis slenderness ratio
x-axis buckling stress
y-axis buckling stress

Interaction Equation Validation Check

To account for secondary moment effects, a $\mathrm{P}-\Delta$ factor is used. These values must be greater than 1.0.

X-AXIS BENDING

Group I and Group III Loading (with Live Load)
$\mathrm{P} \Delta_{\mathrm{x} 1}:=\frac{1}{1-\frac{\mathrm{f}_{\mathrm{a}}}{\mathrm{F}_{\mathrm{ex}}}}$

$$
\begin{aligned}
& \mathrm{P} \Delta_{\mathrm{x} 1}=1.13 \\
& \quad 1.13>1.0 \quad \mathrm{OK}
\end{aligned}
$$

Group II Loading (without Live Load)
$P \Delta_{\mathrm{x} 2}:=\frac{1}{\left(1-\frac{\mathrm{f}_{\mathrm{aDL}}}{\mathrm{F}_{\mathrm{ex}}}\right)}$
$\mathrm{P} \Delta_{\mathrm{x} 2}=1.08$
$1.08>1.0 \quad$ OK

Y-AXIS BENDING
Group I and III Loading (with Live Load)
$\mathrm{P} \Delta_{\mathrm{y} 1}:=\frac{1}{1-\left(\frac{\mathrm{f}_{\mathrm{a}}}{\mathrm{F}_{\mathrm{ey}}^{\prime}}\right)}$
$\mathrm{P} \Delta_{\mathrm{y} 1}=1.01$

$$
1.01>1.0 \quad \text { OK }
$$

Group II loading

$$
\mathrm{C}_{\mathrm{mx}}:=0.85
$$

$$
\mathrm{C}_{\mathrm{my}}:=0.85
$$

For beam-columns with transverse loading
(AASHTO Table 10.36A)

$$
\begin{aligned}
& \mathrm{P} \Delta_{\mathrm{y} 2}:=\frac{1}{1-\left(\frac{\mathrm{f}_{\mathrm{aDL}}}{\mathrm{~F}_{\mathrm{ey}}}\right)} \\
& \mathrm{P} \Delta_{\mathrm{y} 2}=1.01 \\
& 1.01>1.0 \quad \text { OK }
\end{aligned}
$$

$C_{C}:=\sqrt{\frac{2 \cdot \pi^{2} \cdot E}{F_{y}}}$
$C_{C}=126.1$
Column buckling coefficient
$\mathrm{SR}_{\text {max }}:=58.973$
Max. slenderness ratio
$58.973 \leq 126.1$
Therefore the following equation is used to determine the allowable compressive stress.
$\mathrm{F}_{\mathrm{a}}:=\frac{\mathrm{F}_{\mathrm{y}}}{2.12} \cdot\left(1-\frac{\mathrm{SR}_{\max }{ }^{2} \cdot \mathrm{~F}_{\mathrm{y}}}{4 \cdot \pi^{2} \cdot \mathrm{E}}\right)$
$\mathrm{F}_{\mathrm{a}}=15.12 \mathrm{ksi}$
Allowable compressive stress

Allowable Bending Stress
(AASHTO Table 10.32.1A)

$$
\mathrm{F}_{\mathrm{b}}=\frac{50 \cdot 10^{6} \cdot \mathrm{C}_{\mathrm{b}}}{\mathrm{SM}_{\mathrm{x}}} \cdot \frac{\mathrm{I}_{\mathrm{yc}}}{\zeta} \cdot \sqrt{0.772 \cdot \frac{\mathrm{~J}}{\mathrm{I}_{\mathrm{yc}}}+9.87 \cdot\left(\frac{\mathrm{~d}}{\zeta}\right)^{2}}<0.55 \cdot \mathrm{~F}_{\mathrm{y}}
$$

Allowable bending stress

$$
\mathrm{C}_{\mathrm{b}}:=1.0
$$

$$
\mathrm{I}_{\mathrm{yc}}:=\frac{1}{12} \mathrm{t}_{\mathrm{f}} \cdot \mathrm{~B}^{3}
$$

