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INTRODUCTION AND BACKGROUND 

A transportation fleet is a capital-intensive asset for a logistics/transportation company or 

manufacturer. Optimizing the composition (types of vehicles) and size of a fleet is crucial for 

efficient and cost-effective operations (Mourafetis and Kamat 2014). Fleet optimization in urban 

transit systems faces additional complexities due to heterogeneous demand/customer types and 

uncertain demand, travel time, and vehicle productivity. It is not uncommon for a logistics 

company to oversize its fleet, which can result in a low utilization rate. Additionally, all too often 

in paratransit and regular bus services, larger vehicles than necessary are used in anticipation of 

few occasions when they might be needed. An agency may also need to tradeoff between the 

cost per trip versus the seating capacity. All of these situations reflect the need for proper 

methods to determine and optimize the fleet size and composition.  

Earlier work on fleet optimization, such as Powell (1986) and Powell (1987), developed 

stochastic optimization approaches for dynamically allocating truck fleets under uncertain 

demand. These models did not explicitly address the fleet sizing decision, but rather focused on 

optimal use of an existing fleet. Turnquist and Jordan (1986) proposed a model for container 

fleet sizing under uncertain travel and service times. Sherali and Tuncbilek (1997) proposed a 

dynamic time-space model for rail-car fleet management. Their approach included a sensitivity 

analysis for addressing “what-if” types of questions but did not explicitly optimize fleet sizing 

under uncertainty. More recent research efforts have attempted to optimize fleet sizing under 

explicit uncertainty. Notably, List et al. (2003) presented a robust optimization approach for fleet 

sizing and planning under demand uncertainty. Papier and Thonemann (2008) applied queuing 

models for sizing and structuring rental fleets. Hsu and Chen (2014) developed an integrated 

approach to optimize fleet size and delivery scheduling for perishable food distribution.  

This research project addressed the problems of fleet sizing and composition optimization in the 

context of urban transit systems with unique features. First, a complex transportation network 

and heterogeneous demand call for the effective management of a fleet with a mixture of 

different sizes and types of vehicles. Second, the typical urban business environment makes it 

possible to source/acquire vehicles at a reasonable cost and frequency through purchasing, 

renting, and/or outsourcing to a carrier. Therefore, it is beneficial for a logistics/transportation 

provider or manufacturer with its own fleet to simultaneously optimize the fleet sizing and 

deployment decisions. Third, various uncertainties of origin-destination (OD) demand and 

vehicle productivity may significantly impact the fleet sizing decision and should be adequately 

addressed.  
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LITERATURE REVIEW 

The researchers reviewed the existing literature on fleet sizing optimization pertaining to the 

trucking, rail, rental, public transportation, marine transportation, and health care.  

Trucking 

Beaujon and Turnquist (1991) proposed a nonlinear programming model for optimizing fleet size 

and utilization simultaneously with stochastic demand and vehicle travel times. The objective 

was to maximize total profit as the difference between the revenue and the direct transportation 

costs, ownership costs for vehicles en route, holding costs for idle equipment, and closed-form 

expected penalty costs for unmet demand.  

List et al. (2003) studied a fleet sizing problem with two types of uncertainty: the future demand 

to be served by the fleet and the productivity of individual vehicles. They implemented a robust 

optimization approach to simultaneously optimize fleet acquisition, retirement, and allocation 

decisions.  

Pascual et al. (2013) proposed an integrated decision support framework that allows fleet size 

and maintenance capacity requirements to be jointly estimated under several criteria. Using a 

business-centered life-cycle perspective, they considered global cost, availability, and throughput 

as performance measures. Their methodology was based on a queueing network model, which 

can be evaluated via analytical methods.  

Chang et al. (2014) proposed a simulation sequential metamodeling (SSM) approach for a 

vehicle fleet sizing problem. The SSM approach answers “what-if” type questions in real time. 

They evaluated the performance of SSM under various scenarios and applied SSM in an 

empirical study based on real data from a semiconductor company.  

