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EXECUTIVE SUMMARY 

Nearly every urban area in the US has arterial corridors that include a series of closely-spaced 

intersections, and these roadways often handle high traffic volumes. Maintaining optimal 

mobility on such corridors is a matter of considerable importance to road users and transportation 

agencies. As time passes, traffic signal timing plans tend to become outdated due to changes in 

traffic volumes and land use, resulting in unnecessary traffic delays, increased fuel consumption, 

increased engine emissions, and (in some cases) adverse impacts on road safety. Arterial 

performance can often be enhanced by updating the signal timing or implementing an adaptive 

traffic signal control system, but most agencies face resource constraints that limit the number of 

retiming and adaptive control projects they can implement. As a result, agencies need an 

effective method for screening the performance of their arterial networks to set priorities for 

retiming and adaptive control efforts.  

The present work develops a set of performance measures for arterial corridors using probe 

vehicle data provided by INRIX, a commercial traffic data vendor. The probe data are derived 

from in-vehicle global positioning system (GPS) devices that periodically transmit each 

participating vehicle’s location to a central server using wireless communication networks. The 

vendor computes vehicle speeds by analyzing each vehicle’s path over time. In some cases, 

probe data vendors also have access to speed information from vehicle engine control 

electronics. 

The use of probe vehicle data as an arterial performance monitoring tool is advantageous because 

it eliminates the need for installing additional traffic detectors (and associated communications 

infrastructure) in the field. Many US agencies have already purchased probe data sets from 

INRIX or competing vendors or are able to obtain similar data from the Federal Highway 

Administration (FHWA) National Performance Monitoring Research Data Set (NPMRDS). 

Thus, in many cases, the use of probe-based arterial performance assessment is a relatively low-

cost addition to existing traffic monitoring programs.  

The main objective of this report was to present a methodology for comparing a set of arterial 

corridors in terms of mobility-based performance measures. This process can help transportation 

agencies select the corridors that are in need of traffic signal retiming and can also help identify 

corridors that might be suited to implementation of adaptive signal control.  

The arterial mobility evaluation had two main steps: 

1. Identify the number of “abnormal” traffic days in a year, which characterizes whether an 

adaptive system will be cost effective. 

2. For “normal” days, compare the volume-normalized performance among the corridors to 

identify problematic segments.  
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The performance metrics used for comparative evaluation in this report included: median travel 

rate, within-day travel rate variability, and between-days travel rate variability.  

The proposed methodology was used to evaluate a total of 13 arterial corridors: 12 in the Des 

Moines, Iowa, area and 1 in Omaha, Nebraska. Evaluation of the Des Moines corridors was 

carried out for the entire year of 2016, while the Omaha evaluation was based on data from June 

2016 through November 2016. Some key findings were as follows: 

 Anomalous days were evaluated for various segments. Three corridors (University Avenue, 

Hickman Road, and SE 14th Street) had the highest numbers of anomalous days. Thus, it can 

be said that these corridors are the ones handling the most dynamic travel patterns.  

 For normal days, five performance metrics were defined: median travel rate (MTR), within 

day variability (WTV), minimum travel rate dispersion (MTD) and two overall travel rate 

variabilities (OTV_POLY and OTV_LINEAR). Based upon on these parameters, three areas 

(Jordan Creek Parkway and SE 14th Street in the Des Moines area and parts of Dodge Street 

in Omaha) were found to be the worst-performing segments. 

In addition to the above comparison, a before/after analysis was conducted to evaluate the effect 

of implementing adaptive signal control on University Avenue in Des Moines. The analysis 

showed a small improvement in travel rate and daily variation, but the overall variability 

increased.  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Transportation agencies install traffic signals to achieve three main objectives: optimize traffic 

flow, reduce crash frequency or crash severity, and give priority to a particular roadway user 

type or movement (Chandler et al. 2013). Traffic signals are intended to allow safe and efficient 

passage of road users in accordance with the spatial and temporal patterns of traffic demand at 

the site.  

Modern traffic signals are computer-controlled, and the amount of time allocated to each traffic 

movement is typically programmed by the signal engineer based on the corresponding traffic 

volume, subject to constraints such as the minimum safe crossing time for pedestrians. As cities 

evolve, original signal timing plans become obsolete due to changes in traffic volume and land 

use. Some of these changes occur gradually, while others (such as the opening of a new bicycle 

trail or the relocation of a major business) can be quite abrupt. 

According to the Federal Highway Administration (FHWA), issues related to the performance of 

most of the 300,000 traffic signals in the US are addressed predominantly on the basis of citizen 

complaints (Curtis and Denney 2017). Recognizing that a complaint-driven process is inefficient 

and prone to inequity, many transportation agencies have sought objective methods for 

identifying and prioritizing corridors that require signal retiming or the implementation of 

advanced signal control systems. This report explores one such method based on global 

positioning system (GPS)-derived traffic speed data from a commercial vendor. 

Two-thirds of all miles driven each year are on roadways controlled by traffic signals, and poor 

traffic signal timing is a major cause of traffic congestion and delay (Wikibooks 2017). Traffic 

congestion is identified by the U.S. Department of Transportation (DOT) as “one of the three 

single largest threats” to the economic prosperity of the nation and poses a great challenge to 

transportation agencies as well as to the people using the roads (Owens et al. 2010).  

From the public’s perspective, traffic congestion leads to unnecessary delays and associated 

frustrations. Some of the repercussions of congestion include late arrival at work or other events, 

lost business, disciplinary actions, and other personal losses. Poor signal timing can also result in 

emergency response delays, increased fuel consumption, increased vehicle emissions, and 

increased vehicle maintenance costs. According to one analysis, as of 2016, traffic jams cost the 

average American driver around $1,200 per year for fuel and time (Cookson and Pishue 2017).  

Another major effect of poor signal timing is traffic crashes and the resulting injuries and 

fatalities. Nationally, 21 percent of all crashes occur at signalized intersections (NHTSA 2009).  

Most fatality crashes occur on arterial corridors. For example, a 2016 study by the Insurance 

Institute for Highway Safety (IIHS 2017) found that almost 67% of fatalities occur on arterial 

corridors. A study in the Kansas City, Missouri, area reported that the crash rate at signalized 
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intersections is much higher than the rate for intersections controlled by stop and yield signs 

(Abdel-Aty et al. 2005).  

Another nationwide study found that as age increases, the rate of intersection crashes also 

increases: about a third of crashes occur at or near intersections for the youngest group (less than 

20 years old), rising to about 54% for the oldest group (more than 65 years old) (Choi 2010).  

Although signal retiming does not eliminate all intersection crashes, it can address certain types 

of crashes. For example, if progression along an arterial corridor is improved so that the number 

of times that vehicles must stop is decreased, the number of rear-end crashes can be expected to 

decrease (Antonucci et al. 2004).  

A coalition of six national organizations has drawn attention to the problem of inadequate traffic 

signal performance through the National Traffic Signal Report Card (National Transportation 

Operations Coalition 2012). The report is based on transportation agency signal performance 

self-assessments covering six main areas: management, signal operations, signal timing 

practices, traffic monitoring and data collection, and maintenance. Although the overall score 

improved from a D- in 2005 to a D+ in 2012, many issues remain to be addressed.  

Among the six criteria, traffic monitoring and data collection was rated F, indicating problems 

for signal systems and agencies of all sizes. As discussed in more detail in subsequent chapters 

of this report, the use of probe data can help address this important deficiency.  

1.2. Type of Control 

The three primary operational modes for traffic signals are pre-timed control, semi-actuated 

control, and fully actuated control (Koonce et al. 2010). Each of these modes is briefly described 

below. 

 Pre-timed traffic control consists of a series of intervals that are fixed in their duration. Each 

signal cycles through a pre-defined set of green, yellow, and red intervals in a deterministic 

way. Pre-timed signals are usually applied to locations with high intersection density and 

predictable traffic patterns—sites where the timing plans do not need to be varied on a daily 

or weekly basis. The three main advantages are that pre-timed traffic control can be used to 

coordinate movements among adjacent pre-timed intersections, it does not require traffic 

detectors (so there is no risk of detector failure), and it is relatively simple and inexpensive to 

maintain.  

Pre-timed signals are popular in grid networks, where an agency wants to coordinate traffic 

flow in multiple directions (for example, simultaneously achieving acceptable progression on 

both east-west and north-south streets in a business district). Pre-timed signals cannot adjust 

for traffic-flow fluctuations. 
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 Semi-actuated traffic signal control typically involves the use of traffic detection for minor 

movements. In this design, the signal controller is configured to favor major (high-volume) 

movement, which is allowed to proceed with relatively little interruption unless vehicles are 

detected on a cross street. Thus, the signal timing will vary depending on the amount of 

cross-street traffic.  

Typically, the result is less delay to the major street compared to the pre-timed system, while 

avoiding the need to install traffic detectors for the major traffic movements. Nevertheless, 

semi-actuated signal control can cause excessive delay to the major movement if minor 

movements tend to have frequent calls, especially if the maximum green and the extension 

timer are not set appropriately.  

 Fully actuated signals have detectors for all movements. This design is ideal for isolated 

intersections where the traffic varies widely throughout the day and for locations where 

traffic surges occur at difficult-to-predict times (for example, traffic leaving a stadium at the 

end of a game).  

A major advantage of fully actuated control is the delay reduction that can be accomplished 

by skipping unneeded phases or ending a phase early when traffic is light. This advantage 

comes at the cost of greater complexity, including additional equipment to install and 

maintain.  

During peak hours (when there is heavy demand for all movements), the actual operation is 

likely to be similar to pre-timed operation; the delay savings occur mainly during off-peak 

hours when phases associated with minor movements can be skipped or terminated early. 

1.3. Signal Retiming  

Regardless of the type of signal control that is used (pre-timed, semi-actuated, or fully actuated), 

nearly all locations eventually require some kind of improvement that requires re-evaluation of 

the timing plan by an engineer or technician (Curtis 2017, Tarnoff and Ordonez 2004). 