$\mathrm{I}_{\mathrm{yc}}:=\frac{1}{12} \mathrm{t}_{\mathrm{f}} \cdot \mathrm{B}^{3}$

$$
\mathrm{I}_{\mathrm{yc}}=36.06 \mathrm{in}^{4}
$$

$\mathrm{I}_{\mathrm{yc}}=36.06$ in 4
Conservatively assumed bending coefficient

Moment of inertia for compression flange about vertical axis in the plane of the web
$\zeta:=\mathrm{L}_{\mathrm{f}}+\mathrm{ES}+\mathrm{Z}_{\mathrm{b}} \quad \zeta=66.92$ in
$\mathrm{J}:=\frac{\left(2 \cdot \mathrm{~B} \cdot \mathrm{t}_{\mathrm{f}}^{3}+\mathrm{D} \cdot \mathrm{t}_{\mathrm{w}}^{3}\right)}{3}$
$\mathrm{J}=0.710 \mathrm{in}^{4}$
$\mathrm{d}=9.70 \mathrm{in}$
$\mathrm{F}_{\mathrm{b}}:=\frac{50 \cdot 10^{6} \cdot \mathrm{C}_{\mathrm{b}}}{\mathrm{SM}_{\mathrm{x}}} \cdot \frac{\mathrm{I}_{\mathrm{yc}}}{\zeta} \cdot \sqrt{0.772 \cdot \frac{\mathrm{~J}}{\mathrm{I}_{\mathrm{yc}}}+9.87 \cdot\left(\frac{\mathrm{~d}}{\zeta}\right)^{2}} \quad \mathrm{~F}_{\mathrm{b}}=292916$ si $=292.9 \mathrm{ksi}$
Length of unsuported flange (distance between pile fixity and bearing elevation

Pile torsional constant

Pile depth
$0.55 \cdot \mathrm{~F}_{\mathrm{y}}=19.80 \mathrm{ksi} \quad$ controls
$\mathrm{F}_{\mathrm{b}}:=0.55 \cdot \mathrm{~F}_{\mathrm{y}}$

Allowable bending stress

Interaction Equation \#1

GROUP I INTERACTION LOADING

$\mathrm{f}_{\mathrm{a}}=4.50 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{a}}=15.12 \mathrm{ksi}$
$\mathrm{f}_{\mathrm{bx}}=12.75 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{b}}=19.80 \mathrm{ksi}$
$\mathrm{P} \Delta_{\mathrm{x} 1}=1.13$
$\frac{\mathrm{f}_{\mathrm{a}}}{\mathrm{F}_{\mathrm{a}}}+\frac{\mathrm{C}_{\mathrm{mx}} \cdot \mathrm{f}_{\mathrm{bx}} \cdot \mathrm{P} \Delta_{\mathrm{x} 1}}{\mathrm{~F}_{\mathrm{b}}}=0.91$
$0.91 \leq 1.0$

GROUP II INTERACTION LOADING
$\mathrm{f}_{\mathrm{aDL}}=2.91 \mathrm{ksi}$
$\mathrm{P} \Delta_{\mathrm{x} 2}=1.08$
$\mathrm{f}_{\mathrm{byWS}}=5.45 \mathrm{ksi}$
$\mathrm{P} \Delta_{\mathrm{y} 2}=1.01$
$\left(\frac{f_{a D L}}{F_{a}}+\frac{C_{m x} \cdot f_{b x} \cdot P \Delta_{x 2}}{F_{b}}+\frac{C_{m y} \cdot f_{b y W S} \cdot P \Delta_{y 2}}{F_{b}}\right) \cdot\left(\frac{1}{1.25}\right)=0.81$
$0.81 \leq 1.0$

Applied total axial stress

Allowable axial stress

Applied x -axis bending stress

Allowable bending stress
x-axis secondary moment factor

OK

Applied dead load axial stress
x-axis secondary
moment factor for dead load stress

Applied y-axis bending stress from wind on superstructure
y-axis secondary moment factor for dead load stress
1.25 allowable overstress factor