Rahimi-Vahed et al. (2015) proposed a new modular heuristic algorithm (MHA) to address the 

problem of determining the optimal fleet size for three vehicle routing problems (VRPs): a multi-

depot VRP, a periodic VRP, and a multi-depot periodic VRP. The proposed heuristic algorithms 

incorporated different exploration and exploitation strategies to produce good results.  

Lei et al. (2016) developed a two-stage robust optimization model for the mobile facility fleet 

sizing and routing problem with demand uncertainty and no information about the underlying 

probability distribution function. A two-level cutting plane-based method was developed, which 

included a procedure to generate customized lower bound inequalities in the outer level and a 

hybrid algorithm in the inner level that combines heuristic and exact methods to solve the 

recourse problem.  



3 

Rail 

Sherali and Tuncbilek (1997) proposed a dynamic time-space network framework, where each 

origin and destination location on each day is represented by a distinct node, for the multilevel-

car fleet management problem faced by RELOAD, a branch of the Association of American 

Railroads (AAR). They developed methods to compile required data and to solve the problem 

effectively by decomposing the solution process into a sequence of time-space network 

subproblems. 

Bojovic (2002) presented an optimal control model to determine the optimal number of 

homogeneous rail freight cars. The state space concept was employed to estimate uncertainty in 

loaded and empty car arrival times. 

Godwin et al. (2008) proposed a simulation-based approach to determine the locomotive fleet 

size and associated deadheading policy in a rail network where freight trains do not operate 

according to a fixed schedule. A heuristic method based on a Petri net model was developed for 

assigning locomotives to tracks at a tactical level and for deadheading them.  

Sayarshad and Ghoseiri (2009) developed a new multi-period mathematical optimization 

formulation and a simulated annealing (SA) approach for optimizing the fleet size and 

homogeneous freight car allocation where car demand and travel times are assumed to be 

deterministic and unmet demands are backordered. Their methodology provided decision support 

regarding yard capacity, unmet demand, and number of loaded and empty rail cars in railway 

networks. Sayarshad et al. (2010) built a mathematical model to optimize their three objectives 

of profitability, unmet demand, and service quality. They employed Pareto analysis to explore 

the tradeoffs. Sayarshad and Tavakkoli-Moghaddam (2010) proposed a two-stage stochastic 

programming model for optimizing the fleet size and freight car allocation in the rail industry 

under uncertain demand.  

Klosterhalfen et al. (2014) developed a two-phase mathematical model to determine the optimal 

rail car fleet structure and size under uncertainty in demand and travel time. They employed a 

deterministic mixed integer linear programming (MILP) model in the first phase to optimize the 

fleet composition, while minimizing the total direct rail car cost under a given rail car 

availability. Optimal fleet size was determined by a stochastic inventory control model in the 

second phase.  

Milenkovic et al. (2015) proposed a discrete model productive control (MPC) framework to 

simultaneously optimize the rail freight car fleet size and allocation. Demands and travel time of 

loaded and empty rail freight cars were considered as stochastic parameters. The authors 

employed an autoregressive integrated moving average (ARIMA)-Kalman approach to estimate 

the number of freight cars at a future time period over the prediction horizon. Two rail freight car 

inventory control models were proposed: a stochastic multi-period economic order quantity 

(EOQ) model and a single-period random newsboy model.  
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Rental 

Wu et al. (2005) presented a linear programming model to determine the optimal rental truck 

fleet size and mix. Their model simultaneously considered operational decisions (including 

empty truck movement and vehicle assignment) and tactical decisions (including asset purchases 

and sales). Computational studies using simulated data for the truck-rental industry were 

conducted to show the effectiveness of the approach for solving large-scale problems. 

Papier and Thonemann (2008) developed analytical queueing models for rental fleet sizing, fleet 

structuring (types of cars), and fleet leasing problems. Their model takes into account demand 

and rental time uncertainty, seasonality, and order batching. They derived an analytical 

expression for the service level, profit function, and efficient solution methods.  

