
Performance Benchmarking of RWIS 
Pavement Temperature Forecasts

http://aurora-program.org

Aurora Project 2000-01

Final Report             
March 2012



About Aurora

Aurora is an international program of collaborative research, development and deployment in the 
field of road and weather information systems (RWIS), serving the interests and needs of public 
agencies. The Aurora vision is to deploy RWIS to integrate state-of-the-art road and weather 
forecasting technologies with coordinated, multi-agency weather monitoring infrastructures. It 
is hoped this will facilitate advanced road condition and weather monitoring and forecasting 
capabilities for efficient highway maintenance, and the provision of real-time information to 
travelers.

Disclaimer Notice

The contents of this report reflect the views of the authors, who are responsible for the facts 
and the accuracy of the information presented herein. The opinions, findings and conclusions 
expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this 
document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names 
appear in this report only because they are considered essential to the objective of the document.

Non-Discrimination Statement 

Iowa State University does not discriminate on the basis of race, color, age, religion, national 
origin, sexual orientation, gender identity, genetic information, sex, marital status, disability, 
or status as a U.S. veteran. Inquiries can be directed to the Director of Equal Opportunity and 
Compliance, 3280 Beardshear Hall, (515) 294-7612.

Iowa Department of Transportation Statements 

Federal and state laws prohibit employment and/or public accommodation discrimination on 
the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, 
sex, sexual orientation or veteran’s status. If you believe you have been discriminated against, 
please contact the Iowa Civil Rights Commission at 800-457-4416 or the Iowa Department of 
Transportation affirmative action officer. If you need accommodations because of a disability to 
access the Iowa Department of Transportation’s services, contact the agency’s affirmative action 
officer at 800-262-0003. 

The preparation of this report was financed in part through funds provided by the Iowa 
Department of Transportation through its “Second Revised Agreement for the Management of 
Research Conducted by Iowa State University for the Iowa Department of Transportation” and its 
amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors 
and not necessarily those of the Iowa Department of Transportation or the U.S. Department of 
Transportation Federal Highway Administration.



 

Technical Report Documentation Page 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 

Aurora Project 2000-01   

4. Title and Subtitle 5. Report Date 

Performance Benchmarking of RWIS Pavement Temperature Forecasts March 2012 

6. Performing Organization Code 

 

7. Author(s) 8. Performing Organization Report No. 

Tae J. Kwon and Liping Fu Aurora Project 2000-01 

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 

Transportation Systems Research Group 

Department of Civil and Environmental Engineering 

University of Waterloo 

Waterloo, Ontario, Canada N2L 3G1 

 

11. Contract or Grant No. 

 

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered 

Aurora Program 

Iowa Department of Transportation 

800 Lincoln Way 

Ames, Iowa 50010 

Federal Highway Administration 

U.S. Department of Transportation 

1200 New Jersey Avenue SE 

Washington, DC 20590 

Final Report 

14. Sponsoring Agency Code 

Pooled Fund SPR 72-00-0003-042 

15. Supplementary Notes 

Visit www.aurora-program.org for color PDFs of this and other research reports. 

16. Abstract  

The researchers examined five categories of factors that may affect the accuracy of road weather information system (RWIS) pavement 

temperature forecasts: climatic trends, locational attributes, seasonal/monthly variations, diurnal trends, and forecast length. Five 

hypotheses were established accordingly and tested using one year of RWIS observations and forecasts obtained from several provinces 

in Canada. The RWIS networks were classified into three groups on the basis of the climatic nature of the region in which they are 

located: maritime, continental, and mixed. 

 Pavement temperature forecasts from the maritime climate group had the highest quality and those from the mixed climate group had 

the lowest quality, both in terms of mean absolute errors (MAEs) and percent of acceptable forecasts (PAFs). The significant 

performance differences between the regions suggested that the RWIS forecasting performance may be affected by climatic trends, as 

in, the unique climatic patterns of the regions may have caused the differences in RWIS forecasting performance. 

 The correlation between the forecasting accuracy of RWIS stations and their topographical features, such as altitude and amount of 

vegetation cover, and geographical features, such as distance to local lakes/waters, were investigated within each region. The 

researchers found that the forecasting performance for the RWIS stations in the maritime climate region near coastal areas had a 

negative correlation with the distance from a nearby large water body. On the other hand, no significant correlation was found in 

either the mixed or continental climate groups. 

 Daytime forecasts were less accurate than the ones generated for nighttime. Furthermore, as expected, the accuracy of forecasts was 

found to deteriorate quickly as the forecasting horizon increases. 

 Forecast errors were found to exhibit seasonal variations with forecasts for the shoulder months (October and April) tending to be 

poorer than other months. 

 There was a clear quantitative relationship between forecast errors and forecasting time and length, suggesting that it is possible to 

quantify these errors based on the time a forecast is made and the time the condition is to be forecasted (forecasting horizon). 

17. Key Words 18. Distribution Statement 

Canadian road weather—climatic analysis—forecast accuracy—forecast errors—

regional investigation—surface conditions 

No restrictions. 

19. Security Classification (of this 

report) 

20. Security Classification (of this 

page) 

21. No. of Pages 22. Price 

Unclassified. Unclassified. 37 NA 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 



 

 



 

PERFORMANCE BENCHMARKING OF RWIS 

PAVEMENT TEMPERATURE FORECASTS 
 

 

Final Report 

March 2012 
 

 

Authors 

Tae J. Kwon, PhD and Liping Fu, PhD., PE, Professor 

Transportation Systems Research Group 

Department of Civil and Environmental Engineering, University of Waterloo 

 

 

Sponsored by 

the Aurora Program, 

the Iowa Department of Transportation, 

and the Federal Highway Administration (FHWA) 

FHWA Pooled Fund Study SPR-3(042): AK, IA, IL, IN, KS, MI, MN, ND, NV, NY, OH, 

Ontario MOT, PA, Quebec MOT, SD, Sweden NRA, TN, UT, VA, WI 

 

 

Preparation of this report was financed in part 

through funds provided by the Iowa Department of Transportation 

through its Research Management Agreement with the 

Institute for Transportation 

(Aurora Project 2000-01) 

 

 