GROUP III INTERACTION LOADING

$\mathrm{P} \Delta_{\mathrm{x} 1}=1.13$			x-axis secondary moment factor
$\mathrm{f}_{\text {byWL }}=1.767 \mathrm{ksi}$			Applied y-axis bending stress from wind on live load
$\mathrm{P} \Delta_{\mathrm{y} 1}=1.013$			y -axis secondary moment factor
$\left(\frac{\mathrm{f}_{\mathrm{a}}}{\mathrm{~F}_{\mathrm{a}}}+\frac{\mathrm{C}_{\mathrm{mx}} \cdot \mathrm{f}_{\mathrm{bx}} \cdot \mathrm{P} \Delta_{\mathrm{x} 1}}{\mathrm{~F}_{\mathrm{b}}}+\frac{0.3 \cdot \mathrm{C}_{\mathrm{mx}} \cdot \mathrm{f}_{\mathrm{byWs}} \cdot \mathrm{P} \mathrm{~s}_{\mathrm{y} 1}}{\mathrm{~F}_{\mathrm{b}}}+\right.$		$\frac{\mathrm{C}_{\mathrm{my}} \cdot \mathrm{f}_{\mathrm{byWL}} \cdot \mathrm{P} \Delta_{\mathrm{y} 1}}{\mathrm{~F}_{\mathrm{b}}} ;\left(\frac{1}{1.25}\right)=0.850$	
			1.25 allowable overstress factor
		$0.85 \leq 1.0$	OK

Interaction Equation \#2

GROUP I LOADING

$\frac{\mathrm{f}_{\mathrm{a}}}{0.472 \cdot \mathrm{~F}_{\mathrm{y}}}+\frac{\mathrm{f}_{\mathrm{bx}}}{\mathrm{F}_{\mathrm{b}}}=0.91 \quad 0.91 \leq 1.0 \quad$ OK

GROUP II LOADING

$\left(\frac{\mathrm{f}_{\mathrm{aDL}}}{0.472 \cdot \mathrm{~F}_{\mathrm{y}}}+\frac{\mathrm{f}_{\mathrm{bx}}}{\mathrm{F}_{\mathrm{b}}}+\frac{\mathrm{f}_{\mathrm{byWS}}}{\mathrm{F}_{\mathrm{b}}}\right) \cdot\left(\frac{1}{1.25}\right)=0.87 \quad 0.87 \leq 1.0 \quad$ OK

GROUP III LOADING
$\left(\frac{\mathrm{f}_{\mathrm{a}}}{0.472 \cdot \mathrm{~F}_{\mathrm{y}}}+\frac{\mathrm{f}_{\mathrm{bx}}}{\mathrm{F}_{\mathrm{b}}}+\frac{0.3 \cdot \mathrm{f}_{\mathrm{byWS}}}{\mathrm{F}_{\mathrm{b}}}+\frac{\mathrm{f}_{\mathrm{byWL}}}{\mathrm{F}_{\mathrm{b}}}\right) \cdot\left(\frac{1}{1.25}\right)=0.86 \quad 0.86 \leq 1.0 \quad$ OK

Maximum Abutment Displacement

Must check displacement at roadway elevation

DEAD LOAD EARTH PRESSURE

$$
\begin{array}{lll}
& \mathrm{E}=29000 \mathrm{ksi} & \mathrm{I}=210.0 \mathrm{in}^{4} \\
\mathrm{w}_{1}=0.909 \mathrm{klf} & \mathrm{~L}_{\mathrm{f}}=1.993 \mathrm{ft} & \\
\mathrm{~h}=8.00 \mathrm{ft} & \begin{array}{l}
\text { Distance between } \\
\text { estimated scour line and } \\
\text { roadway elevation }
\end{array} \\
\mathrm{d}_{1}:=\frac{4 \mathrm{w}_{1} \cdot \mathrm{~h}^{4}}{120 \cdot \mathrm{E} \cdot \mathrm{I}} & \mathrm{~d}_{1}=0.035 \mathrm{in} & \begin{array}{l}
\text { Pile deflection at roadway } \\
\text { elevation }
\end{array} \\
\mathrm{M}:=\frac{1}{2} \cdot \mathrm{~h} \cdot \mathrm{w}_{1} \cdot\left(\frac{\mathrm{~h}}{3}\right) & \mathrm{M}=9.70 \mathrm{ft} \cdot \mathrm{kip} & \begin{array}{l}
\text { Moment at estimated } \\
\text { scour line }
\end{array} \\
\mathrm{d}_{2}:=\frac{1}{2} \cdot \mathrm{~h} \cdot \mathrm{w}_{1} & \mathrm{~V}=3.64 \mathrm{kip} & \begin{array}{l}
\text { Shear at estimated scour } \\
\text { line }
\end{array} \\
2 & \mathrm{~d}_{2}=0.008 \mathrm{in} & \begin{array}{l}
\text { Pile deflection at } \\
\text { estimated scour line }
\end{array}
\end{array}
$$