Typically, the need for signal retiming is invoked in response to one of the following situations: 

 Major changes in the land-use pattern 

 Public requests 

 Traffic conditions such as oversaturation or queue spillback 

 Detector or traffic camera video that suggests changes in volume and congestion (Gordon 

2010) 

The retiming process is typically accomplished by gathering field data such as turning movement 

and pedestrian traffic volumes, followed by detailed analysis using specialized software 

packages such as SIDRA and Synchro software. From a mathematical perspective, the retiming 

process is mainly solved by minimizing a delay-based objective function or maximizing 

progression on an arterial’s through movement (Gordon 2010).  
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Signal retiming is seen to have several advantages (Sunkari 2004): reduction in delay (13–37%), 

fewer red light stops (10–49%), increase of fuel efficiency (2–9%), reduction in crashes (31%), 

and lower travel time (8–25%) 

1.4. Adaptive Signal Control 

Adaptive signal control technology (ASCT) was developed to improve signal performance in 

locations with highly variable traffic demand (Curtis 2017). Based on the output from permanent 

traffic detectors, some types of ASCT continuously update the signal timings, while others work 

to select the best available signal timing plan from a very large library of pre-defined scenarios. 

In either case, the use of ASCT is intended to maximize the capacity of the existing system, 

which reduces the cost to both system users and signal operating agencies.  

Compared to actuated signal control, ACST allows many more adjustments to the timing plan. 

For example, actuated signals are often configured to terminate a phase early if a detector 

indicates that all vehicles making that movement have been served. ACST goes well beyond this, 

with the possibility to implement an entirely different timing strategy in response to an unusual 

traffic pattern, such as a freeway incident that unexpectedly increases the volume on a nearby 

arterial. 

The use of adaptive signal control strategies began in the 1970s with the development of the 

Sydney Coordinated Adaptive Traffic System (SCATS) in Australia and Split Cycle Offset 

Optimization Technique (SCOOT) in the United Kingdom. Among adaptive control strategies 

designed specifically for North America, Optimization Policies for Adaptive Control (OPAC) 

(Gartner et al. 2001) and the Real-Time Hierarchical Optimized Distributed and Effective 

System (RHODES) (Mirchandani and Head 2001) were among the first to be developed. Other 

examples include Adaptive Control Software Lite (ACS-Lite) and InSync. These systems use 

detector data as an input, analyze the traffic flow, and allocate green time for each phase.  

The benefits of ACST are site-specific: sites with considerable minute-to-minute traffic volume 

fluctuations will typically show more benefit than those with relatively uniform demand. One 

study showed that the use of adaptive systems can reduce stops by 28–41% (Hicks and Carter, 

1997). The systems help distribute green time equitably for all traffic movements (Curtis 2017). 

In some cases, this can reduce the travel time by as much as 35–39% (Sims and Dobinson 1980). 

Adaptive control has also been shown to reduce fuel consumption and vehicle emissions, 

resulting in improved air quality. 

One of the main drawbacks of adaptive control is the high initial cost for installation of field 

equipment and the traffic management software. The systems need to be tuned and set up 

initially, which is also labor-intensive. Agencies often choose to limit the extent to which the 

systems can automatically adjust the timing plan (for example, by disallowing cycle lengths 

greater than a preset threshold and ongoing performance monitoring is required to assure that 

these threshold values remain valid). The field components also tend to have a higher 

maintenance cost.  
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The typical cost of implementing adaptive control appears to range from $6,000 to $65,000 per 

intersection. Thus, agencies need to consider the performance of the existing signal system 

carefully before deciding whether to implement an adaptive signal system (Sunkari 2004, 

Sprague 2012, Zhao and Tian 2012, Stevanovic 2010). 

1.5. Performance Measures 

Performance measures based on traffic monitoring can assist transportation agencies in setting 

priorities for retiming or implementing adaptive signal control systems. They also provide a basis 

for evaluating the traffic network periodically, to see whether performance is improving or 

degrading. However, without data-driven performance evaluations to serve as a screening and 

prioritization tool, some corridors that need retiming could be overlooked, while others with less 

need for updates might incur considerable expense for signal retiming and the associated manual 

data collection and traffic analysis (Curtis and Denney 2017). The evaluation process requires a 

strong set of performance data. 

Automated traffic signal performance measures (ATSPMs) are an increasingly popular method 

for obtaining information about the performance of a traffic signal system. These measures are 

obtained by analyzing high-resolution data logs generated by certain models of advanced signal 

controllers. Although ATSPMs were developed for corridors with modern traffic signal control 

equipment, the research conducted for this project adapted several ATSPM concepts to obtain 

performance measures using probe data—a process that is feasible even for corridors with 

“vintage” electromechanical controllers. Thus, it is useful to review some recent research to 

understand how agencies are applying ATSPM data to corridor-level performance evaluation. 

Some examples include the following: 

 An adaptive real-time offset transitioning algorithm has been used to enhance the 

performance of arterial corridors (Abbas et al. 2001). 

 Several studies have found that estimation of performance measures is the most suitable 

when it is based upon cycle-by-cycle analysis (Abbas et al. 2001, Luyanda et al. 2003, 

Smaglik et al. 2005).  

 Maximum queue length has proved to be an important performance measure to determine the 

performance of arterial corridors. This includes the use of a queue polygon method to 

determine delay and queue length (Sharma and Bullock 2008, Sharma et al. 2007).  

 Queue length, turning movement proportion, and arterial travel time have been used to 

compare performance for signalized intersections, as well as the whole corridor (Liu et al. 

2008).  

 Analysis has been conducted to determine intersection performance based on the level of 

progression and delay (Smaglik et al. 2007a).  
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 Volume-to-capacity ratio and arrival type have been used to address the performance of 

signalized intersections for arterial corridors (Day et al. 2008).  

 Research has identified the use of arrival type (AT) as a means to describe the quality of 

progression from one signalized intersection to the next along a coordinated corridor 

(Smaglik et al. 2007b). The arrival time metric uses the percentage of vehicles arriving on 

green and the density of the arriving platoon.  

 Another performance measure that has been used is the green-occupancy-ratio (Smaglik et al. 

2011).  

 Network-level analysis has been conducted to determine the specific phases that are 

problematic for an intersection (Day et al. 2010).  

 Measures like delay, number of stops, and arrival rate on green have been used to evaluate 

the performance of intersections on arterial corridors (Day et al. 2012).  

 High resolution signal event data have been used to identify opportunities for improving 

signal timing parameters and improving signal operations (Day et al. 2014). 

 In a very recent study that is closely related to this research, probe data were used to evaluate 

the normalized travel time for comparison of different arterial networks using the average 

and the standard deviation of these values (Day et al. 2015).  

 Another study developed ATSPM improvements called intelligent traffic signal performance 

measurements (ITSPMs) (Huang et al. 2018). The ITSPMs presented graphical tools to 

identify erroneous logs and data from bad sensors. The authors also determined the travel 

demand, which is required to determine the need for coordination at an intersection. They 

also came up with stream analytics measures to quickly identify anomalous behavior at 

intersections, batch analytics to provide trends that can serve as a backbone for determining 

anomalies, and also a spatial resolution study that can be can be either at phase or approach 

level for a given intersection or at a network level, depending on the desired objective. 

Table 1 summarizes several methods used for calculating the intersection performance.  
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Table 1. Automated methods to measure performance measures of arterial corridors and 

intersections 

Performance measure Methods to measure 

Delay 

Stop bar and advanced detectors (Sharma and Bullock 

2008, Sharma et al. 2007)  

Video recording (Sharma and Bullock 2008)  

High-resolution event data (Day and Bullock 2010) 

Number of stops 
Connected Vehicle (Argote-Cabañero et al. 2015)  

Video recording (Fernandes et al. 2015) 

(Maximum) queue length 

Stop bar and advanced detectors (Sharma and Bullock 

2008, Sharma et al. 2007)  

Video recording (Sharma and Bullock 2008)  

Stop bar and advanced detectors (Sharma and Bullock 

2008)  

Probe data (Comert and Cetin 2009) 

Stop bar and probe data combined (Comert 2013) 

Arrival type, Arrival rate on 

green, Degree of intersection 

saturation, Volume/capacity 

ratio, Level of progression, Split 

failure  

Stop bar and setback detectors (Smaglik et al. 2007a, 

Smaglik et al. 2007b) 

High-resolution event data (Day and Bullock 2010, Day et 

al. 2010, Day et al. 2014) 

Purdue Coordination Diagram High resolution event data (Day et al. 2014) 

 

Several of these measures rely on sensing/detection methods that are not entirely error-free. For 

example, methods that utilize vehicle presence data from in-pavement detector loops can 

underestimate the traffic volume if the queue extends too far beyond the farthest-upstream loop 

(Smaglik et al. 2007a, Li et al. 2014).  

Travel time has been shown to be a consistent measure of corridor performance (Li et al. 2014). 

Several automated travel time determination methods have been developed, including 

anonymous wireless address matching (by detecting signals from in-vehicle Bluetooth or Wi-Fi 

devices), electronic toll tag matching, cellular phone subscriber identity matching, automatic 

license plate number matching, and probe data from GPS-equipped vehicles or connected 

vehicles (Turner and Qu 2013, Singer et al. 2013, Venkatanarayana 2017, Quayle et al. 2010, 

Day et al. 2012).  

