Field Testing and Evaluation of a Demonstration Timber Bridge

Iowa State University Travis K. Hosteng, P.E.

2010 ASCE Structures Congress
Session: New Perspectives on Timber
Bridges
May 13, 2010

Overview

- Field Testing Project
- Lab Project
- Demonstration Bridge
- Observations/Future Work

Introduction/Background

- 2003 BEC Project
- 8 glued-laminated timber girder bridges w/ asphalt wearing surfaces
- ~\$250,000 project
- OR, AL, NY, WI
-Significant asphalt deterioration
- Results
- Differential Panel Deflections
- Deck Panel Condition

Field Tests

Field tested 12 timber bridges with asphalt wearing surfaces

Elmhurst
Moisture Meter
w/ 2" pin

Field Tests Cont.

> Rolling Static Tests: BDI Strain; Deflections

Typical Wearing Surface Performance

-Full-width transverse cracks located at each deck panel interface

Typical Wearing Surface Performance

Field Test Observations Diff. Panel Defl. - Cupped Panels

Results - Global Defl.

Experimental n: L/n

WS

Rating*
9 7 956
-Wittson $=600$

- Butler Co. $=560$
- Erfurth $=520$

Results Cont. - Diff. Panel Defl.

Experimental (in.): Limit <0.1 in.

- Camp Creek = N/A
- Lost Creek = N/A
- Badger Creek $=0.022$
- Chambers Co. $=0.027$
- Russellville $=0.034$
- Wittson
- Erfurth
- Butler Co. = 0.176

WS
Rating*7992

Field Test Observations

- Bridges with higher n-values generally performed better
- The condition of the deck panels was a significant factor affecting wearing surface deterioration
- Research methods to reduce and remediate diff. panel defl. on both new and existing bridges
- Further research into the design of asphalt mixes for wearing surfaces on timber bridges

Introduction/Background Cont.

- 2005 BEC Project
- Constructed full-scale timber bridge
- ~\$150,000 project
- ISU Structures Laboratory
- Single span, 16ft wide
- Reduce Differential Panel

Deflections

- Deck Modification Alternatives
- Test Alternative in the field

Laboratory Bridge

$$
\begin{array}{ll}
> & \text { 31-ft single span } \\
> & \text { Four Girders }
\end{array}
$$

> 16-ft wide
$>\quad 4 \prime \times 51 / 8$ " Deck Panels

Deck Panel Joint Alternatives

Plywood

Steel Plate

Steel Plate w/ Bolts

FRP Dowels

Mastic Tape

Test Results

Differential Panel Deflection @ 16 kip (LC1)

Lab Bridge Results

- Alternatives Reduced Diff/Defl.
- Important Alt. Qualities
-Effectiveness
- Cost
- Constructability!
- Top Three: Dowels, Steel Plate, Plywood
- Selected Alternative: Plywood

Demonstration Timber Bridge Project

Objective

- Design Full-scale Gluedlaminated Timber Bridge
- Utilize Selected Alternative
- Document:
- Design
- Construction
- Serviceability Performance
- Live Load Performance
- Final report

Demonstration Bridge Design

Overall Superstructure Layout
(Guardrail omitted for clarity, see Guardrail Detail Sheets)

Plywood Layout

Plan Layout of 1" T/G Treated Plywood

Demonstration Bridge Design

Demonstration Bridge Construction

Demonstration Bridge Construction

Demonstration Bridge Construction

Demonstration Bridge Construction

Demo Bridge - Inspection Resutls

> Span w/o Plywood

Demo Bridge - Test Results

Test Results Cont.Differential Deflections Span w/o Plywood

Differential Deflection vs. Truck Position (North Span - Center)

Span w/o Plywood

Differential Deflection vs. Truck Position (South Span - Center)

Demo Bridge

Conclusions/Recommendations

- Plywood
-reduces differential panel deflections
-easy install
- Alters asphalt cracking pattern
- Future investigations:
- Plywood pattern
- Tongue/Groove plywood
-Asphalt Mix Design

Thank You!

