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EXECUTIVE SUMMARY 

One of the primary concerns with the use of precast prestressed concrete beam (PPCB) bridges is 

cracking and spalling of the concrete towards the ends of the beams due to contamination from 

water and deicing chemicals, which results in exposure and corrosion of the beams’ 

reinforcement and prestressing strands. If allowed to progress, this deterioration will compromise 

the capacity of the beams, which can affect the integrity of the entire bridge and raise safety and 

durability concerns.  

In order to address this issue, the efficacy of ultra-high performance concrete (UHPC) and high 

early strength concrete (HESC) for strengthening and repairing damaged prestressed concrete 

beam ends was evaluated. First, a review of current repair strategies was conducted to determine 

the key qualities of effective repair methods. The use of unique materials with enhanced 

properties to perform patch repairs was ultimately selected as the repair method evaluated in this 

research project. Small-scale laboratory testing was conducted to evaluate the bond strength of 

various potential patching materials in terms of shear stress and tensile stress. Full-scale 

laboratory testing was conducted to determine the properties and performance of UHPC and 

HESC as beam patching materials. Six artificially damaged prestressed concrete beams were 

tested in full-scale experiments: two without repair, two repaired with UHPC, and two repaired 

with HESC.  

Observations indicated excellent patch bonding by the two materials tested in the full-scale 

portion of this research. Failure of one of the unrepaired beams due to confinement failure 

demonstrated one consequence of the loss of concrete cover and damage to the reinforcing steel 

caused by the beam-end damage. The outcome of this study is a set of recommendations 

regarding the most effective repair methods and appropriate retrofit materials for rehabilitating 

prestressed concrete beam ends.  

The following key findings resulted from this study: 

• Small-scale bond testing for this project consisted of testing four different materials to 

determine their bonding properties and their suitability for use as patch repair materials. The 

materials tested included proprietary and nonproprietary UHPC, HESC, and shrinkage 

compensating cement concrete (SCC-C). Each material was tested under tensile stresses and 

shear stresses using the splitting tensile strength test and the slant shear strength test, 

respectively. 

• All material types demonstrated good tensile bond strength. The interface surface condition 

did not demonstrate a significant effect on tensile bond strength for the tested samples. Both 

the HESC and SCC-C bonded samples exhibited a tensile bond strength comparable to the 

tensile strength of the plain (unbonded) samples tested. Both types of UHPC samples resulted 

in higher peak loads resisted. However, for all specimens, the substrate concrete failed before 

the testing machine reached peak load. Therefore, maximum tensile bond stress could not be 

determined.  
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• All material types demonstrated good shear bond strength. No bond failures were observed 

during slant shear testing. In the case of the HESC and SCC-C samples, failure initiated in 

the substrate concrete and cracking propagated as vertical splitting cracks in nearly all 

specimens. Pure substrate failure occurred for the UHPC samples. Some cracks penetrated 

the UHPC but were mitigated by the steel fibers in the mix. These results suggest that all 

materials provide adequate bond strength and are suitable for use as patch repair materials. 

• Upon completion of the structural tests, all of the repaired specimens maintained their 

integrity and performance with no failure. There were no significant differences observed in 

behavior under shear loading among the four patch-repaired girders in the large-scale study.  

• Failure of one of the unrepaired beams due to confinement failure demonstrated one 

consequence of the loss of concrete cover caused by beam-end damage. Both the UHPC and 

HESC patches demonstrated good bonding to the beam substrate during full-scale testing. 

Patch repairs are significantly less expensive than beam replacement and are considered to be 

conventional bridge repairs. 

• The beams with patch repairs experienced lower maximum strains and deflections despite 

being subject to a greater maximum load, indicating that the patching exhibited good bond 

behavior during loading and unloading. It was found that the amount of shear reinforcement 

affects beam behavior. 

• Further research on the practical aspects and strength-enhancing capabilities of UHPC and 

HESC for beam-end repair in shear-critical regions is recommended through field 

investigations. 
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INTRODUCTION 

Background 

The use of precast prestressed concrete beam (PPCB) bridges continues to increase as 

prestressed technology becomes more popular among engineers. Now, more than 60% of newly 

constructed bridges are built using prestressed concrete girders. One of the effects of 

prestressing, through mechanisms such as strand wicking action, is the formation of cracks at the 

beam ends. Although typically small, the cracks allow the beam to be contaminated by water and 

deicing chemicals, resulting in accelerated concrete deterioration. In the United States, a large 

number of bridges were built in the 1950s, 1960s, and 1970s, before sealing beam ends became 

standard. The result is that a growing portion of those bridges are in need of replacement, 

rehabilitation, or repair. States in the Northeast and Midwest experience harsh climates that 

further contribute to the deterioration of such bridges.   