A report from 

Aurora Program 

Institute for Transportation 

Iowa State University 

2711 South Loop Drive, Suite 4700 

Ames, IA 50010-8664 

Phone: 515-294-8103 

Fax: 515-294-0467 

www.intrans.iastate.edu 

  



 

 



v 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................................ vii 

EXECUTIVE SUMMARY ........................................................................................................... ix 

1. INTRODUCTION .......................................................................................................................1 

Objectives and Scope ...........................................................................................................1 

2. RWIS ROAD SURFACE TEMPERATURE FORECASTING..................................................3 

3. STUDY AREA AND DATA DESCRIPTION............................................................................7 

4. EVALUATION METHOD .........................................................................................................9 

4-1. Match of Observations and Forecasts ...........................................................................9 
4-2. Data Stratification .......................................................................................................10 

4-3. Performance Metrics...................................................................................................12 

5. RESULTS AND DISCUSSIONS ..............................................................................................14 

5-1. Effect of Climatic Pattern ...........................................................................................14 
5-2. Effect of Locational Attributes ...................................................................................16 
5-3. Effect of Diurnal Trends .............................................................................................19 

5-4. Effect of Forecast Length ...........................................................................................20 

5-5. Effect of Seasonal Variations .....................................................................................21 

6. CONCLUSIONS AND RECOMMENDATIONS ....................................................................24 

REFERENCES AND BIBLIOGRAPHY ......................................................................................27 



vi 

LIST OF FIGURES 

Figure 1. The three stages of the forecast process (adapted from Crevier and Delage 2001) .........4 
Figure 2. Small daily temperature range (left) and large daily temperature range (right)  

(adapted from Ahrens 2009) ................................................................................................6 

Figure 3. Workflow of the proposed study ......................................................................................9 
Figure 4. Pavement temperature forecast MAE by climate region (left) and pavement 

temperature forecast accuracy performance by climate region (right) ..............................14 
Figure 5. Data stratified by individual stations in order of distance from water body ..................17 
Figure 6. RWIS MAE versus RWIS station altitude .....................................................................18 

Figure 7. Data stratified by hour (UTC) for maritime (top) and mixed (bottom) climate groups .19 
Figure 8. Forecast error as a function of forecasting lead time for maritime (top) and mixed 

climate (bottom) .................................................................................................................21 
Figure 9. Monthly pavement temperature forecast MAE for maritime (top) and mixed climate 

(bottom)..............................................................................................................................22 
Figure 10. Benchmark for monthly variations for maritime (top) and mixed climate (bottom) ...23 

 

 

LIST OF TABLES 

Table 1. Summary of the RWIS data ...............................................................................................7 

Table 2. Summary of calculated statistics ......................................................................................14 
Table 3. t-test results using means (MAEs) and proportions (PAFs) ............................................16 

 

  



vii 

ACKNOWLEDGMENTS 

This research was conducted under the Federal Highway Administration (FHWA) Pooled Fund 

Study SPR-3(042). The authors would like to express their gratitude to the FHWA, the Aurora 

Program partners, and the Iowa Department of Transportation (lead state) for their financial 

support and technical assistance. 

There are many people who provided a tremendous wealth of information and shared their 

knowledge throughout the course of completing this project. 

We are deeply grateful to Max Perchanok at the Ontario Ministry of Transportation (MTO) for 

his continuous support and helpful comments. 

Special thanks to meteorologists Paul Delannoy, Elizabeth Loder, Jeremy Duensing, and Gregg 

Benedict for their valuable consultation sessions and fruitful discussions. 

Our heartfelt appreciation goes to Sheldon Drobot and Amanda Anderson at the National Center 

for Atmospheric Research (NCAR) for providing thoughtful suggestions and the data that were 

essential to complete this project. 

Many thanks to Jeff Tilley at the University of North Dakota for developing the project concept 

and the performance metrics. 

Thanks to Brian Mills and Daniel Huang at Environment Canada for sharing their expert 

knowledge. 

Finally, we would like to thank Beata Bielkiewicz and Gervais Arel with the Alberta Ministry of 

Transportation (MOT) and Olga Kidson with the Nova Scotia Department of Transportation 

(DOT) who delightfully provided the location information of their road weather information 

system (RWIS) stations. 

 



 

 



ix 

EXECUTIVE SUMMARY 

The researchers examined five categories of factors that may affect the accuracy of road weather 

information system (RWIS) pavement temperature forecasts: climatic trends, locational 

attributes, seasonal/monthly variations, diurnal trends, and forecast length. Five hypotheses were 

established accordingly and tested using one year of RWIS observations and forecasts obtained 

from several provinces in Canada. 

The RWIS networks were classified into three groups on the basis of the climatic nature of the 

region in which they are located: maritime, continental, and mixed. The main findings are 

summarized as follows: 

 Pavement temperature forecasts from the maritime climate group had the highest quality and 

those from the mixed climate group had the lowest quality, both in terms of mean absolute 

errors (MAEs) and percent of acceptable forecasts (PAFs). The significant performance 

differences between the regions suggested that the RWIS forecasting performance may be 

affected by climatic trends, as in, the unique climatic patterns of the regions may have caused 

the differences in RWIS forecasting performance. 

 The correlation between the forecasting accuracy of RWIS stations and their topographical 

features, such as altitude and amount of vegetation cover, and geographical features, such as 

distance to local lakes/waters, were investigated within each region. The researchers found 

that the forecasting performance for the RWIS stations in the maritime climate region near 

coastal areas had a negative correlation with the distance from a nearby large water body. On 

the other hand, no significant correlation was found in either the mixed or continental climate 

groups. It should be noted that a more detailed statistical analysis with additional data is 

required to determine the exact rationales as to why such a correlation was/was not found and 

to arrive at a definitive conclusion. 

 Daytime forecasts were less accurate than the ones generated for nighttime. Furthermore, as 

expected, the accuracy of forecasts was found to deteriorate quickly as the forecasting 

horizon increases. 

 Forecast errors were found to exhibit seasonal variations with forecasts for the shoulder 

months (October and April) tending to be poorer than other months. This could be due to the 

presence of a mixture of two different weather extremes within those shoulder months. 