Many of these methods are based on vehicle re-identification using paired sensors: the upstream 

sensor observes an in-vehicle device such as a Bluetooth headset, the downstream sensor 

identifies the same device at a later time, and the sensor-to-sensor distance and time offset are 

used to compute the vehicle’s speed. While several re-identification methods have proven 

reliable in daily service, they require installation and maintenance of roadside sensors and do not 

necessarily represent an unbiased sample of vehicles in the traffic stream (Chitturi et al. 2014, 

Shaw and Noyce 2014). Additionally, some methods have practical limitations. For example, cell 

phone subscriber identity matching is problematic in the US due to privacy concerns, and toll tag 
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readers are impractical in Iowa since the state has no tollway system. The use of GPS-based 

probe data overcomes some of these limitations, since acquiring the data requires no roadside 

infrastructure, and the process of joining the pool of probe vehicles typically occurs with the 

consent of the GPS device owner.  

An important stream of research has investigated relationships between travel time and travel 

time reliability for arterials (Remias et al. 2013, Haghani et al. 2010, Hu et al. 2015). In general, 

these studies define delay as the difference between the actual travel time and the ideal travel 

time (at free-flow speed) along a corridor. A comparison of the delay values over an extended 

period of time can be used to compute the travel time reliability of an arterial. Typically, travel 

times are classified as “reliable” if similar delays are frequent along a corridor, and “unreliable” 

if the delay fluctuates widely (List et al 2014). 

While travel time provides an excellent proxy of traffic conditions within one segment, the 

measurement has inherent aggregate-level comparison problems (Day et al. 2014). Because 

different corridors often have varying lengths and individual ideal speed characteristics, travel 

times must be normalized before an accurate comparison is feasible; therefore, travel time is not 

optimal for a multi-segment (or corridor-level) analysis. To circumvent this situation, travel rate, 

or slowness, can be utilized as a performance measure for arterial corridors. The travel rate can 

be defined as the time needed to traverse one unit of distance along an arterial (for example, 

minutes per mile). Mathematically, travel rate is simply the inverse of speed. 

The use of travel rate as a performance measure provides unique benefits over other methods. In 

addition to the additive nature of this metric, travel rate can be converted into user delay, which 

is often the basis for economic analyses of corridors. Travel rate is also easily displayed using a 

cumulative distribution function (CDF) (Day et al. 2010, Mathew et al. 2017). In one of the 

closely related studies, the performance of the arterial corridors was ranked based upon a 

normalized travel rate (Day et al. 2015). The work used the normalized travel rate to determine a 

composite score based upon the time of day and ranked the different arterial corridors in Indiana. 

The present study involves the use of such empirical CDF plots of travel rate (travel time per 

mile) to evaluate the performance of arterial corridor segments. 

1.6. Conclusion 

Transportation agencies and the public face many challenges related to the operational 

performance of high-volume arterial corridors. For example, the National Traffic Signal Report 

Card found unacceptable performance in many signalized corridors, mainly due to 

underinvestment in updated traffic signal timing (National Transportation Operations Coalition 

2012). Resource constraints limit the number and scope of retiming and other interventions by 

transportation agencies, and it can be difficult to achieve consensus about priorities when arterial 

corridors cross or straddle jurisdictional boundaries. Consequently, there is a large and growing 

need for objective performance metrics that agencies can use to prioritize their signal 

investments.  
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Arterial performance measurement is a valuable technique for prioritizing signal retiming and 

other operational improvements on arterial corridors. Many agencies already have access to 

probe vehicle data suitable for this type of analysis. In Iowa, probe vehicle data suitable for 

computing arterial performance measures are already being procured from a commercial vendor, 

compiled in real time, and archived in a database.  

Building on the research described in the previous section, CDF plots of the travel rate can be 

developed to make use of the probe vehicle data. As described in more detail in Chapter 3, this 

process allows useful arterial performance measures to be derived using the following approach: 

 Anomalous days for different segments of the road can be identified. This ensures that all 

atypical days are removed from the data set so that they do not skew the general performance 

analysis (Day et al. 2015). Where appropriate, anomalous days can be evaluated separately to 

identify the extent of the anomalies and potential interventions relevant to unusual situations, 

such as special events, severe traffic incidents, extreme weather, and construction.  

 Performance metrics can be developed using travel time data to identify well-performing and 

underperforming roadway segments. Relevant performance metrics include the median travel 

rate (MTR), within-day variability (WDV) of travel rate, and the between-days variability of 

travel rate (minimum travel rate dispersion [MTD] and two overall travel rate variabilities 

[OTV_POLY and OTV_LINEAR]). If desired, the analysis can be stratified based on the 

roadway’s geometric characteristics, annual average daily traffic (AADT) per lane, 

intersection density, or similar criteria.  

Using the methods defined in this study, agencies could more frequently monitor corridor 

performance, more easily identify problematic segments, and more quickly identify system 

management solutions. To support this process, the remainder of this report is organized as 

follows:  

 Chapter 2 reviews the characteristics of the INRIX probe data and discusses some associated 

performance measures.  

 Chapter 3 presents the computational logic of the proposed arterial performance monitoring 

methodology.  

 Chapter 4 presents a case study that was performed by applying the methodology to several 

arterial corridors in the Des Moines, Iowa and Omaha, Nebraska areas and discusses a 

separate analysis of the impact of implementing adaptive signal control on an arterial 

corridor in Des Moines.  

 Chapter 5 reviews the results of the analytical process and presents some recommendations 

for future work. 
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 The appendices present additional details of the methodology’s mathematics, along with 

detailed performance metric scores for each of the corridors used in the case study.  
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CHAPTER 2. PERFORMANCE MEASURE USING VEHICLE PROBE DATA 

This chapter provides a detailed description of the INRIX probe data purchased by the Iowa 

DOT, followed by a literature review covering probe data accuracy and probe data applications. 

2.1. INRIX Data 

This study used the real-time traffic data provided by INRIX and purchased by the Iowa DOT. 

INRIX data represent a fusion of real-time and historical traffic speed data. The historical data 

are used to predict the speed and travel time when the real-time data are not available. The 

product merges data from several sources, most notably real-time GPS probe data from 

approximately 650,000 commercial vehicles operating in the US. Real-time information from 

participating vehicles that are traveling on a specific road segment during a particular time 

window is combined with other real-time data available to the company, such as roadside speed 

sensor data gleaned from data feeds provided by transportation agencies.  

Since there are hundreds of thousands of roadway segments in each state, not every segment will 

have a participating probe vehicle operating on it at all times. When real-time data are 

unavailable, the product estimates the traffic speeds based on historical data from similar days 

and times, adjusted for any travel conditions known to the vendor, such as construction, road 

closures, traffic incidents, sporting and entertainment events, weather forecasts, and school 

schedules.  

A proprietary data fusion algorithm gathers all input points, weights them based on input quality 

and latency, and calculates (or estimates) the speed occurring on each road segment in the 

network. The vendor also provides an index intended to indicate the accuracy of each segment-

level speed estimate. For example, a speed based on real-time data from several participating 

vehicles will receive a better confidence score than one based purely on historical data. 

Consequently, speeds at peak hours on high-volume corridors tend to receive better confidence 

scores than those for off-peak periods on low-volume roads.  

2.1.1. INRIX Data Format 

The INRIX data utilized for this project was provided to the research team in a comma separated 

value (.csv) format. The available data fields are shown in Table 2.  
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Table 2. Examples of INRIX data 

XD 

segment Speed Date-time Confidence 

C-

value 

Average 

speed 

Reference 

speed 

Travel 

time 

63366025 60 2016-01-

30T09:10:00 

30 100 58 60 0.7 

63366025 61 2016-01-

30T09:10:00 

20 
 

57 60 0.6885 

63366025 62 2016-01-

30T09:10:00 

10 
 

58 60 0.6774 

63366025 65 2016-01-

30T09:10:00 

20 
 

55 60 0.6461 

63366025 63 2016-01-

30T09:10:00 

20 
 

59 60 0.6666 

63366025 36 2016-01-

30T09:15:00 

30 80 56 60 1.1667 

63366025 66 2016-01-

30T09:10:00 

20 
 

54 60 0.6364 

 

The data set was quite large. For example, for the entire year of 2016, the average monthly size 

of 27,000 segments spread across Iowa has a size of around 120 gigabytes (GB). The fields are 

as follows: 

 XD segment. In the late 1980s and early 1990s, a roadway segmentation system called 

Traffic Message Channels (TMCs) was developed to support radio traffic alerts. The system 

subsequently became an international standard (ISO 14819-3). It assigns 16 bits for TMC 

segment codes, allowing a maximum of 65,535 segments per state (ISO 2013). As a result, 

TMCs represent long roadway segments (typically from interchange to interchange on 

freeways, or from one major intersection to the next on arterials). To provide more granular 

information, INRIX has divided each TMC into shorter segments called XDs. The XD 

segments used in this analysis are generally 0.2 to 1.2 miles long and tend to cover 0 to 7 

intersections along an arterial corridor.  

 Speed. This represents the speed for the segment in a certain time interval. For example, in 

Table 2, the speed for segment #63366025 at 09:10 a.m. on 01/30/2016 was 60 mph. 

 Date-time. This represents the date and the time at which the speed is recorded for that 

segment. For example, the second to last line of Table 2 represents a speed of 36 mph on 

segment 63366025 on 01/30/2016 at 09:15 a.m.  
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 Confidence. This attribute is an indicator of the vendor’s confidence in the accuracy of the 

reported speed. It is provided by INRIX using three levels: 10, 20, and 30. A confidence 

value of level 30 indicates that enough base data were available to estimate the traffic 

conditions in real time, rather than using either historical speed based on time-of-day and 

day-of-week (level 20 data) or free-flow speed for the road segment (level 10 data).  

 C-value. This is a confidence value (0–100) designed to help agencies determine whether the 

INRIX value meets their criteria for real-time data. A confidence level of 30 will generally 

have a C-value score associated with it. 

 Average speed. This is the historical average mean speed for the reporting segment for that 

time of day and day of the week in miles per hour. 

 Reference speed. This represents the segment’s speed under uncongested or “free-flow” 

conditions. It is determined for each TMC segment using the INRIX traffic archive. 