George and Xia (2011) studied the problem of determining the optimal number of vehicles to 

maintain in the fleet in a general vehicle rental system for profit maximization. The exact 

solution was obtained via an iterative algorithm.  

Public Transportation 

Kliewer et al. (2006) proposed a time-space-based network flow model for the multi-depot multi-

vehicle-type bus scheduling problem (MDVSP), which minimizes total operational costs, 

including the costs of unloaded trips and waiting time. They devised procedures to significantly 

reduce the model size.  

Marine Transportation 

Depuy et al. (2004) proposed an integer programming model to address the optimization problem 

of layout design for a barge fleet. Their model assigned tow breakdown and building activities to 

various fleet locations. In addition, the model determined the minimum cost location for barge 

cleaning activities based on both fixed costs and travel costs to and from the cleaning locations.  

Dong and Song (2012) proposed a mathematical model to address the container fleet sizing 

problem in liner services with uncertain customer demand and stochastic inland transport times. 

Constraints included meeting customer demand, adhering to the distribution requirements of 

laden containers, and repositioning empty containers. Three simulation-based optimization 

approaches were applied to solve the model.  

Laake and Zhang (2016) proposed a deterministic mixed-integer programming model to jointly 

optimize strategic fleet planning and the selection of long-term spot contracts while maximizing 

total profit in tramp shipping. Their model can be used to provide decision support for rental 

renewal programs, specifically, when to sell, whether to buy old or new ships, and when to 

charter in or out vessels.  
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Healthcare 

McCormack and Coates (2015) studied the optimization of vehicle fleet allocation and base 

station location for emergency medical services (EMS). The objective was to maximize the 

overall expected survival probability across multiple patient classes. An integrated genetic 

algorithm (GA) and simulation approach was developed to obtain quality solutions efficiently.  

Summary 

There is clear gap in the tactical-level fleet sizing optimization literature in terms of 

simultaneously optimizing fleet size, composition, and allocation under uncertainty.  

The research described in this report addressed the following decisions: (1) how many vehicles 

of each type to acquire and retire, and thus the fleet size; (2) how many vehicles of each type to 

move between an OD pair to satisfy the estimated demand; and (3) the total shipments made and 

delayed (if necessary). The objective is to minimize the total fleet operation costs, which include 

the costs of owning, acquiring, and retiring a type of vehicle; the operating costs for a given type 

of vehicle to make a trip for an OD pair; and the penalty costs of delaying shipment. 

Uncertainties may be attributed to random customer demand, travel time, and vehicle 

productivity (especially for aging vehicles).  
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DETERMINISTIC OPTIMIZATION MODEL 

We start with a deterministic fleet sizing optimization problem, which can be formally described 

as follows.  

Consider a set 𝐼 of sources to satisfy demand at a set of 𝐽 destinations during a planning horizon 

of 𝑇 time periods. The number of shipments to be satisfied at destination 𝑗 in time period 𝑡 is 

𝑄𝑗(𝑡). A set of 𝐾 types of vehicles are available to deliver the shipments. The line-haul cost of 

the OD pair (𝑖, 𝑗) covered by vehicle type 𝑘 is 𝐶𝑖𝑗𝑘. The decision-maker needs to determine the 

number of different types of vehicles to acquire and retire in each time period, as well as the 

allocation of shipments to the available mixture of fleet vehicles. The objective is to minimize 

the total fleet costs. The model formulation can be written as shown below.  

Sets 

𝐼: set of sources 

𝐽: set of destinations 

𝐴: set of OD pairs  

𝐾: set of vehicle types 

𝑇: set of time periods 

Parameters 

𝜃𝑘: cost of owning one vehicle of type k for one time period 

𝜆𝑘: cost of acquiring one vehicle of type k  

𝛿𝑘: cost of retiring one vehicle of type k 

𝐶𝑖𝑗𝑘: line-haul cost of OD pair (𝑖, 𝑗) ∈ 𝐴 for a vehicle type k  

𝛾: penalty for delaying one shipment per period 

𝑄𝑗(𝑡): number of shipments to be satisfied at destination 𝑗 in time period 𝑡 

𝜋𝑘: the percent of time that a vehicle of type k is available 
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Γ(𝑡): the duration of time period t     