 There was a clear quantitative relationship between forecast errors and forecasting time and 

length, suggesting that it is possible to quantify these errors based on the time a forecast is 

made and the time the condition is to be forecasted (forecasting horizon). 
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1. INTRODUCTION 

The cost of winter road maintenance is substantial in many northern countries such as Canada. 

Canadian transportation agencies expend more than a billion dollars a year on various winter 

road maintenance activities (Ye et al. 2009). These activities include the use of large amounts of 

road salts for deicing and anti-icing, which has become an increasing public concern due to the 

detrimental effects on the environment and corrosive effects to the infrastructure and vehicles. 

To reduce the costs of winter road maintenance and the use of salts, many state and municipal 

governments are seeking ways to improve the efficiency and effectiveness of winter maintenance 

operations. 

One approach to achieving this goal is to improve the decision-making of maintenance 

operations by making use of real-time information on road weather and surface conditions from 

road weather information systems (RWISs). RWISs are automated road weather reporting 

stations that measure various meteorological parameters such as air and pavement temperature, 

precipitation, and wind speed using a variety of environmental sensors situated in the road and/or 

on towers adjacent to the road. 

RWIS information can help road maintenance personnel develop cost-effective deicing and anti-

icing programs to help maintain safe road conditions. This is especially true with information on 

pavement temperature, which is a major factor that determines if treatment is necessary, when to 

start maintenance activities, which chemicals to use, and the amount of chemicals to apply. In the 

context of anti-icing and resource planning, RWIS pavement temperature/condition forecasts are 

particularly important given the effectiveness of these programs depends on the accuracy and 

reliability of these forecasts. 

Despite the critical importance of RWIS pavement temperature forecasts, there is little 

systematic information on the performance of various RWIS forecasts from different regions. In 

particular, what is the overall accuracy of the RWIS pavement temperature forecasts? What is 

the comparative performance of the RWIS stations from different regions, or models? And, what 

are the main factors influencing the magnitude of forecast errors? These questions represent the 

main concern of this research. 

Objectives and Scope 

The main objective of this research is to evaluate the performance of RWISs in terms of their 

accuracy to forecast pavement temperatures, and to identify and quantify the effects of the 

possible factors affecting this performance, such as locational attributes, forecast time and 

length, and seasonal variation. Due to time constraints and data availability, the scope of this 

research is limited to examining the following five research hypotheses: 

1. Climatic patterns: RWIS forecasting accuracy is affected by different climatic characteristics 

(e.g., maritime versus continental) 
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2. Locational attributes: RWIS forecasting accuracy is dependent on various geographical and 

topographical settings on which each station is located 

3. Seasonal variations: RWIS forecasting accuracy would vary by different months (e.g., 

shoulder months versus non-shoulder months) 

4. Diurnal trends: RWIS forecasting accuracy would change with respect to daily temperature 

variations (e.g., high during the daytime and low during the nighttime) 

5. Forecast length: RWIS forecasting errors would become larger as the forecast length 

increases 
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2. RWIS ROAD SURFACE TEMPERATURE FORECASTING 

There are several road temperature forecasting models currently in operation in North America, 

such as the Model of the Environment and Temperature of Roads (METRo), the Fast All-Season 

Soil Strength (FASST) model, and the Snow THERmal Model (SNTHERM). Among these three 

models, the Canadian numerical model, METRo, is being implemented in most of the provinces 

in Canada. 

METRo is superior to the other two competitors in forecasting pavement temperature and surface 

conditions due to its robust surface condition forecasting capability. Literature that compares the 

three pavement temperature forecast models states that although METRo requires a longer 

computing time to generate forecasts than the other two comparison models, it performs better 

under a variety of different conditions (which is very critical, especially on winter days) and is 

very easy to acquire, install, and use (NCAR 2007). 

Furthermore, METRo was built in a user-friendly environment so that the developers, together 

with an ever-growing community of end users, can communicate interactively to rectify the 

problems or issues in a timely manner. In recognizing the model’s robustness and versatility, the 

report from the National Center for Atmospheric Research (NCAR) recommended METRo be 

integrated into future generations of the Maintenance Decision Support System (MDSS) to 

maximize the productivity and efficiency in support of winter maintenance operations. 

METRo utilizes the surface observation data together with weather forecasts (air temperature, 

cloud cover, precipitation rate, etc.) to predict how pavement surface temperatures and the 

accumulative precipitation amount will evolve in liquid and solid forms during a forecasting 

period (Linden and Petty 2008). 

METRo contains three modules: an energy balance module for the road surface, a heat 

conduction module for the road material, and another module to take account for water, snow, 

and ice accumulation on the road. The surface energy balance is determined by analyzing various 

energy fluxes including incoming infrared radiation flux, emitted flux, the sensible turbulent heat 

flux, and the latent heat flux. Moreover, METRo also incorporates the flux related to the phase 

change of precipitating water. A one-dimensional heat diffusion equation is utilized to compute 

the evolution of the subsurface temperature profile by taking two main parameters, heat capacity 

and ground heat flux, into account (Linden and Drobot 2008). 

Two numerical grids are available to METRo and they are selected on the basis of several road 

characteristics, such as whether they are normal roads or bridges/overpasses (Crevier and Delage 

2001). A variable-resolution grid and a uniform-resolution grid are implemented typically to 

better account for normal roads, and bridges and overpasses, respectively. 

Lastly, METRo uses various elements including precipitation, evaporation, and runoff to 

effectively simulate the accumulation of water, snow, and ice on the road. METRo is also 
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capable of estimating the snow removal that is caused either by traffic or maintenance 

operations. 

Generally, the road condition/temperature forecasting process follows three steps as shown in 

Figure 1: initialization of road temperature profile, coupling of the forecast with historical 

observations, and the forecast phase itself. 

 

Figure 1. The three stages of the forecast process (adapted from Crevier and Delage 2001) 

During the first phase, an initial road temperature profile is created using the historical pavement 

temperature observations. If METRo detects surface observations that are missing for more than 

four consecutive hours, an analytical approach is employed to fill in those missing values. Given 

RWIS forecasts are issued twice a day (i.e., at t = 0000 and 1200 UTC) at different hours than 

when atmospheric forecasts are issued, METRo uses these overlapped hours, represented as  t, 

to create a reliable temperature profile. 