When possible, expansion joints are eliminated by utilizing integral abutments. However, in 

cases where integral abutments are not feasible, a common problem noted by departments of 

transportation (DOTs) across the nation is the considerable deterioration of the beam-end regions 

compared to the otherwise satisfactory condition of the remainder of the beam. This deterioration 

has a few contributing factors. Due to failure at the expansion joints, water containing deicing 

agents begins to flow directly onto the beam ends. Subsequently, freezing and thawing cycles of 

these saturated beam ends cause scaling and spalling of the concrete cover, resulting in direct 

exposure of the reinforcing steel. Once the steel is exposed, the girders experience accelerated 

corrosion and further damage in the region of the water infiltration (Figure 1.1).  

 

Figure 1.1. Severely corroded prestressed concrete girder (Minnesota) 

Additional corrosion of the bottom flanges of beam ends results from the chloride-laden runoff 

near the deck drainage pipes. This type of damage is localized near the bearings and therefore the 
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principal concern is stress induced in shear. Extensive damage to the girders can result in the loss 

of ultimate strength, thereby increasing the risk of failure.  

Research Objective and Scope 

To address the issue of beam-end deterioration, this project investigated innovative solutions for 

the repair and retrofit of prestressed concrete beam ends (that have been damaged over time) that 

can restore the full capacity of the beam. Ultimately, the goal was to extend the service life of 

PPCB bridges. Special effort was also placed on identifying applicable retrofit concepts. This 

project involved both small-scale and full-scale testing to achieve the following objectives: 

1. Identify promising alternative materials to use in place of plain concrete or mortar for 

patching repairs 

2. Evaluate the bond performance of the alternative patching materials identified 

3. Determine the efficacy of patch repairs on prestressed concrete beam specimens with 

simulated beam-end damage in the shear-critical region 

4. Restore shear capacity and extend the service life of damaged prestressed beam ends 

Report Organization 

The first chapter of this report consists of the introduction, background, and research objectives 

and scope. The second chapter provides a review of the literature related to PPCB bridge repair 

and rehabilitation. The third and fourth chapters detail the laboratory testing of the small-scale 

and full-scale specimens, respectively, and present the results of the experimental studies. 

Finally, the fifth chapter presents the conclusions and recommendations stemming from this 

research. 
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LITERATURE REVIEW 

Introduction 

The ongoing desire for stronger, more efficient, and longer lasting structures has resulted in 

PPCB bridges becoming popular among engineers. Since their first application in the United 

States in 1949, prestressed concrete bridges have accounted for a significant percentage of all 

bridges built in the US, approximately 22% within the last decade (Wu and Chase 2010). The 

benefits of using prestressed technology in bridge beams include reduced deflections, greater 

quality control, and reduced construction costs. Different methods of prestressing concrete exist, 

with the most common being pretensioning and posttensioning. A pretensioned beam is formed 

by hydraulically tensioning steel strands positioned inside an empty casting bed and pouring 

concrete around the strands. When the concrete is fully cured, the strands are released, 

introducing compression into the beam. Posttensioned beams utilize the same principle, but the 

beam is cast with hollow channels and steel strands are later run through these channels and 

tensioned against a beam end (Nawy 2010). 

In both cases, the transfer of the prestressing forces from the steel strands to the concrete causes 

large stresses in the beam, particularly at the ends. These high stresses often lead to the formation 

of cracks in the beam ends (Tadros et al. 2010). Proper steel reinforcement design can keep these 

cracks below an acceptable width; however, the cracks still allow for the penetration of water 

and chlorides into the beam ends (Kannel et al. 1997). Cracked beam ends vulnerable to moisture 

are particularly a problem when located under leaking expansion joints. The use of integral 

abutments remedies this issue by eliminating expansion joints; however, the problem persists in 

bridges with non-integral abutments (Ohio DOT 2007). The ingress of contaminants like water 

and chlorides causes the steel rebar to corrode and produce rust. Although the high pH of the 

surrounding concrete creates a passive layer around the steel that practically eliminates 

corrosion, a high concentration of chloride within the concrete destroys this layer, allowing the 

steel to corrode. The introduction of chloride is particularly an issue in freeze-thaw climates, 

where deicing salts are often used on roadways.  