𝑑𝑖𝑗  : travel time of OD pair (𝑖, 𝑗) ∈ 𝐴 

Decision Variables 

 𝑞𝑖𝑗𝑘(𝑡): number of shipments carried by vehicle type 𝑘 moved from i to j in time period t   

𝑄𝑗
𝑑𝑙𝑦(𝑡): number of shipments delayed at destination 𝑗 in time period t       

𝑥𝑖𝑗𝑘(𝑡): number of vehicles of type k moved from i to j in time period t 

𝑣𝑖𝑘(𝑡): fleet size for type k vehicles at origin 𝑖 in time period t 

𝛼𝑖𝑘(𝑡): acquisitions of vehicle type k at origin 𝑖 in time period t 

𝑟𝑖𝑘(𝑡): retirements for vehicle type k at origin 𝑖 in time period t 

Objective Function  

Minimize: 

∑ 𝜃𝑘𝑘,𝑡,𝑖 𝑣𝑖,𝑘(𝑡) + ∑ 𝜆𝑘𝛼𝑖,𝑘𝑘,𝑡,𝑖 (𝑡) + ∑ 𝛿𝑘𝑘,𝑡,𝑖 𝑟𝑖,𝑘(𝑡) + ∑ 𝐶𝑖𝑗𝑘𝑥𝑖𝑗𝑘(𝑡)𝑖,𝑗,𝑘,𝑡 + ∑ 𝛾𝑄𝑗
𝑑𝑙𝑦(𝑡)𝑗,𝑡  (1) 

Constraints 

𝑣𝑖,𝑘(𝑡) = 𝑣𝑖,𝑘(𝑡 − 1) + 𝛼𝑖,𝑘(𝑡) − 𝛾𝑖,𝑘(𝑡)                         ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (2) 

∑ 𝑞𝑖𝑗𝑘(𝑡)𝑖,𝑘 + 𝑄𝑗
𝑑𝑙𝑦(𝑡) = 𝑄𝑗(𝑡) + 𝑄𝑗

𝑑𝑙𝑦(𝑡 − 1)              ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽  (3) 

𝑞𝑖𝑗𝑘(𝑡) ≤ 𝑥𝑖𝑗𝑘(𝑡)                                                                   ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇   (4) 

∑ 𝑥𝑖𝑗𝑘(𝑡)𝑑𝑖𝑗𝑗 ≤ 𝜋𝑘Γ(𝑡)𝑣𝑖𝑘(𝑡)                                            ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (5) 

𝑥𝑖𝑗𝑘(𝑡),  𝑞𝑖𝑗𝑘(𝑡), 𝑄𝑗
𝑑𝑙𝑦(𝑡), 𝑣𝑖𝑘(𝑡), 𝛼𝑖𝑘(𝑡), 𝑟𝑖𝑘(𝑡) ≥ 0 (6) 

The objective function (1) minimizes the total fleet costs, including five cost components: 

maintenance/operational costs of the existing fleet, acquisition costs, retirement costs, line-haul 

costs, and shipment delay penalty costs. Constraint (2) maintains the flow balancing relationship 
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on the fleet size, such that the fleet size of a certain vehicle type in one period equals that in the 

last period plus the acquisitions and minus the retirements in the current period. Constraint (3) 

states that the available shipments in one period should either be covered by the available fleet or 

delayed. Constraint (4) requires that the number of shipments covered by a certain vehicle type 

for an OD pair cannot exceed the number of same-type vehicles moved on the same OD pair. 

Constraint (5) ensures that the allocated hours of a type of vehicle at a source cannot exceed the 

available vehicle hours of the same type. Finally, Constraint (6) specifies that all decision 

variables are non-negative.  