Once the profile is created, the profile at the tail of the initialization phase is used in the coupling 

phase as the initial condition. The main goal in this phase is to adjust the atmospheric forecast 

generated from the GEM model through iterative processes to actual RWIS observations, thereby 

creating a highly accurate (i.e., within 0.1 degrees of the actual pavement temperature) 

“adjusted” pavement temperature to be used in the forecast phase. 

At the end of the coupling phase, the forecast phase follows to check the forecasted parameters 

formed in the coupling phase and to compare them with the latest observations to minimize 

discrepancies. 

Using the RWIS observations along with other meteorological data, METRo delivers near-future 

pavement temperature forecasts. Although METRo is believed to produce accurate pavement 

temperature forecasts, its performance on actual datasets has rarely been quantified. Especially in 

the context of weather forecasting, it is almost inevitable to have discrepancies between 

observations and forecasts, as there are many uncertainties that affect the accuracy of RWIS 
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temperature forecasts. It is hypothesized that such discrepancies are caused by many factors 

including but not limited to the following: 

 Instrumental errors 

 Model errors 

 Data errors 

 Frequency of forecast issuances 

 Climatic trends 

 Locational attributes 

 Seasonal variations 

 Diurnal variation 

 Forecast horizon 

 Cloud cover, snow cover, precipitation, etc. 

 Human errors 

Instrumental errors can be, for instance, from the use of miscalibrated sensors. Human errors are 

always present given meteorologists are often involved in modifying the forecasting parameters 

and/or models using their discretion based on their past experience. 

The models used to forecast may not be robust enough to account for all the possible scenarios 

that can occur in reality. Performance of models can be significantly poor when dealing with 

unexpected and extreme weather events such as hurricanes and snowstorms. 

Not only can the models create errors, but the data itself can be erroneous due to sensor 

malfunctions. The errors associated with observation data may consequently affect the overall 

quality of forecasts because observations are fed into the models to produce the forecasts. 

Another important factor is the number of forecasts generated in a day, which can significantly 

influence the overall quality of outputs. Normally, forecasts are issued twice a day unless there is 

a substantial change in the temperature. 

It is equally important to note that the overall forecast accuracy changes with respect to 

locational attributes and the corresponding climate. Climatic regions can be categorized into the 

following six groups: moist tropical climates, dry climates, moist climates with mild winters, 

moist climates with severe winters, polar climates, and highland climates (Ahrens 2009). 

Most regions located between latitudes 40
o
 and 60

o
 in Canada have a temperate climate, meaning 

that summer is not as hot as the subtropical climate and milder than the polar climate. There are 

two sub divisions within temperate climates: maritime and continental. Cities adjacent to the sea 

or surrounded by the sea have maritime climates as the large mass of the sea takes a much longer 

time to warm up and cool down. As a result, less temperature variation is observed. On the other 

hand, continental climates have larger temperature variations given less time is required for air to 

warm up and cool down due to the lack of significant water bodies nearby. 
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In addition, many mountainous regions are often found in continents such that weather 

conditions tend to change dramatically from one hour to the next and from one location to 

another. For instance, a thunderstorm can occur even during a perfectly clear day, and 

temperatures can drop significantly from hot temperatures to freezing temperatures within just a 

few hours. 

Furthermore, discrepancies can vary by seasons. It is common that shoulder months such as 

September/October or April/May experience a large range of temperature variation as the 

weather changes dramatically within those months due to occurrence of convective disorganized 

precipitations (Ahren 2009). This variation makes the overall forecasting process much more 

difficult. Given the temperature variation is relatively higher in shoulder months, the forecasting 

models experience difficulties in taking high variability of temperature into account. 

Temperature variation often shows noticeable diurnal trends. For example, on clear sunny days, 

the temperature of the road surface can rise at a tremendous rate in the afternoon hours and this 

can be very difficult to forecast. The effect of clouds and precipitation can make this even more 

challenging. During evening hours, pavement temperatures plummet from their afternoon peak 

due to rapid radiational cooling. When the rate of temperature change decreases, so does the 

forecast error. It is important to emphasize that the diurnal range of temperature relies heavily on 

the presence of cloud cover as it changes the daily temperature ranges as shown in Figure 2. 

 

Figure 2. Small daily temperature range (left) and large daily temperature range (right) 

(adapted from Ahrens 2009) 
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3. STUDY AREA AND DATA DESCRIPTION 

A request for RWIS forecasts and observations was sent to the affiliated members of the Aurora 

Program. However, only a few agencies were able to provide the requested data because many 

agencies do not archive their RWIS forecasts. 

In addition, data from some agencies were not sufficient to serve the purpose of this project. For 

instance, Finland provided their RWIS observations and forecasts; however, the dataset covered 

only three stations for two hours of forecast horizon. For this reason, the analysis for Finland 

data could not be done in this effort. 

For confidentiality, the regions that are included in this study have been labeled and categorized 

as their climatic types and these are maritime, mixed (i.e., maritime and continental), and 

continental. Table 1 provides a detailed data description for the three different temperature 

climates. 

Table 1. Summary of the RWIS data 

Climate Zones 

Number of RWIS 

Stations Used 

Forecast Valid Time (UTC)/ 

Forecast Period Data Range 

Maritime 9 
07:30 &19:30/ 

Next 12 hours 

2009-10-03 to  

2010-04-30 

Continental/Maritime 

(Mixed) 
15 

08:00 & 20:00/ 

Next 12 hours 

2009-10-03 to 2010-

04-30 

Continental 13 
10:00 & 22:00/ 

Next 6 hours 

2009-12-01 to 

2010-03-30 

 

 Climate Zones: As mentioned earlier, three climatic groups, which exhibit different weather 

patterns, were used in this study. 

Continental climate exhibits extreme weather patterns. In summer, continental air masses 

could produce a temperature as high as 40° C; whereas, in winter, arctic air masses could 

decrease temperatures to as low as -54° C. 

On the other hand, maritime climate can be found in areas that are surrounded by oceans or 

large bodies of water and the temperature rarely goes above 20° C or below -10° C, so the 

range of temperature variation is relatively small. 