 Travel time. This is calculated in the same manner as the speed. The unit here is in minutes. 

2.2. Probe Data Accuracy Studies 

Several studies have evaluated the accuracy of vendor-supplied probe data and their associated 

performance measures. Typically, the studies compare archived data from the vendor’s probe 

data feed with ground truth data from specially instrumented vehicles or roadside speed sensors. 

In general, the studies seem to suggest gradual, long-term improvement in probe data accuracy, 

which is consistent with increasing numbers of in-vehicle, GPS-enabled devices to serve as raw 

data sources. Some examples of these studies are listed below in chronological order: 

 The concept of using probe data to evaluate freeway performance emerged in the mid-1990s, 

but very little probe data were actually available for research at that time. For example, a 

2003 study used simulated probe data to establish traffic volume, space mean speed, and 

density measures for a 3.5 mile freeway segment near Tokyo, Japan (Nanthawichit et al. 

2003). Fixed-detector data were combined with the simulated probe-vehicle data to 

determine whether robust travel time metrics could be computed by combining both of them. 

The authors concluded that this would result in a mean absolute relative error (MARE) of 

about 0.04. The results were only validated using a single freeway section, and potential 

sources of bias in the probe data were neglected. 

 One of the largest early applications the probe based data in the United States was the I-95 

Corridor Coalition’s Vehicle Probe Project. Currently, the probe data is used by 19 different 

agencies. They also provide travel times for dynamic message signs in states of Maryland, 

North Carolina, and South Carolina. A study of the I-95 coalition’s project showed that there 

was improvement in the accuracy of the commercial probe data as compared to the Bluetooth 
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reference data. The improvement of the data was shown by accuracy in capturing vehicle 

slowdowns (Sharifi et al. 2016). 

 When probe data became commercially available, transportation agencies were very 

interested in benchmarking their accuracy. Variable levels of amplitude bias between probe 

data and benchmarked data were found. Although the speeds from probe data were generally 

reliable, speeds on segments less than one mile long were not reliable on freeways (Haghani 

et al. 2010, Haghani et al. 2009). The probe data set tended to overestimate speed when the 

actual speed was below 45 mph and underestimate it when the actual speed was above 60 

mph. (During this era, INRIX relied heavy on raw data from trucking fleets, which were 

mainly vehicles equipped with speed governors set at about 68 mph.) 

 In recent years, another study has computed absolute average speed error, average speed bias, 

absolute average travel time error, and travel time bias measures to show that probe data sets 

from Navteq, TrafficCast, and INRIX were all generally consistent with the ground truth data 

(Florida DOT 2012, Lattimer and Glotzbach 2012). The roadways consisted of freeways, 

state highways, and arterials in the Tallahassee, Florida region. INRIX data on one of the 

interstate routes were more accurate than the other probe data sets.  

 Nevertheless, INRIX TMC segments located in urban areas had a larger variation of the 

performance metrics.  

 A study that compared speeds from probe data and Bluetooth sensors showed that probe data 

were consistent with ground truth (obtained from video), with the variation within 6%. The 

probe data were slightly more accurate than the Bluetooth sensors. (Li 2013). 

 Although probe data sets are often marketed as “real-time” data, there is inherently some 

latency (time lag) between the collection of GPS coordinates by in-vehicle sensors and 

transmission and processing of these coordinates by the data vendor’s servers. A study of this 

latency on 14 miles of urban interstate freeway determined that speeds from the probe data 

tend to lag loop detector speed by 6 minutes (Kim and Coifman 2014). Although INRIX 

reported speed every minute, very often the reported speed was identical to the previous 

sample, suggesting that the company was calculating speeds over a longer time period than it 

used to report the speeds. The confidence measures reported by INRIX did not seem to 

reflect the latency or the occurrence of repetition of speeds.  

 A three-way comparison of travel times for a 4.2 mile suburban corridor in Oregon showed 

speed deviations that varied by time of day. At mid-day the INRIX estimates were either 

within 0.36 minutes or 22% of the ground-truth probe runs, while the Bluetooth estimates 

during the p.m. peak were either within 1 minute or 24% of the ground-truth probe runs 

(Alhajri 2014). Both data sources were deemed accurate enough to be used for analysis. The 

study also found that probe data tends to have a steady latency.  
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 Recent studies using INRIX data to derive speed bias, latency, and a similarity index found 

that the data was reliable for monitoring the performance of transportation infrastructure over 

time (Adu-Gyamfi et al. 2017, Adu-Gyamfi et al. 2015). Latency measurements on freeways 

and non-freeways were identified to be 12 and 8 minutes, respectively. Short-term events 

(duration less than 30 minutes) were detected at an accuracy of 74% and 63%, while long-

term events (duration 1 to 3 hours) were detected at an accuracy of 95% and 68% on 

freeways and non-freeways, respectively.  

2.3. Probe Data Applications and Associated Performance Measures  

Numerous studies have reported applications of probe data for performance assessment. 

Although some of these studies address arterial corridors, most focus on freeway performance. 

Some examples are summarized below: 

 An early study developed several metrics for freeway speed performance reporting (Lomax 

et al. 2003). These included the travel time window, percent variation, variability index, 

displaying variation, buffer time, buffer time index, planning time index, travel rate 

envelope, on-time arrival, and misery index, each of which was assigned specific 

mathematical definitions. The study described travel time reliability as a measure of the 

amount of congestion that transportation system users experience at a given time. An 

important limitation of this early demonstration was the small number of probe vehicles, 

which resulted in data quality issues.  

 Short-term travel time predictions have also been found to be useful (Fabritiis et al. 2008). 

The authors used the live travel time obtained from the probe-based floating car data and 

showed that the 15-minute speed prediction can be made with a mean absolute percentage 

error (MAPE) of 2% to 8% on the Rome, Italy ring road. 

 Travel time reliabilities and level of service are some of the other measures derived from the 

bus-based probe data obtained from the Ministry of Land, Infrastructure, Transport and 

Tourism operating over arterials and other motorway (Uno et al. 2009).  

 By the early 2010s, probe-based travel time monitoring for freeways was becoming fairly 

routine. Performance metrics such as the 95th percentile travel time, standard deviation, 

coefficient of variation, percent variation, skew statistic, buffer index, planning time index, 

frequency of congestion, failure rate, and travel time index were used (Pu 2011). Some of 

these metrics were more salient than others. For example, the coefficient of variation was 

found to be a good alternative to other reliability measures (such as the planning time index, 

median-based buffer index, and skew statistic). Computational refinements were suggested, 

such as computing the buffer index and failure rate with respect to the median (instead of the 

mean) to prevent abnormal data points from unduly affecting the metrics.  

 Several studies have described the use of probe data to evaluate freeway work zone 

performance. For example, a 2012 study computed the 95th percentile travel time, buffer 
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time index, and planning time index. It concluded that the probe data provided enough 

information to show that certain interventions increased travel time reliability in the studied 

work zones (Edwards and Fontaine 2012). The study drew attention to the importance of 

segmentation, as its accuracy was hampered by the fact that the TMC segments did not 

perfectly match the start and end of the work zones. 

 Travel speed, travel delay, annual person delay, annual delay per auto commuter, total peak 

period travel time, travel time index, planning time index, commuter stress index, roadway 

congestion index, number of rush hours, and percent of daily and peak travel in congested 

conditions were used as performance measures to detect congestion during the midday, night, 

and weekend time periods over the entire state of Texas (Schrank et al. 2015, Schrank et al. 

2011).  

 Congestion hours, congestion index, location ranking, and user delay costs have been used to 

compare highway corridors at a regional or statewide scale (Brennan et al. 2013). This work 

provided elaborate route assessments to identify the location of operational problems and the 

impacts of congestion improvement measures, with proposed methodologies that can be used 

at a state agency level. The methodology assumed that if the segment speed dropped to zero 

during a 15-minute analysis period, then the volume was very low and the traffic speed was 

equal to the speed limit. Another limitation of the methodology was that congestion was 

calculated using a fixed threshold of 45 mph. A Florida study used probe data to calculate 

highway travel time reliability, vehicle hours of delay, and percent of miles severely 

congested (Florida 2013). Mobility performance measures were grouped into quantity, 

quality, accessibility, and utilization. As with the Brennan study, a major limitation was that 

the travel rate reliability on freeways was defined using a fixed threshold of 45 mph.  

 Speed information from probe data was used in combination with data clustering and genetic 

programming to develop a dynamic travel time prediction model for a freeway. (Elhenawy et 

al. 2014).  

 A freeway patrol service model was developed to manage incidents, help disabled vehicles 

along congested freeway segments, and reduce nonrecurring congestion through fast 

response to crashes using vehicle miles traveled, vehicle hours traveled, and traffic delays 

derived from probe data and a portable emissions measurement system (PEMs) (Mauch et al. 

2014).  

 Analysis of probe data found that traffic jams on highways were better identified than those 

on other streets (Belzowski and Ekstrom 2014). The study also found that jams of longer 

duration had more probability of being accurately identified by probe data. Operational 

delays in the study area might have caused some biases in the results. 

 A study in Washington reported congested lane-miles, cost of delay, and the travel time 

index to flag areas with congestion and delays (WSDOT 2014). Congestion was assumed to 

occur when the speed fell below 70% of the posted speed limit. Delays were defined on the 
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basis of maximum throughput speeds (85% of posted speed limit). Travel time index was 

calculated using reference speed rather than free-flow speed.  

 Probe data has been used to estimate level-of-service for intersections, arterial segments, and 

freeways (Mahapatra et al. 2015).  

 Several new performance metrics have been suggested in recent years, including congestion 

hours, distance-weighted congestion hours, congestion index, speed profile, speed deficit, 

travel time deficit, and congestion cost (Remias et al. 2013, Mekker et al. 2016). For 

freeways, it was asserted that the addition of crowd-sourced data (from consumer GPS 

devices) resulted in improved INRIX data granularity and accuracy. 