$$
\left.\begin{array}{ll}
\theta:=\frac{1}{E \cdot I}\left[M \cdot L_{f}+\frac{V \cdot\left(L_{f}^{2}\right)}{2}\right] & \theta=6.280 \times 10^{-4} \mathrm{rad} \\
\mathrm{~d}_{\mathrm{r} 1}:=\left(\mathrm{d}_{1}+\mathrm{d}_{2}+\theta \cdot \mathrm{h}\right) & \mathrm{d}_{\mathrm{r} 1}=0.104 \text { in }
\end{array} \begin{array}{l}
\text { Pile slope at estimated } \\
\text { scour line }
\end{array}\right] \begin{aligned}
& \text { Total pile deflection at } \\
& \text { raadway elevation from } \\
& \text { active earth pressure }
\end{aligned}
$$

LIVE LOAD SURCHARGE

$\mathrm{w}_{2}=0.792 \mathrm{klf}$
$\mathrm{w}_{3}=0.114 \mathrm{klf}$
$\mathrm{w}_{4}=0.678 \mathrm{klf}$
$L_{f}=1.993 \mathrm{ft}$
$\mathrm{ES}=2.0 \mathrm{ft}$
$\mathrm{BW}=6.0 \mathrm{ft}$
$\mathrm{h}=8.00 \mathrm{ft}$

Part a)

$$
\begin{array}{lll}
\mathrm{d}_{1}:=\frac{\mathrm{w}_{3} \cdot\left(\mathrm{~h}^{4}\right)}{8 \cdot \mathrm{E} \cdot \mathrm{I}} & \mathrm{~d}_{1}=0.017 \mathrm{in} & \begin{array}{l}
\text { Pile deflection at } \\
\text { roadway elevation }
\end{array} \\
\mathrm{M}:=\frac{\mathrm{w}_{3} \cdot \mathrm{~h}^{2}}{2} & \mathrm{M}=3.64 \mathrm{ft} \cdot \mathrm{kip} & \begin{array}{l}
\text { Moment at estimated } \\
\text { scour line }
\end{array} \\
\mathrm{V}:=\mathrm{w}_{3} \cdot \mathrm{~h} & \mathrm{~V}=0.91 \mathrm{kip} & \begin{array}{l}
\text { Shear at estimated scour } \\
\text { line }
\end{array} \\
\mathrm{d}_{2}:=\frac{1}{\mathrm{E} \cdot \mathrm{I}}\left[\frac{\left(\mathrm{M} \cdot \mathrm{~L}_{\mathrm{f}}^{2}\right)}{2}+\frac{\left(\mathrm{V} \cdot \mathrm{~L}_{\mathrm{f}}^{3}\right)}{3}\right] & \mathrm{d}_{2}=0.003 \text { in } & \begin{array}{l}
\text { Pile deflection at } \\
\text { estimated scour line }
\end{array} \\
\theta:=\frac{1}{\mathrm{E} \cdot \mathrm{I}}\left[(\mathrm{M}) \cdot \mathrm{L}_{\mathrm{f}}+\frac{\mathrm{V} \cdot \mathrm{~L}_{\mathrm{f}}^{2}}{2}\right] & \theta=2.141 \times 10^{-4} \mathrm{rad} & \begin{array}{l}
\text { Pile slope at estimated } \\
\text { scour line }
\end{array} \\
\mathrm{d}_{\mathrm{r} 2}:=\mathrm{d}_{1}+\mathrm{d}_{2}+\theta \cdot \mathrm{h} & \mathrm{~d}_{\mathrm{r} 2}=0.040 \text { in } & \begin{array}{l}
\text { Total pile deflection at } \\
\text { roadway elevation from }
\end{array} \\
\text { Part a) of live load }
\end{array}
$$

Part b)

$\mathrm{L}:=\mathrm{L}_{\mathrm{f}}+\mathrm{ES}+\mathrm{BW}+1 \cdot \mathrm{ft}$
$\mathrm{L}=10.993 \mathrm{ft}$
Distance between point of fixity and 1 ft above roadway elevation