Climate classified as mixed has both continental and maritime climates. These regions 

exhibit continental characteristics in terms of their high temperature variations but their 

temperatures do not vary as much as maritime regions. Such unique characteristics of their 

climates result in experiencing both continental and maritime climates. 
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It is also important to note that maritime climate zones, as compared to continental ones, 

experience more days per year with snow and freezing rain, greater annual snowfall, and a 

large number of freeze-thaw cycles. Maritime climate zones are also moister and cloudier 

with both more frost days and weather variability day-to-day than in continental climate 

zones. However, mountainous areas in continental climate regions are expected to contribute 

to the degradation of RWIS forecasting qualities as they exhibit highly varying weather 

patterns as explained earlier in this report. 

 Number of RWIS Stations: This column shows the number of RWIS stations from which 

the data were obtained for this analysis. 

 Forecast Valid Time (UTC) and Forecast Period: Generally, all provinces issue their 

computed pavement temperature forecasts twice a day. It is important to understand that 

actual forecasts are usually prepared and generated prior to those hours. Hence, the earlier 

hours benefit from having the newest forecasts that were just issued. In addition, the data 

provided by the different regions have different forecast horizons. For a fair comparison, a 

same forecast horizon of six hours was considered. Note that forecasts have been made on an 

hourly basis; whereas, observations have been made on approximately a 20 minute interval 

(i.e., three observations per an hour). 

 Data Range: The data range for forecasts and observations are shown in this column.  
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4. EVALUATION METHOD 

Figure 3 shows the procedure proposed to evaluate the hypotheses for this research and to 

develop a benchmark. Detailed steps are described in the following section. 

 

Figure 3. Workflow of the proposed study 

4-1. Match of Observations and Forecasts 

Pavement temperature data from two different climate groups (maritime and mixed) have a 20 

minute temporal resolution; whereas, forecasts are made for every hour over the forecasting 

horizon. As a result, there are three observations available for each forecast and the time for 20 

minute interval observations had to be matched with the corresponding forecast hour. 

For example, if the observations were made at 05:05:00, 05:25:00, and 05:45:00, the observation 

time, 05:05:00, would be selected as the closest match of the forecast time, 05:00:00 to compute 

the absolute temperature difference. This closest-time matching was done as long as the 

observations were within 20 minutes of the model valid time (i.e., forecast time). 
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This matching was not done for the continental group, which provided the forecasts and 

observations already matched with the model valid timestamp in the raw data. It is important to 

note that such an exception on time-matching may introduce bias, given it is not known what 

was done to match the forecast and observation hours. 

4-2. Data Stratification 

Once all the data (forecasts and observations) were paired correctly for the timeframe available, 

they were stratified in four different ways so that the established individual hypotheses could be 

evaluated. 

4-2-1. Data Stratification by All Stations and All Hours 

Data stratification was done in a way to produce suitable performance measures to describe the 

overall quality of pavement temperature forecasts. To fulfill this, all available stations and hours 

for each climate group were stratified so that performance measures representing each climate 

group could be constructed to compare the accuracy of pavement temperature forecasts between 

the three different climate regions. This stratified dataset is to be used to test the hypothesis of 

the possible dependency of RWIS forecasting errors on the climatic pattern of the region in 

which the RWIS stations are located. 

In addition, forecasting errors obtained from three different groups will be compared with a 

performance standard called acceptable tolerance level. Given the continental climate group only 

provided four months and 6 hour forecast data, the same periods and same forecast hours for the 

two other climate groups, maritime and mixed, were utilized to conduct a fair comparison. 

4-2-2. Data Stratification by Station 

Data stratified by station were intended for an analysis to show the variability, if any, between 

stations, regardless of time. This analysis is to identify the locational variability with respect to 

individual stations situated in different types of geographical and topographical settings (i.e., 

whether the station is sited in a high-attitude mountainous area or near a maritime area). 

Mountainous areas have very complex terrain that may cause the climate to vary over short 

distances. During daytime when sunlight heats the mountains, the temperature of the mountain 

surface could rise quickly, forcing air to move upward along the slopes to eventually form 

anabatic clouds (Stull 2000). This unique phenomenon increases the amount of precipitation on 

the windward side and creates dry areas on the opposite side of the mountain. Thus, mountain 

areas typically have very localized weather patterns. 

On the other hand, as discussed previously, maritime areas are affected by the thermal mass of 

large water bodies that trigger slower heating and cooling. As a result, maritime regions have a 

relatively low temperature variation when compared to mountainous areas. However, there tends 
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to be more precipitation in maritime regions, which produces more days with snow and freezing 

rain. 

The hypothesis on the effect of locational attributes on RWIS forecasting performance would be 

evaluated by examining the variability of forecasting errors between stations. 

4-2-3. Data Stratification by Hour 

Data stratification by hour was intended to show the variability of RWIS forecasting 

performance within a diurnal cycle, regardless of station. Each hour encompasses all minutes in 

that hour (i.e., 00 would be 000000-00:59:59, 01 would be 01:00:00-01:59:59, and 23 would be 

23:00:00-23:59:59). If the model valid time began with 00, it was put in the 0 hour bin, 01 in the 

1 hour bin, and so on. 

It is important to note that the local times have been converted to Coordinated Universal Time 

(UTC) to compare the resulting statistics between all climate groups. Such stratification is to 

show the daily variation of temperature discrepancies as well as the forecast-aging trends. 

The greatest variation in daily temperature occurs at the surface of the earth (Ahrens 2009). This 

also implies that the temperature at the surface undergoes a high variation in daily temperature 

(i.e., Tmax-Tmin is high). This typical diurnal variation may be reflected in the quality of pavement 

forecasts. 

In addition, forecast-aging trends can be verified by showing the discrepancies that may become 

greater as the forecast horizon increases. Given the data provided by continental stations were 

insufficient (i.e., only 6 hour forecasts were available) to thoroughly examine the effect of 

diurnal variation, this group was excluded from the comparison. 

4-2-4. Data Stratification by Month 

Data stratification by month is to show the variability of the accuracy of the forecasts made over 

different months. As described earlier, weather over the shoulder (transitional) months usually 

undergo a variety of different weather patterns due to seasonal changes. For this, it is 

hypothesized that pavement temperature forecasts are (partially) affected by the extreme 

seasonal weather changes during shoulder months. By stratifying the data on a monthly basis, 

changes in forecasting discrepancies with respect to seasonal variations can be determined. 