 Probe data were used to compute the percentage of on-time arrival for freeways and arterials 

(Venkatanarayana 2017). This was calculated as the proportion of days when peak period 

travel time was less than 1.1 times the mean peak period travel time. More traditional 

measures such as delay per vehicle, total delay, travel time index, buffer index, planning time 

index, misery index, and congested travel were also derived in the study. Vehicle costs, 

delay, and work zone queue length were used to calculate and visualize speed and delay 

associated with work zones both spatially as well as temporarily (Chien et al. 2017). The tool 

named Work Zone Interactive Management Application-Planning (WIMAP-P) was 

developed to examine the impacts of construction staging by location, time of day (peak 

versus off-peak), and season (summer versus winter). The authors (Chien et al. 2017) 

concluded that the methodology could be refined by replacing the TMC segments with 

shorter XD segments. 

 Travel time reliability, planning time index, and frequency of congestion have been used to 

identify and rank recurrent freeway bottlenecks (Gong and Fan 2017). Challenges remain in 

identifying the degree of congestion or the intensity of bottlenecks.  

 Recent work has explored the use of speeds from probe data as a surrogate for estimating the 

hourly traffic volume (Sekuła et al. 2017). This study proposed that by using probe data, the 

traffic volume prediction can be improved by 26% as compared to the present estimates by 

volume profiles. 

 Traffic data vendors have published a number of national-level analyses aimed at 

demonstrating applications of their data to potential customers. For example, INRIX used the 

annual hours of delay per mile, hours of target delay per mile, travel time index, and planning 

time index to identify cities and corridors with severe congestion (INRIX 2017). 

Performance measures for arterial roads compare the peak-traffic to light-traffic conditions, 

based on the assumption that the “normal” performance of an arterial is under light traffic 

conditions. The resulting lists of “most congested cities” and “worst traffic hotspots” were 

deemed newsworthy by several media outlets.  
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 The Second Strategic Highway Research Program (SHRP2) also uses the probe based data to 

calculate the travel time reliability (Sadabadi et al. 2015). The program’s research tried to 

add a value to the travel time reliability study conducted in Maryland using a cost-benefit 

analysis. In another study by a SHRP2 project in Portland, the estimation and use of travel 

time reliability was analyzed for multi-modal corridor analysis (University of Arizona 2015). 

They also tried to find a value to travel time variability and tried to spread its importance to 

similar policy groups. 

 Probe-based study is being intensively carried out for Iowa (REACTOR 2018). The Realtime 

Analytics of Transportation Data (REACTOR) Laboratory has developed tools such as an 

analysis of mobility performance over the past six years, interstate and metro congestion 

comprisons, and speed profiles on interstates throughout Iowa. Data quality checks are also 

being performed on the probe-based INRIX data. 

Taken together, these studies indicate that in spite of its technical limitations, probe data from 

commercial vendors is a practical source of data for a wide range of traffic performance and 

congestion analyses. To date, the majority of probe data applications have been oriented toward 

freeway corridors, with arterial performance monitoring emerging as an important new category 

of applications.   
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CHAPTER 3. METHODOLOGY 

This chapter describes the proposed methodology for developing arterial performance measures 

based on probe data (see Figure 1). The details of each step are covered in the sections that 

follow.  

 

Figure 1. Flowchart of the methodology 
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3.1. INRIX XD Segment Speed Data 

INRIX XD probe data were used as the basis for the arterial performance comparison. The data 

set was purchased by the Iowa DOT and shared with the research team, where it resides in the 

high-performance computing (HPC) cluster at the Institute for Transportation’s REACTOR 

Laboratory in Ames, Iowa. Days with more than 100 speed counts were taken into the analysis to 

ensure that each percentile of speed is composed of separate values. 

3.2. Convert Speed Data for a Day to Cumulative Distribution Plot 

Traditionally, the hour-by-hour or minute-by-minute speed profile for a specific location in the 

traffic network has been represented in the format shown in Figure 2, with speed plotted on the 

vertical axis and time-of-day on the horizontal axis.  

 

Figure 2. Distribution of speed for a certain day 

This information was converted to a cumulative distribution plot (CDF) as shown in Figure 3.  
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Figure 3. Cumulative distribution function plot for speed 

The CDF plot indicates the probability that the speed falls below a certain value. For example, if 

the 60th percentile is 34 mph (Point “a” in Figure 3), it means that the probability of vehicles 

traveling at a speed below 34 mph is 0.6 (the speed was less than 34 mph 60% of the time).  

The shape of the CDF plot provides a quick indication of a roadway segment’s reliability during 

the analysis period. The flatter the curve, the less reliable the speed is for that segment. CDFs 

have an important drawback: the temporal speed variation pattern is lost in the conversion 

process. Nevertheless, since the main purpose of this study was to evaluate the overall 

performance of each segment, the CDF plot was quite useful. 

3.3. Convert Speed Cumulative Distribution Plot to Travel Time Distribution Plot 

The disadvantage of speed CDF plots is that they represent the speed performance for individual 

roadway segments—not for a corridor as a whole. For instance, if an arterial corridor is made up 

of four segments, the speed CDF for an individual segment might be better or worse than the 

performance of the entire corridor. For this reason, speed CDFs were converted to travel time 

CDFs. Travel time CDFs are simpler to use, and their additive nature allowed computation of 

corridor-level performance measures.  

A travel time CDF was obtained by simply dividing the length of the segment by the speed. 

Figure 4(a) represents the CDF plot for travel time using the speed CDF obtained in Figure 3. 

Thus, what was previously point “a” in Figure 3 becomes point “a” in Figure 4(a). Travel time 
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CDFs can be used directly to compute performance metrics such as the buffer time index and 

planning time index.  

3.4. Convert Travel Time Cumulative Distribution Plot to Travel Rate Distribution Plot 

The travel time CDF is a very useful plot with a small drawback: it cannot compare segments of 

unequal length. As indicated in Chapter 2, the length of INRIX XD segments ranges from 0.2 to 

1.2 miles, so there was a need to normalize the travel time CDF. This was done by converting 

travel time to travel rate (travel time per mile). For instance, a travel rate of 1.2 mile/minute 

means that 1.2 miles on that segment can be covered in 1 minute. (Mathematically, travel rate is 

the reciprocal of speed; thus, a travel rate of 1.2 miles per minute is equivalent to an average 

speed of 72 mph). Travel rate is a very powerful metric as it allows comparison of all segments, 

irrespective of their length. Figure 4(b) represents the travel rate CDF for the travel time CDF 

plotted on Figure 4(a). The shape of the curve is identical to the travel time CDF, except for scale 

on the horizontal axis. Point “a” on Figure 4(a) gets transferred to an identical point in Figure 

4(b). 

 
(a) Travel time     (b) Travel rate 

Figure 4. Cumulative distribution plots related to travel 

3.5. Is the Day a Typical Day for that Segment? 

Having obtained the travel rate CDF, the next step was to find out whether the day was an 

anomalous day for that segment. For this reason, the daily CDF plots of travel rate were 

accumulated for the entire segment and an anomalous detection algorithm was run on them. The 

details of the algorithm can be found in Appendix A. Figure 5 represents the comparison of the 

anomalous or atypical days from the normal or the typical days.  



23 

 

Figure 5. Anomalous and normal days for segment near NW 109th Street, eastbound on 

University Avenue 

Anomalous days can be defined as those days where the performance is far from the normal 

behavior of the segment. Such days should be removed before further analysis to avoid skewing 

the results of the rest of the analytical process. 

3.6. Accumulate the Anomalous Days for a Segment 

This step was rather straightforward: simply accumulate the anomalous days obtained in the 

previous step. 

3.7. Analyze and Compare Anomalous Days at Corridor/City/State Level 

Anomalous roadway performance usually has an underlying cause, such as a traffic incident, 

road construction project, special event, or holiday. To explore the causes of anomalies, it was 

necessary to accumulate them across a corridor level. The analysis of anomalies (and 

similarities) can be carried out at various levels of aggregation: corridor level, regional level, 

state level, or even national level.  

Analysis of the prevalence of anomalous performance can help agencies determine whether 

interventions aimed at improving traffic flow have been effective. For example, in Iowa, heavy 

traffic tends to occur near suburban shopping centers in the days before Christmas. These 

conditions could be used to help assess the performance of an intervention such as an adaptive 

signal control system. If the proportion of anomalous segments in adaptive corridors is less than 
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the proportion in corridors with non-adaptive control, then it is possible to conclude that the 

adaptive control system helped improve traffic flow during the holiday period.  

The extent of anomalous performance is also a measure of the dynamic nature of an individual 

segment. If a segment has many anomalous days, then it can be said that its traffic patterns are 

more dynamic than other segments in the study area. 

3.8. Remove the Day 

This was also a simple step: remove the anomalous or atypical day for the remaining analysis. 

3.9. Compute Travel Rate Performance Metrics for Typical Days for the Segment  

The performance metrics analysis were computed for those locations that had more than 100 

typical days. This was to ensure that the observations were independent of one another. These 

were the five parameters: 

 Median travel rate (MTR) 

 Within-day variability (WDV) 

 Minimum travel rate dispersion (MTD)  

 Overall travel rate variability polynomial (OTV_POLY) 

 Overall travel rate variability linear (OTV_LINEAR) 

The metrics were defined as follows: 

 Median travel rate. The MTR, as the name suggests was the median time required to cross 

one mile of the segment. It was obtained as the 50th percentile of the median of each day’s 

travel rate. The median travel rate is shown as point “a” in Figure 6 below. 