There are two primary ways in which the ingress of water and chlorides and the subsequent 

corrosion adversely affect PPCB bridges. The first detrimental effect to occur is a loss of 

prestressing force due to a reduction in prestressing strand area (Kim et al. 2016). As the steel 

strands corrode, iron atoms are oxidized, and the resulting positively charged iron ions react with 

negatively charged hydroxide ions to form rust. On a larger scale, the outer layers of the steel 

strands are converted to rust, which reduces the cross-sectional area of the steel. This reduction 

results in a loss of prestressing force, which lessens the benefits of a prestressed beam, such as 

high capacity and reduced deflections. The second negative effect of water and chloride 

infiltration takes place after the prestressing strands have undergone fairly substantial corrosion. 

Because rust occupies a larger volume than the original steel, corrosion causes the strands to 

effectively expand and exert tensile stresses on the surrounding concrete. Concrete develops 

cracks relatively easily under these tensile stresses, which can lead to delamination and spalling 

at the beam ends. Spalling beam ends present a significant safety hazard. Deteriorated beam ends 

offer a reduced bearing area, therefore lowering the capacity of the beam (Hosteng et al. 2015). 
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Additionally, spalling of the concrete further exposes prestressing strands and reinforcing steel to 

the atmosphere, allowing corrosion to occur at a faster rate. Spalled concrete may be patched, but 

such patches are often not a long-term solution because corrosion continues in the underlying 

steel (Clemena and Jackson 2000). 

Review of Corrosion in Prestressing Steel 

As alluded to in the introduction to this chapter, the natural alkalinity of concrete paired with 

sufficient cover protects the embedded steel against the process of corrosion. Consequently, in 

order to protect a concrete beam from corrosion damage it is important to understand exactly 

how corrosion is able to begin in the first place.  

Formation of Cracks 

The first step in the corrosion of embedded prestressing steel is the formation of cracks in the 

beam ends. Cracks need not be structurally significant or even very large to create the potential 

for corrosion of the prestressing steel. In pretensioned girders, cracks generally appear at the 

ends. Cracks are concentrated at the beam ends because the prestressing force is designed to 

counter the maximum self-weight moment in the beams, which occurs directly at mid-span. At 

the girder ends, without the moment to balance the prestressing force, tensile stresses at the top 

of the beam and compressive stresses in the strand’s transfer length can cause cracking (WisDOT 

2017). 

Such beam end cracks are thought to have several possible sources. Hasenkamp et al. (2008) 

compiled, through a survey and literature review, multiple suggested sources of cracks in 

prestressed beam ends. Commonly cited causes of cracking are as follows: 

1. Strand distribution: The amount and degree of cracking shows some relation to the number of 

draped strands in a beam. Although draped strands can be an effective way to raise the center 

of gravity of the prestressing force and reduce cracking (WisDOT 2017), using a large 

number of draped strands reportedly results in more cracking (Hasenkamp et al. 2008). 

2. Detensioning method: A typical method of releasing the tension in prestressing strands is 

flame cutting. In this process, strands are individually cut using a torch. The result is a 

sudden release of tension and subsequent introduction of stresses into the concrete beam. In 

addition, these stresses are introduced unevenly, or asymmetrically, into the beam, which 

does not allow stresses to oppose and balance each other. Hydraulic detensioning allows for 

slower transfer of force and fewer cracks, but this method is less common and requires 

additional equipment (Hasenkamp et al. 2008). 

3. Free strand length: Once strands at the end of one beam have been cut, the beam is 

compressed and experiences some shortening. This causes the lengths of any strands not 

embedded in the beam (i.e., the free strand length) to increase, creating tensile stress and 

strain. Free strands of shorter lengths experience greater strain and greater tensile force, 
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increasing the likelihood of cracks developing in the beam ends. Longer free strands can be 

utilized to reduce beam end cracking (Kannel et al. 1997). 

4. Strand diameter: In order to achieve a higher prestressing force at the same stress level in 

strands, the use of 0.6 in. diameter as opposed to 0.5 in. diameter strands has increased 

relatively recently. A higher prestressing force also allows for the use of higher strength 

concrete. It has been observed that the use of 0.6 in. strands at the same spacing as 0.5 in. 

strands increases cracking in a beam (Hasenkamp et al. 2008). 