Given the data provided by continental provinces were insufficient (data for only four months 

were available) to comprehensively observe the effect of diurnal variation, the continental 

climate group was once again excluded from the comparison. 



 

12 

4-3. Performance Metrics 

Two metrics are selected to capture the forecasting performance of a RWIS. The first one is the 

mean absolute error (MAE) defined by Equation 1: 

 (1) 

where: n, f, and o are the total number of matched pairs between forecasts and observations, 

forecast, and observation, respectively. MAE is a conventional measure of discrepancy used 

widely in science and engineering fields.  

The second performance measure, which is currently used by the RWIS service providers to 

report the overall performance of their RWIS pavement temperature forecasts, is called percent 

of acceptable forecasts (PAFs), as shown in Equation 2: 

MadeForecastsofNumber

ExceptionsAccuracyMadeForecastsofNumber
PAF


 %100  (2) 

where: number of forecasts made is equivalent to n noted above, and accuracy exceptions are 

determined based on the following two criteria: 

 2ᵒ C or greater difference when the observed pavement temperature is between -3ᵒ C and  

+ 3ᵒ C 

 3ᵒ C or greater difference when the observed pavement temperature is between -20ᵒ C and  

-3ᵒ C or between +3ᵒ C and +10ᵒ C 

After obtaining the MAE and the PAF that describe the overall quality of pavement temperature 

forecasts, a t-test is conducted to make a statistical inference between every pair of climate 

groups to confirm that the calculated performance measures, either by MAE or PAF, are truly 

reliable and thus statistically significant. Hypothesis testing for the difference between two 

means using MAE and the difference between two proportions using PAF were conducted. The 

underlying hypotheses can be formulated as follows: 

2121
: pporH

o
          

21211
: pporH    (3) 

where: µ1 and µ2 are population means (MAE); whereas, p1 and p2 are population proportions 

(PAF). 
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Then, hypothesis testing on two independent variables can be performed using the following test 

statistics: 
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where:  ̅  and  ̅  are the sample means of MAE, S1 and S2 are the sample standard deviations of 

MAE, and  ̅  and  ̅  are the sample proportions of PAF. 

The level of significance was set to α=0.05 indicating a 95 percent confidence interval. Based on 

the outcome of tcalc, a decision can be made if |tcalc| > tcrit, then reject Ho in favor of H1; otherwise, 

reject H1 (i.e., fail to reject Ho). After calculating necessary statistics, several benchmarks, which 

depict the observed variations of forecast discrepancies, would be developed using the nonlinear 

regression analysis, accordingly. 
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5. RESULTS AND DISCUSSIONS 

5-1. Effect of Climatic Pattern 

In this section, the data that has been stratified by all stations are used to see the overall quality 

of RWIS pavement temperature forecasts. The calculated statistics are used subsequently to 

evaluate the hypothesis stating that different climates or climatic patterns would affect the 

forecasting ability. Figure 4 illustrates pavement temperature forecast MAE and pavement 

temperature accuracy PAF calculated for each individual province. 

   

Figure 4. Pavement temperature forecast MAE by climate region (left) and pavement 

temperature forecast accuracy performance by climate region (right) 

Table 2 provides a summary of the statistics. 

Table 2. Summary of calculated statistics 

Climate zones 
Pavement MAE/ 

Tolerance (
o 
C) 

Accuracy Performance 

PAF (%) 

Maritime 1.12 / 3.00 92.10 

Mixed 1.17 / 3.00 90.28 

Continental 1.14 / 3.00 91.34 

 

From Figure 4 and Table 2, it can be seen that the overall quality of RWIS pavement temperature 

forecasts are all within its acceptable tolerance levels set by each corresponding province. The 

maritime climate group has an overall discrepancy of 1.12
o 
C, having the lowest error, while the 

continental and mixed climate groups have an overall discrepancy of 1.14
o 
C and 1.17

o 
C, 

respectively. In addition, PAF values for the three different climate groups show similar results 

to their corresponding MAE values. 
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One important inference that can be made by observing the resulting statistics is that there is a 

correlation between the amount of pavement temperature discrepancies (MAE/PAF) and climatic 

patterns. It was hypothesized earlier that different climatic trends would affect the overall 

forecasting capability. As explained previously, a maritime climate region usually exhibits 

relatively stable weather patterns due to the presence of large water masses, thereby producing 

fewer forecast errors as the temperature does not fluctuate in a high range. This could provide a 

plausible explanation on maritime climate having lower forecasting errors while continental 

climate regions had higher forecasting errors. 

Furthermore, given the mixed climate group is partially maritime and partially continental, it was 

found to produce the highest errors of all. One reasonable speculation for such a phenomenon 

could be that having a mixture of both climates makes it even more challenging to produce 

accurate forecast values. Thus, it can be concluded that RWIS pavement temperature forecasts 

are affected by and correlated with climatic trends. 

However, it is equally important to note that such marginal differences in the overall 

performance could have been caused by many factors. For instance, as mentioned earlier, the 

continental climate group provided forecasts and observations with model valid times already 

being matched. It is not known as to what internal process was undertaken to match the time, but 

it can be a critical factor that influences the overall quality of forecasts. 

Another hidden factor can be the underlying methodology being employed by the forecasters. 

For instance, information as to which forecasting models are used and the degree of 

meteorologist intervention during the forecasting process (i.e., most of forecasts are made using 

semi-automatic schemes) was not fully disclosed, thereby making it very difficult to draw 

conceivable conclusions. A further investigation is necessary to verify the concealed grounds. 

By observing the comparison statistics, the hypothesis stating that different climatic trends would 

affect the overall forecasting capability can still be proved, given the three different climate 

groups have produced the different values. To make such claims and inferences based on the 

calculated values for MAE and PAF, it is important to see if the outcomes are truly 

reliable. To do so, the t-test is done as summarized in Table 3 for mean (MAE) and proportion 

(PAF). 
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Table 3. t-test results using means (MAEs) and proportions (PAFs) 

tcalc using means tcalc using proportions 

Climate Continental Maritime Mixed Climate Continental Maritime Mixed 

Continental 0 4.65 -7.58 Continental 0 2.70 -2.98 

Maritime -4.65 0 -10.51 Maritime -2.70 0 -4.68 

Mixed 7.58 10.51 0 Mixed 2.98 4.68 0 

 

Given all |tcalc| values are greater than tcrit = 1.96 (i.e., 95 percent confidence interval), the null 

hypothesis (H0) is rejected. Thus, from the empirical investigations, it can be concluded that the 

difference in the accuracy of the pavement temperature forecasts between the three different 

climate groups are statistically significant. However, it should be noted that the difference 

appears to be insignificant from a practical point of view when considering their marginal 

differences. 