BRAKING FORCE

$-\mathrm{d}_{\mathrm{r} 5}$

$\mathrm{x}_{1}:=\mathrm{L}_{\mathrm{f}}+\mathrm{ES}+\mathrm{Z}_{\mathrm{b}}$	$\mathrm{x}_{1}=5.576 \mathrm{ft}$	Distance between point of pile fixity and bearing elevation
$\mathrm{x}_{2}:=\mathrm{h}+\mathrm{L}_{\mathrm{f}}$	$\mathrm{x}_{2}=9.993 \mathrm{ft}$	Distance between point of pile fixity and roadway elevation
$\mathrm{d}_{\mathrm{r} 5}:=\frac{\mathrm{BFP} \cdot \mathrm{x}_{1}{ }^{2}}{6 \mathrm{E} \cdot \mathrm{I}} \cdot\left(3 \cdot \mathrm{x}_{2}-\mathrm{x}_{1}\right)$	$\mathrm{d}_{\mathrm{r} 5}=0.013$ in	Total pile deflection from braking force

PASSIVE EARTH PRESSURE

$$
\begin{array}{ll}
\mathrm{w}_{5}:=9 \cdot \mathrm{C}_{\mathrm{u}} \cdot \mathrm{~B} & \mathrm{w}_{5}=10.576 \mathrm{klf} \\
\mathrm{~d}_{\mathrm{r} 6}:=\frac{-\mathrm{w}_{5} \cdot \mathrm{f}^{3}}{24 \cdot \mathrm{E} \cdot \mathrm{I}} \cdot\left[4 \cdot\left(\mathrm{~L}_{\mathrm{f}}+\mathrm{h}\right)-\left(\mathrm{L}_{\mathrm{f}}+\mathrm{h}-\mathrm{f}\right)\right] & \mathrm{d}_{\mathrm{r} 6}=-0.001 \mathrm{in} \\
\mathrm{~d}_{\mathrm{rT}}:=\mathrm{d}_{\mathrm{r} 1}+\mathrm{d}_{\mathrm{r} 2}+\mathrm{d}_{\mathrm{r} 3}+\mathrm{d}_{\mathrm{r} 4}+\mathrm{d}_{\mathrm{r} 5}+\mathrm{d}_{\mathrm{r} 6} & \mathrm{~d}_{\mathrm{rT}}=0.371 \mathrm{in} \\
& 0.371 \mathrm{in} \leq 1.50 \mathrm{in}
\end{array}
$$

Total pile deflection from passive soil reaction

Total pile deflection at roadway elevation

OK

County:
Project No:
Description:

computed by:
checked by: date: 8/30/2004

THIS WORKSHEET IS ONLY FOR STEEL PILES IN A COHESIVE SOIL.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Instructions Worksheet} \& \multicolumn{2}{|r|}{Go to Pile and Soil Selection Worksheet}

\hline General Bridge Input \& 1
2
3

4
4
5
6

7 \& \begin{tabular}{l}
Span length

Roadway width

Location of exterior pile relative to the edge of the roadway

Maximum number of piles

Minimum number of piles

Number of piles

Backwall height

Estimated scour depth

Superstructure system

Estimated dead load abutment reaction

Dead load abutment reaction for this analysis

Estimated live load abutment reaction

Live load abutment reaction for this analysis

 \&

60.00 ft

24.00 ft

0.92 ft

9

4

\hline

\quad piles on

piles on

8

6.00 ft

2.00 ft

prestressed girder

210.7 kip per ab

210.7 kip per ab

121.5 kip per ab

121.5 kip per ab

 \&

2.77 ft centers 7.39 ft centers

fault value)

fault value)
\end{tabular}

\hline Foundation Material Input \& 10
11
12
13
14
15

16 \& | Soil SPT blow count (N) |
| :--- |
| Correlated soil un-drained shear strength (C_{u}) |
| Soil undrained shear strength for this analysis |
| Type of vertical pile bearing resistance |
| Estimated friction bearing value for depths $<30 \mathrm{ft}$ |
| Estimated friction bearing value for depths $>30 \mathrm{ft}$ |
| Depth to adequate end bearing foundation material |
| SPT blow count for end bearing foundation material | \& 11

$1,397 \mathrm{psf}$
$1,397 \mathrm{psf}$
friction \& end bearing
0.7 tons per ft
0.8 tons per ft
40 ft
$100<\mathrm{N}<200$ \&

