Steam-Pressed Scrim Lumber (SPSL): A developing new material for bridges

Shane C. Kitchens
R. Dan Seale, Terry L. Amburgey, H. Michael Barnes
Forest Products Department
Mississippi State University

History

TimTek Technology Development...... A Cooperative Effort Between

Timtek

Forest and Wildlife Research Center

Mississippi Agricultural and Forestry Experiment Station

Mississippi State University

Mississippi State University Research Technology Corporation

State of Mississippi

CSIRO

Val Jule

Plantation Forests etc....

Construction of Research Facility at Mississippi State

Serial #1 Machine Centers

☐ March 15, 2003 at Shuqualak, MS

Development and Mechanical Properties

Data Collected on over 200 Test Beams

Current monitor and cycle that has brought consistency to the process at MSU

Performance Improvements

MOE hit targets early!

Fb - has steadily climbed!

Property Testing Results

- □ Design values for southern pine SPSL
- Basic mechanical properties for SPSL from ponderosa and lodgepole pines

X-ray useful in determining low density areas

Design values for <u>southern pine</u> SPSL have been established

Depending on depth and span:

- \square MOR = 19.3 28.4 MPa
- \square MOE = 15.4 17.7 Gpa

for bending stress

Bending Stress Design Value

Tensile Strength Design Values

Compressive Strength Design Values

Southern Pine Results

- MOE and MOR design values meet or exceed commercially available products
- Tensile and compressive strength values are comparable to commercial products

Mechanical Properties of SPSL from western species

Results with western pines

- Fire-killed material does not scrim well; low MC is culprit
- NDE testing with a sonic E device may prove useful but reguires more work
- Low MOE values due to blows but other values seem reasonable

Increase durability for various potential uses

Additives to Increase Durability

- Water repellents
- □ Dimension stabilizers
- ☐ Fungicides &/or insecticides
- □ Fire Retardants
- □ Corrosion inhibitors

Limitations on Additives

- Negative effect on adhesive
- Decompose at press temperatures
- □ Corrosive to fasteners
- ☐ Hygroscopic
- □ Pigmented
- □ Cost

Blended with Adhesive (Resin) Prior to Application to Scrim

Added to Wood Furnish (scrim) prior to Drying

Added to Wood Furnish (Scrim) after Drying but Prior to Pressing

Added to Pressed Material Prior to Cooling

Penetration of Topically – Applied Additives (Spray or Dip) is Facilitated by Air within the EWP cells Contracting as it Cools

Added to Cooled TimTek Products

Summary

- Mechanical properties have been achieved
- When to add Durability
 - Enhancing Additives to EWP Depends on
 - □ Their Physical and Chemical Properties
 - □ Degree of Enhancement Required
- Commercial facility is being constructed in Mississippi