5-2. Effect of Locational Attributes 

To capture the effect on forecast accuracy caused by locational attributes related to geographical 

and topographical settings, all stations need to be analyzed individually. For this reason, the data 

were stratified by individual station. 

To carry out the analysis, three different graphical information system (GIS) layers from the map 

library at the University of Waterloo were used to extract the following information for all four 

provinces: 

 Local and regional lakes and seawater 

 Digital Elevation Model (DEM) 

 Parks and forests 

Again, the quality of the forecasts made by individual RWIS stations could be affected by three 

locational features, including existence of a nearby large water body, altitude, and land use. 

Figure 5 summarizes the RWIS forecast errors of individual stations arranged in order of 

distance from a water body. 
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 (a)      (b) 

 

 
(c) 

Figure 5. Data stratified by individual stations in order of distance from water body 

By analyzing the statistics shown in Figure 5, a correlation was found only in the maritime 

climate group where forecast errors (MAE) increased by the distance from a water body. A 

possible inference as to why such a correlation exists with respect to the location of RWIS 

stations is that, from a meteorological point of view, a station situated nearby a large water body 

is expected to exhibit relatively stable temperature variations. 

As mentioned earlier, air temperature can be a critical factor that controls the overall quality of 

road surface temperature estimation when fed into METRo to produce the subsequent pavement 

temperature forecasts. Making the inference that stations located on the coastlines tend to 

produce lower forecasting errors is also supported by the maritime climate group results shown 

in Figure 5(a). 

On the other hand, the mixed and continental climate groups did not seem to have any 

correlation in this regard. This is probably because the continental group is less affected by lake 

effect as most of the RWIS stations are situated inland. Notice in the results shown for the mixed 

climate group in Figure 5(b) that the errors are not distributed uniformly, but randomly. Such a 
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random error distribution may have occurred due to the mixed characteristics of maritime and 

continental climates, which make them much more challenging to determine the exact 

confounding grounds. 

Another effect of locational attributes can be that air and surface temperatures near parks and 

forests usually vary in a significantly different pattern from those at an urban center. Given the 

data that were available did not contain much data extracted for such areas, it was not possible to 

show the proposed correlation. 

The quality of forecasts can also be affected by elevation or land use. Highways located either 

nearby or in a high-altitude mountainous area are more likely to experience dramatic temperature 

changes, making it more difficult to predict their surface temperatures. Figure 6 illustrates the 

MAE values plotted against their corresponding altitudes. 

  
(a)      (b) 

 

  
(c) 

Figure 6. RWIS MAE versus RWIS station altitude 

As can be seen, no correlation with respect to altitude values was found. However, it should be 

noted that the overall pavement temperature forecast accuracy for the three climate groups are all 
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within the acceptable tolerance level, so it is possible that the magnitude of correlations with 

different locational attributes may be too small to be captured within the existing dataset. 

Another possibility is the existence of other factors that may have confounded the underlying 

relationships. Nonetheless, the exact hidden grounds need to be further scrutinized by using more 

station data, for instance, or by using the data stratified by routes to see if there are any locational 

correlations. 

5-3. Effect of Diurnal Trends 

The forecasting errors for the RWIS stations from the individual regions were stratified by hour 

to examine if any diurnal and time trends exist. Figure 7 shows the MAE by forecasting period. 

 

 

Figure 7. Data stratified by hour (UTC) for maritime (top) and mixed (bottom) climate 

groups 

Note that all local times have been converted to UTC to have a valid comparison between 

different climate groups. The continental climate group is not included in this comparison due to 

insufficient data availability. 
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As mentioned in the previous sections, forecasts are made and issued (or become available) at 

08:00 and 20:00 for the mixed climate group and 07:30 and 19:30 for the maritime climate 

group. Then, the lowest errors are expected to occur for the hours close to the time when 

forecasts were made (08:00 and 07:30 for the mixed and maritime climate groups, respectively). 

However, with the data we obtained, it was observed that the least errors occurred either at 06:00 

or 07:00 and at 22:00 or 23:00, which gives approximately an average of one hour time 

difference. 

To explain this phenomenon, the actual forecasting process needs to be understood. It was found 

that there is usually a time lag between when the forecasts are generated and when the forecasts 

are issued. Given the forecasts are typically generated prior to the official valid forecast time, the 

earlier hours can benefit from having the newest forecasts that were just issued. Also, for 

example, in the maritime climate group, the greatest jumps are seen between 05:00 and 06:00 

and again between 17:00 and 18:00. These jumps are due to the forecaster adjusting the forecast 

to match the initial atmospheric and pavement conditions just before the forecasts are released. 

Another phenomenon to clarify is that even after 20:00, MAE values continue to decrease. Such 

an abnormal trend could have been caused by a diurnal variation (as also supported by the graphs 

in Figure 8) where during the daytime, temperature tends to fluctuate greatly; whereas, 

temperature tends to fluctuate less during the nighttime. 

Then, given the forecasts that are released in the morning have been calculated using the “less 

varying” historical observations, not much effort is needed in the forecasting phase to eliminate 

the discrepancy. Thus, it took only one hour to arrive at “convergence,” which occurred at 07:00 

for the maritime climate group. On the other hand, the forecasts that are released in the afternoon 

must have used the “highly varying observations” collected during the daytime, thereby taking 

longer adjustment times. As a result, it is speculated that an additional two to three hours are 

required until the pavement forecast error reaches its minimum at 22:00. 

Finally, it needs to be pointed out that forecasting errors caused by climatic variations are also 

observed from Figure 7. The extreme MAE difference (i.e., Tmax-Tmin) is larger for the mixed 

than the maritime climate group. This is primarily due to the fact that these two groups have 

different climate types and hence produce different MAE values (See section 5-1). 