Other sources of beam end cracking have been suggested in addition to those listed above. 

However, for the purposes of this report, exploring and understanding a few causes of beam end 

cracking is sufficient. 

Infiltration of Corrosive Agents 

Once cracks are introduced into a prestressed beam end, corrosive agents are able to penetrate 

the surrounding concrete and reach the embedded steel. For steel to undergo corrosion, the only 

agents required are oxygen and water. However, the corrosion of steel embedded in concrete 

requires the destruction of the passive layer created by the high pH of the concrete. This layer is 

destroyed either by reducing the concrete’s alkalinity or increasing the concentration of chloride 

ions to a certain level. Iowa’s bridges are among those particularly susceptible to high chloride 

concentrations due to the use of deicing salts and chemicals during the winter. 

In an attempt to reduce the potential for moisture and chemical infiltration, cracks of a certain 

width are often sealed with a waterproofing agent at the precast plant. According to the 

respondents to a survey by Hasenkamp et al. (2008), epoxy injection is the most common 

method of sealing cracks. Some organizations take further precautions to mitigate moisture 

infiltration into beam ends. The Iowa DOT, for example, coats the end faces of all prestressed 

concrete beams with Sikagard 62, an epoxy coating (Hosteng et al. 2015). While such 

waterproofing measures are not in vain (although some substances prove more effective than 

others), it is thought that moisture may be present on the embedded steel before the beam end 

can be sealed. Hosteng et al. (2015) observed that several beams in a precast yard contained 

uncut strands extending beyond the beam end face, all of which were visibly rusted. Due to the 

gaps present between individual strands woven together to form prestressing strands, moisture 

may be able to migrate into the beam through capillary action. It is thought that this moisture 

present in beam ends prior to waterproofing may contribute to the initial rusting of the embedded 

steel, as well as the degradation of the waterproof seal itself (Hosteng et al. 2015). 

Corrosion Process 

Once moisture and chemicals (i.e., chlorides) have migrated through cracks, a beam end contains 

the necessary ingredients for corrosion to occur. First, as previously mentioned, a high enough 

concentration of chlorides destroys the passivating layer around the steel. At this point, corrosion 

is able to occur. Considering the length of one prestressing strand or reinforcing bar, the 
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corrosion process proceeds as follows. First, at one location, iron atoms donate electrons to the 

steel and the positive ferrous ions move to the concrete. Locations at which a material donates 

electrons to an electrochemical process are called anodes. The free electrons then move to a 

location in the steel with a lower energy level and react with water and oxygen that has 

penetrated the concrete. The product of this reaction is hydroxide ions. A location at which 

electrons are accepted as part of an electrochemical process is called a cathode. The positively 

charged ferrous ions then react with the negatively charged hydroxide ions to produce iron 

hydroxide, or rust. The reactions described above are shown as a series of chemical equations 

below: 

2𝐹𝑒 → 2𝐹𝑒2+ + 4𝑒− 

2𝐻2𝑂 + 𝑂2 − 4𝑒−  → 4𝑂𝐻− 

2𝐹𝑒+ + 4𝑂𝐻− → 2𝐹𝑒(𝑂𝐻)2 

The formation of rust on embedded steel negatively affects a beam in two primary ways. First, 

because the iron in steel is a reactant in the corrosion process, some steel must be sacrificed to 

produce rust, reducing the effective cross-sectional area of the steel bars or strands. In the case of 

prestressing strands, designed to introduce large compressive forces into beams, this loss of 

material (and therefore area) may cause a reduction in the prestressing force being imparted on 

the beam. The result is a reduced capacity for the beam section. Second, corrosion also adversely 

affects a beam by creating internal tensile stresses. The product of corrosion reactions, rust, is 

less dense than the steel from which it was formed. That is to say, a certain mass of rust occupies 

a larger volume than an equal mass of steel. As a result, the formation of rust creates expansive 

tensile forces against the surrounding concrete. As corrosion continues, the low tensile strength 

of the concrete cannot resist the internal stresses, and spalling may occur. An obvious safety 

hazard, spalled beam ends result in reduced sections and possibly reduced bearing areas, if the 

spalling is near enough to the beam end. 