 Within-day variability. The WDV was the difference between the median of the 95th 

percentile and the 5th percentile of a segment. It was a measure of the daily variability 

expected on a segment. This metric tried to capture the variation within a day. High WDV 

values meant that there was a lot of fluctuation in travel rate for that segment. The WDV for 

a segment is shown as point “b” in Figure 6. 
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Figure 6. Plot showing the MTR as point “a” and WDV as point “b” 

 Minimum travel rate dispersion and overall travel rate variabilities. The zeroth 

percentile on the travel rate CDF curve represented the minimum travel rate possible for the 

segment. Thus, it was a representation of the free flow speed of the segment. The hundredth 

percentile corresponded to the maximum travel rate possible; that is, the condition 

corresponding to the heaviest traffic condition in a day. Generally, the travel rate for a 

segment, over different days, was expected to have similar minimum travel rate at free flow 

speed while the maximum travel rate was expected to be influenced by the traffic on the 

segment. To capture these, the overall travel rate was used with three parameter coefficients, 

which were determined through statistical interpolation (curve fitting) based on the daily 

travel rate data for each segment.  

First, the statistical 90% confidence envelope was obtained. This was done by plotting the 

5th and 95th percentiles of the travel rate CDF data. Observations falling between the 95th 

and 5th percentile bound lines were retained to establish the 90% confidence interval as 

shown in Figure 7.  
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Figure 7. Figures showing (a) the 95% and 5% confidence lines and the 90% envelope, (b) 

the difference between the 95th percentile and the 5th percentile lines, and (c) the 

quadratic plot using the difference of the 95th and 5th percentile lines  

Next, intermediate quantiles differences were calculated at each 5% interval for 21 

percentiles (0, 5, 10, and so on), and a second degree polynomial equation (quadratic) was 

fitted to the resulting data points as shown in Figure 7. Thus, the points x, y, and z change 

accordingly from Figure 7(b) to Figure 7(c). The equation is as follows: 

𝑌 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶  (1) 

The resulting coefficients A, B, and C are the OTV_POLY, OTV_LINEAR, and MTD 

values, respectively.  

Coefficient C explained the difference between the two lines at the 0th percentile and was 

referred to as the minimum travel rate dispersion (MTD). The MTD can be thought as a 

measure defining the range of minimum possible travel rates (maximum possible speed) with 

which a vehicle could move on that segment on different days. Coefficients “A” and “B” 

represented how the 90% envelope was changing linearly and quadratically, respectively. 

They were referred to as the overall travel rate variability polynomial (OTV_POLY) and 

overall travel rate variability linear (OTV_LINEAR), respectively.  

The coefficient A represented the quadratic nature of the change of quantiles while the 

coefficient B represented the linear change of quantiles. The OTV_POLY showed the change 

of the difference while the OTV_LINEAR showed the rate of change of difference of travel 
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rate at different quantiles. Since one expects the maximum travel rate to vary widely as 

compared to the minimum travel rate, the following cases are possible for these parameters: 

o Both OTV_POLY and OTV_LINEAR are positive. This meant that the difference of 

travel rate was very high at the lower travel rate (higher speed) and very low at the 

higher travel rate (lower speed). The rate of the difference of travel rate kept on 

increasing. An example is shown in Figure 8. 

 

Figure 8. Difference of percentiles versus percentile when OTV_POLY and OTV_LINEAR 

are positive 

o OTV_POLY is positive and OTV_LINEAR is negative. The detail of such a case 

depends upon the focus of the parabola. The following subcase can occur: 

o Focus is between 0 and 100. The difference of percentile first decreases until 

the focus and then increases as shown in Figure 9. 
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Figure 9. Difference of percentiles versus percentile when OTV_POLY is positive, 

OTV_LINEAR is negative, and focus is between 0 and 100 

o OTV_POLY is negative and OTV_LINEAR is positive. The detail of such a case 

depends upon the focus of the parabola. The following subcases can occur: 

o Focus is between 0 and 100. The difference of percentile first increase until 

the focus and then decreases as depicted in Figure 10. 

 

Figure 10. Difference of percentiles versus percentile when OTV_POLY is negative, 

OTV_LINEAR is positive, and focus is between 0 and 100 

o Focus is beyond 100. The difference of travel rate keeps on increasing. 

However, the rate of increasing decreases. Such a plot is shown in Figure 11. 
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Figure 11. Difference of percentiles versus percentile when OTV_POLY is negative, 

OTV_LINEAR is positive, and focus is more than 100 

3.10. Analyze Days at Corridor/City/State Level 

Having obtained the five parameters for each segment, the next task was to analyze them at a 

broader level. Since each segment had different traffic flows and different numbers of 

intersections, the segments were divided based upon the following geometric parameters: AADT 

per lane and number of intersections per segment. To further divide them by similar geometric 

performance, a mean-shift clustering algorithm was used. Based upon this, each cluster was 

analyzed separately and the low, normal, high, and anomalous segments were identified among 

each of them. Another mean-shift was run to determine the performance of the segments in that 

geometric cluster.  
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CHAPTER 4. CASE STUDY: DES MOINES, IOWA AND OMAHA, NEBRASKA 

A case study is presented in this Chapter to illustrate the use of the data sources and analytical 

methodology described in the previous chapters of this report.  

4.1. Corridor Locations 

The Iowa DOT and Nebraska DOT procured the INRIX XD data sets described in Chapter 2. A 

case study was conducted to demonstrate the use of these data for arterial performance 

evaluation. Twelve major arterial corridors in the greater Des Moines area were considered: 2nd 

Avenue, 22nd Street, 63rd Street, Fleur Drive, Grand Avenue, Hickman Road, Jordan Creek 

Parkway, Merle Hay Road, Mills Civic Parkway, Southeast 14th Street, University Avenue, and 

Valley West Drive. In addition, the Dodge Street corridor in Omaha was analyzed using six 

months of data to compare the performance of the Des Moines corridors with a busy street in 

another Midwestern city.  

Figure 12(a) illustrates the Des Moines corridors and their color codes. Figure 12(b) shows the 

Dodge Street corridor in Omaha.  

 
(a) Des Moines, Iowa 

a 
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(b) Dodge Street corridor in Omaha, Nebraska 

Figure 12. Locations included as part of the case study  

A total of 147 roadway segments were analyzed, spread over the 13 corridors. This included 29 

segments on the 5 corridors equipped with adaptive signal control. The analysis was conducted 

using only days that had real-time data observations (INRIX confidence level 30) for at least 100 

counts for each day. Performance was evaluated only for the 6:00 a.m. to 9:00 p.m. time periods. 

This limitation was necessary because the INRIX night time data were few, and the adaptive 

signals are generally not implementing special timing plans during low-volume night time hours. 

Based upon the methodology described in Chapter 3 the analyses described below were 

completed.  

4.2. Anomaly Detection 

The count of anomalous days is an indicator of the dynamic nature of a roadway segment. If a 

segment has many anomalous days, it means the travel rate varies widely over the course of the 

year. Figure 13 shows the “top 15” segments, i.e., those with the most anomalous days, and 

Table 3 lists them in rank order.  

b 
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Figure 13. 15 segments with the highest number of anomalous days 

Table 3. 15 segments with the highest number of anomalous days 

Rank Road name Location and direction 

Number of  

anomalous days 

1 Fleur Drive Stanton Avenue - Northbound 26 

2 SE 14th Street King Avenue - Southbound 25 

3 University Avenue NW 109th Street - Eastbound 24 

5 University Avenue NW 128th Street - Westbound 23 

5 University Avenue NW 114th Street - Westbound 23 

6 Hickman Road 73rd Street - Eastbound 22 

8 Dodge Street Saddle Creek Road - Westbound 21 

8 2nd Avenue NW 54th Avenue - Northbound 21 

14 University Avenue 142nd Street - Westbound 20 

14 Fleur Drive Indianola Avenue - Southbound 20 

14 SE 14th Street NW 72nd Place - Southbound 20 

14 University Avenue 6th Street - Eastbound 20 

14 University Avenue Bell Avenue - Northbound 20 

15 University Avenue NW 149th Street - Westbound 19 

 

From the figure and table, it is certain that the University Avenue (adaptive corridor) followed by 

Hickman Road and SE 14th Street are the corridors that have the highest number of segments 

with anomalous days. Among individual segments, the one with the most anomalous days is 

northbound Fleur Drive at Stanton Avenue (26 anomalous days), followed by southbound SE 

14th Street at King Avenue. In addition, 10 of the top 15 are non-adaptive segments, which 

suggests that the variation of travel rate is reduced somewhat when adaptive control is in use. As 
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for University Avenue, in fall 2016, there was construction from Northwest 104th Street to the I-

35/80 interchange, which might have contributed to the high number of anomalous days. The 

entire anomalous day analysis is presented in Appendix B. 

The next step was to identify the pattern of anomalous days for the entire analysis period. Figure 

14 presents the segment anomaly counts for each day in 2016 for the Des Moines segments.  

 

Figure 14. Distribution of anomalous days of the segments of Des Moines for 2016 

Based on this information, the top anomalous days are highlighted in Figure 15, and the reasons 

for these anomalies are listed in Table 4.  

 

Figure 15. Some of the top anomalous days of Des Moines 
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Table 4. Reasons for some of the top anomalous days 

Date Reason 

Number of  

anomalous segments 

8/10/2016 Iowa State Fair parade 30 

7/4/2016 Long weekend day 22 

1/19/2016 Snow 21 

1/1/2016 Holiday  11 

8/21/2016 Iowa State Fair 10 

12/10/2016 Snow and rain 10 

12/16/2016 Snow 10 

12/23/2016 Snow 10 

 

The Omaha (Dodge Street) site was excluded from this analysis, since only six months of data 

were available to the research team. 