\hline Pile Input \& 17
18
19
20
21
22
23
24
25
26
27

28 \& | Pile steel yield stress |
| :--- |
| Select pile type |
| Pile cross sectional area |
| Pile depth |
| Pile web thickness |
| Pile flange width |
| Pile flange thickness |
| Pile moment of inertia (strong axis) |
| Pile section modulus (strong axis) |
| Pile section modulus (weak axis) |
| Pile radius of gyration (strong axis) |
| Pile radius of gyration (weak axis) | \& 36 ksi

HP10x42
$12.4 \mathrm{in}^{\wedge} 2$
9.70 in.
$0.415 \mathrm{in}$.
10.1 in.
0.420 in.
$210 \mathrm{in}{ }^{\wedge} 4$
$43.4 \mathrm{in}^{\wedge} 3$
$14.2 \mathrm{in}{ }^{\wedge} 3$
4.13 in.
2.41 in. \&

\hline Lateral Restraint Input \& 29
30
31
32
33
34
35

36 \& Superstructure bearing elevation Type of lateral restraint system \& | $1.58 \mathrm{ft}$ |
| :--- |
| no lateral restraint system | \&

\hline
\end{tabular}

Check Pile

Design

County:
computed by:
Project No: checked by:
Description:
BRIDEE EMGMEERIGG
date: 8/30/2004
THIS WORKSHEET IS ONLY FOR STEEL PILES IN A COHESIVE SOIL.
Geotechnical, Structural and Serviceability Requirements

Design Checks	1	Axial pile stress $\quad \mathrm{P} / \mathrm{A} \leq \sigma_{\mathrm{ALL}}$	4.49 ksi	OK
	2	Pile bearing capacity\quad Axial Pile Load \leq Capacity	111.6 kip	OK
	3	Interaction equation validation	1.13	OK
	4	Combined loading interaction requirement \# 1 $\frac{\mathrm{f}_{\mathrm{a}}}{\mathrm{~F}_{\mathrm{a}}}+\frac{\mathrm{C}_{\mathrm{mx}} \mathrm{f}_{\mathrm{bx}}}{\left(1-\frac{\mathrm{f}_{\mathrm{a}}}{\mathrm{~F}^{\prime}{ }_{\mathrm{ex}}}\right) \mathrm{F}_{\mathrm{b}}}+\frac{\mathrm{C}_{\mathrm{my}} \mathrm{f}_{\mathrm{by}}}{\left(1-\frac{\mathrm{f}_{\mathrm{a}}}{\mathrm{~F}_{\text {ey }}}\right) \mathrm{F}_{\mathrm{b}}} \leq 1.0$	0.91	OK
	5	Combined loading interaction requirement \# 2 $\frac{\mathrm{f}_{\mathrm{a}}}{0.472 \mathrm{~F}_{\mathrm{y}}}+\frac{\mathrm{f}_{\mathrm{bx}}}{\mathrm{~F}_{\mathrm{bx}}}+\frac{\mathrm{f}_{\mathrm{by}}}{\mathrm{~F}_{\mathrm{by}}} \leq 1.0$	0.91	OK
	6	Buried anchor block location Anchor rod length \geq minimum		OK
	7	Anchor rod stress $\quad \sigma \leq 0.55 \mathrm{~F}_{\mathrm{Y}}$	N/A	OK
	8	Anchor block capacity \quad Total Anchor Force \leq Capacity	N/A	OK
	9	Maximum displacement $\quad \mathrm{d}_{\text {MAx }} \leq 1.5$ in.	0.371 in.	OK

Anchor Design
Worksheet

Not applicable, buried concrete anchor option not selected

SAMPLE FOUNDATION DETAILS FOR A PCDT SUPERSTRUCTURE

Table 1. Foundation details for a 40 ft pre-cast double tee (i.e. steel beam) girder bridge.