Current Practices 

In general, two approaches are used to address the deterioration of prestressed concrete beam 

ends: rehabilitation and retrofit. For the purposes of categorization, and to avoid potential 

confusion, this report defines each approach as follows. Rehabilitation is any technique involving 

the application of a component or mechanism designed to repair an already existing, damaged 

element of a prestressed concrete beam. A common example of a rehabilitation technique is 

patching of spalled concrete. Retrofit is any technique by which new, force-carrying elements are 

added to a prestressed concrete beam with the singular goal of increasing beam capacity. A 

retrofit repair method does not aim to restore an existing damaged component of a beam (e.g., 

spalled concrete) but rather is intended to add new elements that can carry load that the beam no 

longer can. A common example of a retrofit technique is the addition of near-surface mounted 

(NSM) rods in a beam soffit. It should be noted that in order to properly apply a retrofit repair 

technique, some degree of rehabilitation may be necessary. For example, if concrete has spalled 

at a location at which NSM rods are to be installed, the concrete would require patching before 
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the retrofit may take place. Current practices in rehabilitation and retrofit repairs are detailed in 

the following sections. 

Rehabilitation 

Patching 

Patching of spalled concrete, although a relatively simple rehabilitation technique, is an 

important step in restoring a damaged beam. Applying a patch to a spalled concrete beam 

restores the section for which the beam was designed. In addition, spalling of a beam may likely 

expose embedded steel, which corrodes much more quickly when exposed to open air. While 

patching concrete is a relatively simple procedure, it requires care and attention to properly 

execute. 

First, any unsound concrete must be removed from the damaged area to ensure a proper bond 

and the structural integrity of the beam section. To avoid creating feather edges in the patch, the 

edges should be saw cut at a shallow depth (Dominguez Mayans 2014). It is paramount not to cut 

too deep because prestressing strands may be damaged or severed (Dominguez Mayans 2014, 

Needham 2000). By the nature of the interaction between the patching material and the 

surrounding concrete, the bond between the materials is critical for the effectiveness of the patch. 

To increase the effective contact surface area, the surface of the damaged concrete should be 

roughened and dust or other fine particles should be removed from the contact area (Dominguez 

Mayans 2014). Any embedded steel that has been exposed as a result of spalled concrete should 

have the rust removed before patching. At this point, a suitable patching material may be applied. 

Suitable materials are those that meet the requirements for compressive strength, bond strength, 

thermal properties, etc. (Dominguez Mayans 2014). 

A variety of materials can be used in concrete beam patch repairs. Mortar repairs are common 

for mild to moderately damaged beam ends. Patching with mortar succeeds in replacing lost 

concrete cover; however, this material fails to restore the original strength and stiffness of the 

girder (Shaw and Andrawes 2017). Normal concrete (NC) has also been used in repair methods 

(Figure 2.1) (Shield and Bergson 2018).  
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Shield and Bergson 2018, MnDOT 

Figure 2.1. Reinforced shotcrete repair of a damaged beam end in Minnesota  

However, as with mortar repairs, simply replacing the concrete cover lost to spalling is not 

sufficient. To restore the original capacity of the beam, further steps must be taken. A greater 

volume of concrete may be sufficient, but often the addition of reinforcing steel or other 

structural agents is required when using traditional patching materials. Some mortars specified 

by DOTs are specialized to resist chlorides. Other options include additional protective sealants 

to protect the beam from further water and chloride penetration in the future. Each step beyond 

the basic patching that is required for this type of damage adds more cost, effort, and traffic 

closure time (Chen and Duan 2014, Feldman et al. 1996, Hosteng et al. 2015). 

Strand Splicing 

In beams with severely damaged or severed prestressing strands, an available rehabilitation 

technique is strand splicing. As the name suggests, this repair method involves reconnecting the 

ends of a severed strand to form one continuous element. Typically, a turnbuckle connects the 

severed ends and introduces force back into the broken strand. Although the turnbuckle does 

experience loading as it tensions the strand, this report classifies strand splicing under 

rehabilitation because it is specifically meant to repair an existing, damaged element.  

When circumstances have allowed it, strand splicing in situ has proven to be an efficient and 

cost-effective method of restoring tension in a damaged strand (Kasan et al. 2014). However, due 

to the geometry of prestressed beams, it may be difficult to repair a single strand without 

affecting others. In fact, the diameter of splices requires that they not be placed immediately 

adjacent to each other on neighboring strands but rather staggered by at least 2 in. (Kasan et al. 