4.3. Travel Rate and Travel Rate Reliability 

Based on the AADT per lane and the number of intersections per segment, a mean-shift 

clustering algorithm was applied to the data set. This process divided the segments into eight 

categories:  

 medium intersection density (ID), low AADT 

 low ID, high AADT 

 medium-high ID, medium AADT 

 medium ID, high AADT 

 medium ID, medium AADT 

 low ID, low AADT 

 medium-high ID, low AADT 

 and high ID, low AADT 

The representation of the different groups is shown in Figure 16. 
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Figure 16. Different types of segments based on ID and AADT per lane 

The next step was to identify the problematic segments. For this process, each of these groups of 

segments were clustered to identify the problematic and high-metric segments, if any. Figure 17 

and Figure 18 show spider plots of the five parameters (OTV_POLY, OTV_LINEAR, MTD, 

MTR, and WDV) for the eight condition categories.  
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Figure 17. Spider plots showing the variation for the five parameters for a) medium ID, low 

AADT; b) low ID, high AADT; c) medium-high ID, medium AADT; and d) medium ID, 

high AADT  
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Figure 18. Spider plots showing the variation for the five parameters for a) medium ID, 

medium AADT; b) low ID, low AADT; c) medium-high ID, low AADT; and d) high ID, low 

AADT 

Each of the five performance measures (OTV_POLY, OTV_LINEAR, MTD, MTR, and WDV) 

is represented along each axis of the spider plot. Each segment is plotted with its corresponding 

performance values (magnitude) for each parameter. The segments are color-coded based on the 

type of performance (low, normal, high, or problematic).  

The plots can be used for comparison of the different parameters for the different type of 

segments. For example, Figure 17(a) shows that there are two types of problematic segments: 

one due to the very poor performance values of all measures (pink line) and one due to very high 

MTD and MTR (red line). Also, for Figure 17(c), it can be noted that none of the segments are 

distinctly different from one another, which makes all of the segments as normal. 

The variation of each of the parameters and other distributions are shown in Figure 19 through 

Figure 26. Table 5 lists the segments that have high or problematic behavior.  
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Figure 19. Bar plots for the five parameters of OTV_POLY, OTV_LINEAR, MTD, MTR, 

and WDV for medium ID, low AADT 

 

Figure 20. Bar plots for the five parameters of OTV_POLY, OTV_LINEAR, MTD, MTR, 

and WDV for low ID, high AADT 
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Figure 21. Bar plots for the five parameters of OTV_POLY, OTV_LINEAR, MTD, MTR, 

and WDV for medium-high ID, medium AADT 

 

Figure 22. Bar plots for the five parameters of OTV_POLY, OTV_LINEAR, MTD, MTR, 

and WDV for medium ID, high AADT 
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Figure 23. Bar plots for the five parameters of OTV_POLY, OTV_LINEAR, MTD, MTR, 

and WDV for medium ID, medium AADT 

 

Figure 24. Bar plots for the five parameters of OTV_POLY, OTV_LINEAR, MTD, MTR, 

and WDV for low ID, low AADT 
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Figure 25. Bar plots for the five parameters of OTV_POLY, OTV_LINEAR, MTD, MTR, 

and WDV for medium-high ID, low AADT 

 

Figure 26. Bar plots for the five parameters of OTV_POLY, OTV_LINEAR, MTD, MTR, 

and WDV for high ID, low AADT 
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Table 5. Segment on adaptive corridors with high or problematic performance metrics 

Road Intersection Direction 

2nd Avenue NW 54th Avenue Southbound 

2nd Avenue NE Broadway Avenue Northbound 

63rd Street Grand Avenue Southbound 

Dodge Street S 13th Street Eastbound 

Dodge Street Park Avenue Westbound 

Dodge Street Park Avenue Eastbound 

Dodge Street Frontage Road Eastbound 

Dodge Street Farnam Street Westbound 

Dodge Street 85th Street Westbound 

Dodge Street 80th Street Westbound 

Dodge Street 80th Street Eastbound 

Dodge Street 78th Street Westbound 

Dodge Street 32nd Avenue Eastbound 

Dodge Street 28th Street Eastbound 

Dodge Street 20th Street Eastbound 

Dodge Street 19th Street Eastbound 

Dodge Street 15th Street Westbound 

Dodge Street 11th Street Westbound 

Fleur Drive Stanton Avenue Northbound 

Hickman Road NW 111th Street Westbound 

Hickman Road NW 90th Street Westbound 

Hickman Road Canterbury Road Westbound 

Hickman Road 104th Street Eastbound 

Hickman Road 5 Star Nutrition Store Eastbound 

Jordan Creek Parkway Vista Drive Northbound 

Jordan Creek Parkway Office Plaza Drive N Southbound 

Jordan Creek Parkway Ashworth Road Southbound 

Jordan Creek Parkway Ashworth Road Northbound 

Merle Hay Road Pioneer Parkway Southbound 

Merle Hay Road Holcomb Avenue Northbound 

Merle Hay Road Douglas Avenue Southbound 

SE 14th Street Watrous Avenue Northbound 

SE 14th Street SE 14th Street Northbound 

SE 14th Street King Avenue Southbound 

SE 14th Street Indianola Avenue Northbound 

SE 14th Street Goodwill Store Southbound 

SE 14th Street Garfield Avenue Southbound 

SE 14th Street Dean Avenue Northbound 

University Avenue Plaza Drive Eastbound 

 

The greatest variations were seen on parts of SE 14th Street, Jordan Creek Parkway, and Dodge 

Street. The reason maybe that for Jordan Creek Parkway and Dodge Street, both corridors have 
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complex temporal traffic patterns related to intensive suburban office and retail development. 

Additional details of the parameters are shown in the Appendix C. 

4.4. Impact of Adaptive System on Des Moines 

The University Avenue corridor is located mainly along the boundary between two Des Moines 

suburbs, the cities of Clive and West Des Moines. The corridor is intensively developed with 

office, retail, and residential land uses. An adaptive signal control system became operational 

between 25th Street and 92nd Street on October 27, 2015. To understand its effect, a before-after 

study was conducted by comparing the July–October time periods in 2015 and 2016.  

As noted earlier in this report, in fall 2016, there was construction on University Avenue from 

NW 104th Street to the I-35/80 interchange (about a mile west of the adaptive control area). Both 

construction and non-construction dates were included in the 2016 data set. 

The same five performance measures used in the arterial performance evaluation were applied to 

these segments. None of the individual segments showed any drastic improvements after 

implementation of the adaptive signals. A comparison of the parameters is presented in Figure 

27.  



44 

 

Figure 27. Comparison of OTV_POLY, OTV_LINEAR, MTD, MTR, and WDV for the 

University Avenue corridor before and after converting to adaptive signalized intersections 

As the figure indicates, following the implementation of adaptive control the typical travel time 

improved for 90% of the segments and the within day variability improved for 70% of the 

segments. Year-on-year, the overall variability worsened for more than 60% of the segments. 

These mixed findings suggest that while the adaptive control system did not result in dramatic 

traffic flow improvements, it was generally beneficial and probably helped offset some of the 

effects of the nearby road construction in fall 2016. 
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CHAPTER 5. CONCLUSION 

In recent years, vendors such as HERE Technologies (formerly Nokia/Naveteq), INRIX, 

TomTom NV, and TrafficCast International Inc. have actively marketed GPS-based arterial and 

freeway travel time data to public agencies. The Iowa DOT is one of several agencies that have 

purchased near-real-time data feeds from INRIX. This project demonstrated the use of archived 

INRIX data to establish performance measures for identifying problematic segments on arterial 

corridors. The method proved straightforward to implement and successfully flagged 

problematic areas. The analysis outputs can be used to prioritize agency actions such as corridor-

level signal retiming or the installation of advanced traffic signal systems.  

To test the computation and reasonableness of the probe-based arterial performance measures, 

the methodology was demonstrated on 12 arterial corridors in the Des Moines, Iowa area and 1 

corridor in Omaha, Nebraska. The two-step methodology included determining the number of 

anomalous days for each segment and the travel rate (travel time per mile) for each segment. The 

analysis of anomalous days found that University Avenue, Hickman Road, and SE 14th Street 

had the most segments with high numbers of anomalous days. After removing these anomalous 

days from the data set, the remaining days were used to evaluate all segments based upon five 

parameters: median travel rate (MTR), within day variability (WDV), minimum travel rate 

dispersion (MTD) and two overall travel rate variability coefficients (OTV_POLY and 

OTV_LINEAR). Based upon on these parameters, major problematic segments were identified 

on Jordan Creek Parkway and SE 14th Street in the Des Moines, Iowa, area, and the Dodge 

Street corridor in Omaha, Nebraska.  

The same five metrics were applied to evaluate the impact of implementing an adaptive signal 

control system, which was put into service on approximately 0.3 miles of University Avenue in 

fall 2015. Year-on-year data was used to compare the performance for the July–October periods 

in 2015 and 2016. The analysis showed small improvements in travel rate and within-day 

variation, but overall variation increased. Thus, it appears that implementation of the adaptive 

system was moderately beneficial overall, and may have helped mitigate some of the effects of a 

fall 2016 construction project on University Avenue about one mile west of the adaptive 

segment. 

This study revealed that the performance metrics were quite flexible and robust, and were able to 

identify the problematic segments in each corridor with reasonable accuracy. The analysis 

conducted is extensible and can be used to identify the high or problematic segments and for 

classifying any new segment in the future. The tool can assist in identifying locations where 

delay is high, day-to-day traffic patterns are dynamic, or the minute-to-minute demand at 

signalized intersections is highly variable. Through the measures defined in this work, 

transportation agencies can more easily automate the process of monitoring the arterial network 

to identify, screen, and prioritize locations that require signal retiming or other traffic control 

upgrades.  

A limitation of this study was that only the main-roadway through movements were analyzed on 

each corridor. Thus, as currently constructed, the methodology is not sensitive to delays for 
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turning movements or side-street movements. These limitations could be partially addressed by 

adding additional segments to the analysis, such as the through movements on streets that cross 

the major arterial corridors. Since the quality of the INRIX data is dependent on the number of 

probe vehicles present on each segment, a data quality evaluation for segments immediately 

adjacent to intersections would likely be the first step toward such an expansion of the 

methodology. 