5-4. Effect of Forecast Length 

It is known that the quality of forecasts tends to deteriorate as the forecasting horizon increases 

(Crevier and Delage 2001), as was also confirmed in section 5-3. This means that forecast errors 

generally increase with the length of the forecast horizon. To investigate the error behavior, two 

separate models for two groups were developed for the hours between 07:00 and 16:00 using the 

hourly-stratified data. As shown in Figure 8, the forecasting performance deteriorates quickly. 
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Figure 8. Forecast error as a function of forecasting lead time for maritime (top) and mixed 

climate (bottom) 

For both climate groups, a quadratic function was found to fit the error pattern the best. High R
2
 

values from both models indicate that the error terms were very well explained by the models. 

The model coefficients were determined as shown in Figure 8. Note that all of the calculated 

coefficients were statistically significant at the 5 percent level. 

5-5. Effect of Seasonal Variations 

The pavement temperature data for both observations and forecasts that were stratified by month 

are summarized in Figure 9. 
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Figure 9. Monthly pavement temperature forecast MAE for maritime (top) and mixed 

climate (bottom) 

As can be seen, there is a clear pattern associated with the monthly pavement temperature 

forecast MAE. The discrepancies tend to be relatively higher for shoulder months (i.e., October 

and April) than for non-shoulder months (i.e., December, January, and February). This could be 

because the weather patterns typically vary in a great range over these shoulder months, making 

it very difficult to develop accurate forecasts. Although the magnitudes of MAE are different for 

individual climate types, a general pattern appears showing that October and April have higher 

MAE values than those of in-between months. 

The monthly variation patterns of the forecast errors for the two climate groups can be fit into 

quadratic functions using monthly-stratified data. As shown in Figure 10, the quadratic functions 

were superimposed onto the data. 
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Figure 10. Benchmark for monthly variations for maritime (top) and mixed climate 

(bottom) 

Using the derived equations shown on the two charts, the expected deviation of the forecast 

using the observations can be estimated. However, it needs to be pointed out that such results 

came from analyzing the limited number of data in terms of the data range (duration), number of 

stations, and so on. Thus, further analysis with many more data is essential to develop a more 

rigorous model. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

In this research, we examined factors that may affect the accuracy of RWIS pavement 

temperature forecasts: climatic trends, locational attributes, seasonal/monthly variations, diurnal 

trends, and forecast length. The main findings are summarized as follows: 

 Pavement temperature forecasts from the maritime climate group had the highest quality and 

those from the mixed climate group had the lowest quality, both in terms of MAEs and PAFs. 

The MAEs were found to be 1.12
o 
C, 1.14 

o 
C, and 1.17

o 
C for the maritime, continental, and 

mixed climate groups, respectively, while the corresponding PAFs were 92.10, 91.34, and 

90.28 percent, respectively. The significant performance differences between the regions 

suggested that the RWIS forecasting performance may be affected by climatic trends, as in, 

the unique climatic patterns of the regions may have caused the differences in RWIS 

forecasting performance. 

 The correlation between the forecasting accuracy of RWIS stations and their topographical 

features, such as altitude and amount of vegetation cover, and geographical features, such as 

the distance to local lakes/waters, were investigated within each region. The researchers 

found that the RWIS stations in the maritime climate region that are located near coastal 

areas produce fewer forecast errors and that the errors became larger moving farther away 

from the water. On the other hand, no correlation was found in either the mixed or 

continental climate groups. It should be noted that a more detailed statistical analysis with 

additional data is necessary to determine the exact rationales as to why such a correlation 

was/was not found and to arrive at a definitive conclusion. 

 Daytime forecasts were less accurate than the ones generated for nighttime. Furthermore, as 

expected, the accuracy of forecasts was found to deteriorate quickly as the forecasting 

horizon increases. 

 Forecast errors were found to exhibit seasonal variations with forecasts for the shoulder 

months (October and April) tending to be poorer than other months. This could be due to the 

presence of a mixture of two different weather extremes within those shoulder months. 

 There was a clear quantitative relationship between forecast errors and forecasting time and 

length, suggesting that it is possible to quantify these errors based on the time a forecast is 

made and the time the condition is to be forecasted (forecasting horizon). 
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It must be emphasized that this research represents an initial effort to benchmark RWIS 

performance for monitoring and forecasting of road weather and surface conditions. Further 

research is needed in the following specific directions: 

 A similar analysis should be performed on RWIS data from other regions and countries to 

validate the findings from this study and investigate other potential factors that affect RWIS 

performance. For example, knowing whether the forecasts are generated in an automated or 

manual mode, and the extent of meteorologists’ intervention could provide a vital source that 

contributes to the quality of forecasts. The data can also be stratified by each station and by 

each hour so that the variations of forecasts for each station on an hourly basis can be 

studied. 

 A further analysis is needed to identify spatial variation patterns of the RWIS measurement 

and forecasting errors, which are required to determine RWIS requirements such as density 

and location. 

 Other statistical performance measures, such as root mean squared error (RMSE) or mean 

absolute percentage error (MAPE), are recommended to be utilized together with MAE to 

cross-validate the variation in the errors of the RWIS forecasts. Should there be a greater 

difference in two measures, the greater the variance there is in the individual forecasting 

errors. 

 Although a strong correlation was not found between forecasting errors and various 

locational attributes, it is highly recommended to analyze the data in a more localized form 

(i.e., use of data that are stratified by routes) to investigate other error-contributing factors, 

which may have confounded the underlying relationships. For instance, more advanced 

models should be assessed to capture the joint effect of the factors. 

 RWIS technology has become an increasingly ubiquitous and indisputable tool for winter 

road maintenance agencies to optimize their maintenance operations. It would be valuable to 

develop an international capacity and platform for automated quality assurance and 

performance benchmarking of RWIS measurements and forecasts. This could be an Internet-

based data and application service system connected to different RWISs around the world. 

Another approach would be requiring the vendors to report all relevant performance 

measures. 

By further investigating these untested factors together with the results drawn in this report, it 

will ultimately contribute to making more informed decisions in selecting RWIS vendors and 

locating RWIS stations. 
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