2014). In cases of very localized damage, this creates a potential issue. Additionally, the 

behavior of splices relative to the strands must be considered. For example, splices are much 

stiffer than the strands, resulting in different strain values for a given stress. This could lead to 

asymmetric behavior in a repaired section (Kasan et al. 2014). Though not without its 

limitations, strand splicing allows for the efficient repair of severely damages strands, 

particularly compared with superstructure replacement. 
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Electrochemical Corrosion Resistance 

Unlike the previously discussed rehabilitation techniques, electrochemical corrosion resistance 

does not involve a structural repair meant to carry load. Instead, electrochemical corrosion 

resistance aims to mitigate the process of corrosion itself. Although somewhat time-consuming, 

electrochemical protection of embedded steel addresses the root of the problem with deteriorated 

beams. The ultimate goal of the repair technique is to introduce electricity to the steel so that it 

becomes negatively charged, forcing away negatively charges chloride ions. 

As described above, electrochemical corrosion resistance works by supplying electrons to the 

embedded steel in order to force away negatively charged chloride ions (Clemena and Jackson 

2000). Drawing chloride ions away from the steel allows the passivating layer between the steel 

and the concrete to begin reforming, slowing the corrosion process. In order to establish an 

electrochemical cell, the following components must be in place. First, an anode system is 

required to supply electrons to the steel (Clemena and Jackson 2000, ELTECH 1993). The anode 

material must be of a lower electronegativity than the steel (i.e., less inclined to attract electrons). 

With the anode system in place, a metallic connection must be made between the anode and the 

embedded steel at a minimum of one location (Clemena and Jackson 2000). The connection 

between the anode and cathode (in this case, the steel) allows for the flow of current between the 

two materials. Additionally, an electrolyte is required for the transfer of ions and electrons to and 

from the anode and cathode as current flows through the system (Clemena and Jackson 2000). 

Finally, an external source of current is required to supply electricity to the steel, forcing the 

electrochemical process and causing the corrosion process to run in reverse (Clemena and 

Jackson 2000, ELTECH 1993). In order to resist corrosion, the external source of current 

receives electrons from the anode system and supplies electrons to the cathode (Clemena and 

Jackson 2000). This results in a positively charged anode and negatively charged steel. 

Consequently, the negatively charged chloride ions near the steel are driven outward towards the 

anode system (Clemena and Jackson 2000). 

The process discussed above is generally true for an electrochemical corrosion resistance 

technique. Two primary methods of applying this technique exist: electrochemical chloride 

extraction (ECE) and cathodic protection (CP). The two methods are very similar but have a 

small number of differences. First, ECE utilizes a liquid electrolyte that surrounds the anode 

system and allows electrons and ions to flow. This electrolyte must be maintained over the 

course of the treatment, approximately four to eight weeks (Clemena and Jackson 2000). 

Alternatively, CP uses conductive anode systems that do not require extensive maintenance, such 

as conductive coke-asphalt or conductive mastics (ELTECH 1993). Second, ECE requires that a 

larger area of concrete be covered by the anode and electrolyte compared to CP (Clemena and 

Jackson 2000). In other respects, the two methods are very similar. Both produce beneficial 

effects even after the system is removed. Specifically, the corrosion rate remains lower than that 

in untreated concrete for years after each system is removed from the beam (Clemena and 

Jackson 2000, ELTECH 1993). In addition, the costs of both methods are fairly similar (Clemena 

and Jackson 2000). The key differences between the two systems point to CP as the more 

convenient, preferred method. 
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Retrofit 

Steel Jacketing 

Steel jacketing of a beam has been used as a retrofit technique, but it is becoming less common 

as its popularity diminishes. The concept of the retrofit is to provide a kind of steel shell around a 

concrete beam, increasing the beam’s capacity by offering additional flexural strength relative to 

a standard concrete beam (Harries et al. 2009). Though simple in theory, application of a steel 

jacket around a beam is significantly more difficult in practice. Jackets must often be welded 

together around a beam in the field, as opposed to prefabricated and slipped onto the beam. 

Additionally, studs or shear heads are required for shear transfer to prevent the jacket from 

simply sliding along the length of the beam once applied (Harries et al. 2009). These laborious 

tasks involved in the application of steel jackets still do not include the necessary protection from 

rusting when steel is exposed to the open air. All factors considered, steel jacketing is not a 

desirable long-term retrofit. 