This work provides a basis for several possible future studies. For example, this work could 

serve as the basis for a future cost-benefit analysis for adaptive signal control systems in the Des 

Moines, Iowa, area or elsewhere. The methodology could also provide insights about 

relationships between operational and safety performance, by spatially comparing arterial 

corridor crash hotspots with the traffic flow performance metrics for example. Additionally, 

composite metrics based on the methodology could be developed and applied on a regional or 

statewide scale to provide objective operational performance scores and help build consensus 

about priorities for urban arterial improvements.
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APPENDIX A. LITERATURE REVIEW 

Anomaly Detection 

Data cleansing is necessary to remove anomalous information that will impact the resultant 

analysis. An elaborate comparative study discussed the following data cleansing methodologies 

(Chandola et al. 2007).  

 Classification– These methods are of a supervised nature, where a point is identified as an 

anomaly because it is distinct from the other points in a feature space. The main disadvantage 

of this method is that it cannot assign an anomaly score to any points within the space. 

 Statistical - These methods of outlier analysis identify a point as an outlier based upon a 

generated distribution. These methodologies assume that the sample is drawn from some 

underlying distribution (Gaussian, Poisson, etc.) and that data points outside of the base 

distribution are anomalous in nature. 

 Clustering – These methods are unsupervised in nature, but lack the proper resources to 

detect an anomaly. A data point in the cluster must be either an outlier or a non-outlier within 

the data set. Further anomalies are identified as byproducts of the original clustering analysis. 

 Nearest Neighbor– These methods are an unsupervised form of modeling that considers the 

concentration and distance of a group of points around a single point. This method is the 

most suitable for transportation data analysis. It has been used widely for flow prediction and 

travel time prediction alike (Münz et al. 2007, Chen et al. 2010, Myung et al. 2011, ul Islam 

Bajwa et al. 2005). The method used in this analysis is generated from the density-based 

local outlier factor (LOF). 

Local Outlier Factor 

Density-based algorithms can detect the volume of points surrounding a specific point in the 

domain space. As determined by Breunig et al. (2000), algorithms such as density-based spatial 

clustering of applications with noise (DBSCAN), Clustering in QUEst (CLIQUE), or 

WaveCluster can conduct clustering, but they are not robust enough in terms of outlier detection. 

Additionally, research by Chandola et al. (2007) has demonstrated that the k-nearest neighbor 

method has the power to identify clusters as well, but it is incapable of detecting outliers when 

the clusters are of variable density. Because of this, there is a need to identify points based on 

their location relative to their nearest neighboring point. The method that quantifies the points in 

this manner is known as the LOF.  

The LOF method identifies a group of k-objects, known as the minimum points, near each point 

of interest and denotes it as k-distance from that object. For instance, in Figure A.1, the k is 

assumed to be 4 and k-distance of the object is shown.  
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Figure A.1. Reachability distance and k-distance with k = 4 

The reachability distance of an object “o” with respect to another object “p2” is measured as the 

maximum of the distance of o from p2 and o’s k-distance. After this, the local reachability 

density of o is determined as the inverse of the reachability distance of object o with respect to its 

minimum nearest neighboring points. Finally, the LOF is defined as the sum of the ratio of the 

object o with respect to its neighboring data points. 

Elbow Method 

The main challenge of an unsupervised learning method is how to establish a cutoff between 

normal and anomalous data. Research has been conducted on a multitude of methods, including 

K-means clustering by Thorndike (1953). Despite this, the elbow method is one of the most 

popular methods utilized to date to establish a cutoff threshold. The elbow method cutoff sorts 

the parameter that is to be cut off and then joins the consecutive points. An imaginary line is then 

drawn joining the start and the end points within the domain space. The cutoff point is proposed 

as that point that has the maximum perpendicular distance from this imaginary line. Figure A.2 

displays a visualization of the elbow method. The purpose of locating the cutoff point is to 

determine the point where the LOF values become more or less close to one another. 

 

Figure A.2. Explanation of the elbow cutoff point  
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APPENDIX B. DATA DESCRIPTION 

Anomaly Detection 

After data retrieval, travel rate reliability plots were estimated. The travel rate reliability plots 

display the corridor travel rate (or travel time per unit mile of the segment) for each day of each 

year in 5-percentile increments. Figure B.1 displays an example plot of the resultant reliability 

for the westbound direction of 36th Street on the University Avenue corridor. 

 

Figure B.1. Example of CDF plots of 36th Street, westbound, University Avenue 

Based on the previous figure, some of the travel rate calculations derived from the INRIX probe 

estimates are inaccurate and classified as outliers. The reason for conducting anomaly detection 

and classifying estimates as outliers is to remove inaccurate or median travel rates (MTR) from 

the analysis. Outliers are abnormal days when the travel rate is different than normal due to some 

event, such as construction, work zones, or adverse weather. To conduct the necessary anomaly 

detection, the following process is applied: 

Step 1: The travel rate CDF plots of the various segments are merged together to create a travel 

rate plot representative of the entire corridor for a day. The principle of comonotonicity is 

applied to achieve the resultant plot. Isukapati et al. (2013) has previously applied this 

methodology and demonstrated a maximum error of 6%. The principle states that for two 

monotonically increasing functions, the nth quantile can be added together to obtain the resultant 

CDF’s nth quantile. After applying the independent and identical plot for the different days for a 

direction of the corridor, the representative plot of the entire corridor is obtained. Figure B.2 

shows the representative plot for the westbound direction of University Avenue. 
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Figure B.2. Daily CDF plot for a segment on University Avenue 

Step 2: The next step is to compare the daily CDF plots to the base day for each corridor and 

measure the resultant dispersion. The mean and standard deviation of these differences are 

utilized for this analysis. Figure B.3 shows the differences between the quantile values for the 

base day with an example day. 

  

Figure B.3. Example showing the differences between the different quantiles of 

representative plot and daily plot 
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Step 3: Based upon the computed mean and standard deviation, the LOF score is calculated for 

each segment individually. The LOF is estimated by considering the minimum points from 10 to 

20 (in intervals of 1). The average LOF is computed for each point. 

Step 4: All of the LOF values from the previous step for each segment are assembled in a 

decreasing fashion, and a line is drawn to connect them. Next, an elbow method cutoff is 

proposed to locate the “higher than average” LOF values. Note that the red circular mark in the 

Figure A.2 denotes the elbow cutoff point. As used in Chen et al. (2010), the days with a positive 

mean, a LOF value greater than 1.5, and those beyond the cutoff point were determined to be 

anomalies and removed from the data set to ensure that typical behavior is considered for the 

remaining analysis. 

Step 5: Using the five parameters, the next step is to identify the segments that are experiencing 

high variability and travel time on them. On these five parameters, the following algorithm is run 

to determine the high and the low performance metrics segments.  

 First, a mean-shift clustering algorithm is used to determine the number of clusters using 

these five parameters. The mean-shift algorithm is a mode-seeking algorithm and has been 

used in transportation and other fields. The working principle is as follows. 

o First, it assumes each feature point as a cluster center. 

o Take all the points within the bandwidth or radius of a feature center, and recalculate 

the mean of these feature points as the new center. 

o  Repeat this for all the points until convergence is achieved; that is, the center points 

remain unchanged. Further, the details of the algorithm can be found in Huang et al. 

(2018), Cheng (1995), Fukunaga and Hostetler (1975), and Golubev et al. (2015).  

 After this, the remaining corridors are predicted using the parameters obtained in the step 

before.  
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APPENDIX C. LOCATIONS AND RESULTS 

Locations 

Figure C.1 through Figure C. 8 show the extent of each segment in Des Moines. 

 

Figure C.1. Location of 2nd Avenue, Des Moines 

 

Figure C.2. Location of 22nd Street and 63rd Street, Des Moines 
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Figure C.3. Locations of Fleur Drive and Grand Avenue, Des Moines 

 

Figure C.4. Location of Hickman Road, Des Moines 
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Figure C.5. Locations of Jordan Creek Parkway and Valley West Drive, Des Moines 

 

Figure C.6. Location of Merle Hay Road, Des Moines 
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Figure C.7. Location of SE 14th Street, Des Moines 

 

Figure C.8. Location of University Avenue (adaptive and non-adaptive), Des Moines 
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Anomaly Detection 

Figure C.9 shows the count of anomalous days for each segment. 

 
(a) Segments with 17 to 26 anomalous days in Des Moines and Omaha 

 
(b) Segments with 13 to 16 anomalous days in Des Moines and Omaha 
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(c) Segments with 9 to 12 anomalous days in Des Moines and Omaha 

 
(d) Segments with six to eight anomalous days in Des Moines and Omaha  
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(e) Segments with one to five anomalous days in Des Moines and Omaha 

Figure C.9. Number of anomalous days for each segment 

Travel Rate and Travel Rate Variability 

Variation of each of the parameters under the eight condition categories described in the results 

and discussion are shown below in Figure C.10. To find the effect of the parameters on the 

clustering, they are further normalized and plotted.  
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(a) Medium ID, low AADT 
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(b) Low ID, high AADT 
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(c) Medium-high ID, medium AADT 
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(d) Medium ID, high AADT 



72 

 
(e) Medium ID, medium AADT 
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(f) Low ID, low AADT 
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(g) Medium-high ID, low AADT 
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(h) Low ID, high AADT 

Figure C.10. Comparison of the five parameters (median travel rate [MTR], within day 

variability [WDV], minimum travel rate dispersion [MTD], and two overall travel rate 

variabilities [OTV_POLY and OTV_LINEAR]) in the normalized form for the eight 

condition categories 

From Figure C.10, it seems that the overall travel rate variability parameters offer the best 

separation guidelines, and the minimum travel rate dispersion and variabilities seem to 

differentiate groups in most cases. The median travel rate and the within day variability do not 

separate the two groups as significantly. 
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