This project’s model formulation is a linear program (LP), which does not require the fleet size 

to be integral. It is suitable for tactical-level planning rather than decision support at the 

operational level. An additional benefit of an LP model is that it can handle large-scale problems 

efficiently.  
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TWO-STAGE STOCHASTIC PROGRAMMING MODEL  

To explicitly cope with uncertainty, we devised a two-stage stochastic programming model 

(Birge and Louveaux 2011). The model considers the number of shipments 𝑄̃𝑗 at destination 𝑗 in 

the current time period to be random. Fleet sizing decisions concerning acquisition and 

retirement must be made here and now, while allocation and shipment delay decisions can be 

made after the random parameters are realized. The objective of the model is to minimize the 

first-stage fleet sizing cost plus the expected second-stage cost. The following new set and 

parameters are needed for describing the extended formulation of the two-stage stochastic 

program.  

𝑆: set of scenarios of random demand 

𝑄𝑗𝑠: number of shipments at destination 𝑗 in scenario 𝑠 

𝑝𝑠: probability for scenario 𝑠 ∈ 𝑆 to occur 

First-Stage Decision Variables 

𝑣𝑖𝑘: fleet size for type k vehicles at origin 𝑖 in the current time period 

𝛼𝑖𝑘: acquisitions for fleet type k at origin 𝑖 in the current time period 

𝑟𝑖𝑘: retirements for fleet type k at origin 𝑖 in the current time period 

Second-Stage Decision Variables 

𝑄𝑗𝑠
𝑑𝑙𝑦

: number of shipments delayed at destination 𝑗 in the next time period when scenario 𝑠 

occurs 

𝑥𝑖𝑗𝑘𝑠: number of vehicles of type k moved from i to j in the next time period when scenario 𝑠 

occurs 

Objective Function  

Minimize: 

∑ 𝜃𝑘𝑘,𝑖 𝑣𝑖𝑘 + ∑ 𝜆𝑘𝛼𝑖𝑘𝑘,𝑖 + ∑ 𝛿𝑘𝑘,𝑖 𝑟𝑖,𝑘 + ∑ 𝑝𝑠𝐶𝑖𝑗𝑘𝑥𝑖𝑗𝑘𝑠𝑖,𝑗,𝑘,𝑠 + ∑ 𝛾𝑝𝑠𝑄𝑗𝑠
𝑑𝑙𝑦

𝑗,𝑠  (7) 
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Constraints 

𝑣𝑖𝑘 = 𝛼𝑖𝑘 − 𝛾𝑖𝑘                                         ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 (8) 

∑ 𝑥𝑖𝑗𝑘𝑠𝑖,𝑘 + 𝑄𝑗𝑠
𝑑𝑙𝑦

= 𝑄𝑗𝑠                           ∀𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆  (9) 

∑ 𝑥𝑖𝑗𝑘𝑠𝑑𝑖𝑗𝑗 ≤ 𝜋𝑘Γ𝑣𝑖𝑘                               ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆  (10) 

𝑣𝑖𝑘, 𝛼𝑖𝑘, 𝑟𝑖𝑘, 𝑄𝑗𝑠
𝑑𝑙𝑦

, 𝑥𝑖𝑗𝑘𝑠 ≥ 0  (11) 

Real fleet data from a local 3PL company in St. Louis were employed to examine the 

performance of these optimization models. The data set contained 12 months of data with 10 

sources and 50 destinations. Preliminary computational study showed that the two-stage 

stochastic programming solution was a significant improvement over the deterministic solution 

based on point estimates of customer demand. 
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NEXT STEPS 

The researchers have developed new optimization models to address the problem of tactical-level 

fleet sizing optimization in the context of an urban transit system with some unique 

characteristics.  

This work has paved the way for the development of a more advanced solution approach. For 

instance, there is a need for a rolling horizon framework that embeds the optimization model 

developed in this project in each time period for real-life decision support. Additionally, the 

inputs to the two-stage stochastic program require some data-driven mechanisms to estimate the 

probability distributions of the random parameters. This can be achieved by implementing 

various forecasting and statistical methods to be integrated into the solution framework. 
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