Bonded FRP Sheets 

With the relatively recent advances in fiber-reinforced polymer (FRP) technology, bonded FRP 

sheets have become a competitive option for the retrofit of prestressed concrete beams. The 

principle of bonded FRP sheets as a retrofit is similar to that of steel jacketing; the additional 

strength of the sheets offers increased flexural capacity for the beam. Unlike steel jackets, 

however, the bond between the FRP sheets and the beam is achieved using an adhesive. This 

bond between the beam and the FRP sheets therefore serves as the mechanism of force transfer, 

making bond strength critical to the success of an FRP retrofit (Kalfat et al. 2013). 

The most general application of FRP sheets as a retrofit technique is simply bonding an FRP 

laminate to a beam soffit. When the beam is loaded beyond the level at which the FRP is applied, 

the FRP sheet becomes engaged and carries some of the force in the tension face of the beam 

(Nguyen et al. 2013). Such retrofit techniques that do not carry any force until a certain level of 

loading is reached are referred to as passive retrofits. The typical failure mechanism of a beam 

retrofitted with FRP sheets is debonding of the sheets initiated by flexural cracks in the beam. As 

a result, it has been observed that when a small amount of FRP is used, increasing the length of 

the sheets increases the beam’s stiffness but not its flexural strength (Nguyen et al. 2013). 

However, increasing the number of layers of FRP may increase the flexural capacity of the 

beam. Increasing the number of sheets up to three layers was found to increase the flexural 

strength of a beam while reducing the tensile strain in the embedded steel (Nguyen et al. 2013). 

Provided that an adequate bond surface is available, FRP sheets are a promising retrofit 

technique. 

Although a viable retrofit option, FRP sheets are not used to their full structural capacity if 

failure is initiated by debonding. In order to address this issue, FRP stirrups (or U-wraps) have 

been applied to increase the bond between the sheets and the beam soffit (Figure 2.2).  
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Figure 2.2. FRP stirrups (U-wrap) configuration 

FRP stirrups, which mimic rebar stirrups, are applied transversely over longitudinal FRP sheets 

at a specified spacing. Stirrups are bonded to the beam by the same adhesive as the sheets; 

however, the bond occurs on the side of the flange or the web of the beam. As a result, stirrups 

provide an increased bond area over regions of the beam that are not as susceptible to cracking as 

the tension face (Kalfat et al. 2013). By reducing the likelihood of debonding failure, more of the 

FRP sheets’ capacity may be utilized (Nguyen et al. 2013, Kalfat et al. 2013). However, the 

consequences of changing the failure mechanism from debonding to FRP rupture must be 

considered. Specifically, FRP behaves in a fairly brittle manner compared to the yielding of 

steel. Therefore, the joint failure mechanisms of brittle FRP rupture and ductile steel yielding 

must be accounted for in a beam retrofitted with FRP sheets and stirrups (Nguyen et al. 2013, 

Kalfat et al. 2013). 

It should be noted that prestressing technology may also be applied to FRP laminate retrofits. 

During application, FRP sheets may be prestressed before bonding to the beam soffit. This action 

changes the retrofit from passive to active (Harries et al. 2009). That is to say, the prestressed 

sheets are always carrying force and contributing to the capacity of the beam. While prestressing 

FRP sheets has shown to result in a slight increase in flexural capacity, the process of 

prestressing the sheets is laborious and time-consuming. The benefit of fully prestressing FRP 

sheets does not appear to outweigh the costs of introducing prestress into the FRP (Harries et al. 

2009). Additionally, the more brittle behavior of a beam with fully prestressed FRP sheets is 

undesirable. If a completely passive repair is not wanted, partially prestressing the FRP retrofit 

may be a desirable compromise (Harries et al. 2009). 

NSM Rods 

In terms of their effect on beam capacity, NSM rods behave very similarly to bonded FRP sheets. 

NSM rods are applied to the soffit of a beam where they may carry some of the tensile force in 

the bottom flange of a prestressed beam. The key difference between FRP sheets and NSM rods 

is that NSM rods are embedded just below the tension face of a beam while FRP sheets are 

bonded externally to the tension face (Harries et al. 2009). This places NSM rods within the 

concrete cover of the beam. A benefit of placing a retrofit just under the surface of the beam as 

Girder 

FRP U-wrap 
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opposed to outside the beam is the high bond strength of the grout used to fill in the cavities 

made by the NSM rods. A strong bond helps to eliminate the potential for debonding failure that 

is observed with FRP sheets (Harries et al. 2009). Additionally, mounting rods within the 

concrete cover offers some protection from the elements that may not be available for an 

externally bonded retrofit. 