Superstructure System: Pre-cast double tee Span Length: 40 ft											
General Bridge Information				Pre-designed Foundation Information							
Roadway width (ft)	Soil type (N -value)	Backwall plus scour height (ft)	Pile type	Number of piles	Pile spacing (ft)	*Pile size	Axial pile load (ton)	Minimum embedded length (ft)	Anchor rod detail	Anchor block detail	Anchor elevation above stream (ft)
24	Cohesionless $\mathrm{N}=20$	$\begin{gathered} 8 \\ 10 \end{gathered}$	Steel Timber Steel Timber	$\begin{aligned} & 7 \\ & 7 \\ & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & 3^{\prime}-8 " \\ & 3^{\prime}-10^{\prime \prime} \\ & 3^{\prime}-2 " \\ & 3^{\prime}-10^{\prime \prime} \end{aligned}$	$\begin{gathered} \text { HP 10x57 } \\ 13^{\prime \prime}, 10 " \\ \text { HP 12x53 } \\ 13^{\prime \prime}, 10^{\prime \prime} \end{gathered}$	$\begin{aligned} & \hline 24.1 \\ & 24.0 \\ & 21.1 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 43 \\ & 39 \\ & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & - \\ & 1 \\ & - \\ & 1 \end{aligned}$	a b	$\begin{gathered} 1 '-4 " \\ - \\ 3^{\prime}-1 " \end{gathered}$
	Cohesive $\mathrm{N}=10$	$\begin{gathered} 8 \\ 10 \end{gathered}$	Steel Timber Steel Timber	$\begin{aligned} & 8 \\ & 7 \\ & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & 3^{\prime}-2 " \\ & 3^{\prime}-10^{\prime \prime} \\ & 3^{\prime}-2 " \\ & 3^{\prime}-10^{\prime \prime} \end{aligned}$	$\begin{gathered} \text { HP 10x42 } \\ 13 ", 10 " \\ \text { HP 10x57 } \\ 13 ", 10 " \end{gathered}$	$\begin{aligned} & \hline 21.0 \\ & 24.0 \\ & 21.1 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 38 \\ & 39 \\ & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & 1 \\ & - \\ & 1 \end{aligned}$	a b	$\begin{gathered} 1^{\prime}-4 " \\ - \\ 3^{\prime}-1 " \end{gathered}$
30	Cohesionless $\mathrm{N}=20$	$\begin{gathered} 8 \\ 10 \end{gathered}$	Steel Timber Steel Timber	$\begin{gathered} 9 \\ 9 \\ 10 \\ 9 \end{gathered}$	$\begin{aligned} & 3^{\prime}-8 " \\ & 3^{\prime}-10^{\prime \prime} \\ & 3^{\prime}-2 " \\ & 3^{\prime}-10^{\prime \prime} \end{aligned}$	$\begin{gathered} \text { HP 10x57 } \\ 13 ", 10 " \\ \text { HP 12x53 } \\ 13^{\prime \prime}, 10 " \end{gathered}$	$\begin{aligned} & \hline 24.4 \\ & 24.3 \\ & 22.0 \\ & 24.3 \end{aligned}$	$\begin{aligned} & 44 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 2 \\ & - \\ & 2 \end{aligned}$	a b	$\begin{gathered} 1 '-4 " \\ - \\ 3^{\prime}-1 " \end{gathered}$
	Cohesive $\mathrm{N}=10$	8 10	Steel Timber Steel Timber	$\begin{gathered} 10 \\ 9 \\ 10 \\ 9 \end{gathered}$	$\begin{aligned} & 3^{\prime}-2 " \\ & 3^{\prime}-10^{\prime \prime} \\ & 3^{\prime}-2 " \\ & 3^{\prime}-10^{\prime \prime} \end{aligned}$	$\begin{gathered} \text { HP 10x42 } \\ 13 ", 10 " \\ \text { HP 10x57 } \\ 13^{\prime \prime}, 10^{\prime \prime} \end{gathered}$	$\begin{aligned} & \hline 21.9 \\ & 24.3 \\ & 22.0 \\ & 24.3 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 2 \\ & - \\ & 2 \end{aligned}$	$\begin{aligned} & \text { a } \\ & - \\ & \text { b } \end{aligned}$	$\begin{gathered} 1 '-4 " \\ - \\ 3^{\prime}-1 " \end{gathered}$

* For timber piles, the two values provided refer to the pile butt and tip diameter, respectively.

Table 2. Anchor rod details.

Detail	Number of Rods	Rod Diameter (in.)
1	5	0.75
2	7	0.75

Table 3. Anchor block details.

	Feight Detail	Width (ft)	Flexural Steel (for each anchor block face) Quantity Bar Size	
a	2.50	12	3	5
b	3.00	12	3	5