Due to the protection of the concrete cover, NSM rods may come in the form of steel or FRP. 

However, as FRP becomes increasingly accessible, the issue of steel corrosion does not seem to 

make steel NSM rods worth the risk. NSM rods are also able to utilize prestressing technology to 

add extra capacity to a beam. Much like FRP sheets, however, prestressing NSM rods in situ is 

very labor-intensive and likely not worth the associated costs (Harries et al. 2009). 

Externally Mounted Rods 

Externally mounted rods behave just like NSM rods, but rather than residing in the concrete 

cover, externally mounted rods are fixed to the outside of the beam. Besides the different 

location, a key difference between external and NSM rods is the mechanism of force transfer. 

While force is transferred to NSM rods through the bond with the surrounding grout and 

concrete, force is transferred to external rods through some type of discrete anchor. A common 

example of an anchor for external rods is a bolster. Bolsters are either concrete or steel elements 

that are secured to the concrete beam and hold the external rods without slipping. As the beam 

experiences strain, the bolsters move with the beam and cause the external strand to carry some 

of the stress due to loading (Harries et al. 2009). 

Although very similar to NSM rods, external rods exhibit a few key differences. First, external 

rods are much simpler to install than NSM rods. No large cavities must be made in the concrete 

cover; only bolt holes must be made at bolster locations. Alternatively, if concrete bolsters are 

used, bolt holes are not required. Concrete bolsters may be cast along with the beam or added 

later using a shear connection (Harries et al. 2009). While bolsters may be simple to install, it 

should be noted that they also result in much more localized force transfer. Under heavy loading, 

this may be undesirable. Additionally, external rods may be placed at different locations on the 

beam more easily than NSM rods. It is true that NSM rods may be placed anywhere from the 

beam soffit to the edges or top of the bottom flange; however, external rods may be applied 

almost anywhere that is appropriate. Freedom to place external rods almost anywhere on the 

beam may be desirable under certain conditions, but in general this characteristic provides the 

most benefit at the tension face of the beam where the corresponding moment arm is largest. 

Finally, a significant benefit of external rods compared to NSM rods is the ease of prestressing. 

By their very nature, bolsters act as anchors that the external rods may be jacked against. This 

action occurs while the rod and bolsters are in place, making it the ideal in situ prestressing 

technique (Harries et al. 2009). 

It should be noted that external rods are clearly not protected from the elements like NSM rods 

are. However, because of the increasing popularity of FRP materials for retrofit applications, 

including external rods, the protection provided by concrete cover (i.e., corrosion protection) is 
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not a major concern. As a result, the ease of installation and prestressing provided by external 

rods may likely outweigh the benefit of the concrete cover that protects NSM rods. 

Alternative Patching Materials 

To achieve the best long-term results for the repair of concrete damaged by corrosion, materials 

with specialized properties are desired. For this study, two primary criteria were considered 

when choosing alternative patching materials. First, a sufficient bond strength is necessary to 

achieve a resulting structure that behaves monolithically. As noted above in the discussion on 

repair methods, an inadequate bond partially negates the desirable mechanical properties of the 

repair system. Second, to prevent continued damage from corrosive elements, low permeability 

and small crack widths are preferred to prevent the continued penetration of chloride-laden deck 

runoff. Prerequisite to these specialized properties, an adequate patching material must exhibit 

desirable mechanical properties such as strength, ductility, and durability.  

The use of composite materials has demonstrated promise for concrete girder rehabilitation due 

to their desirable material behaviors and amenable application qualities. This section overviews 

various material options and the reasoning for the final material selections for this investigation. 

Ultra-High Performance Concrete 

For the structural restoration and retrofit of concrete bridges, ultra-high performance concrete 

(UHPC) has gained popularity in research and engineering practice. UHPC demonstrates much 

higher strength and much greater long-term durability than normal concrete. UHPC is composed 

of portland cement, pozzolans (primarily micro- and nano-silica), fine sand with optimized 

particle size distribution, steel fibers, normal water, superplasticizer, and other admixtures as 

required (Jafarinejad et al. 2019, Karim et al. 2019). The resulting composite demonstrates very 

high strength in compression, tension, and flexure. UHPC has low permeability, which allows 

for exceptional performance in harsh environmental conditions.  

Although the implementation of UHPC has been limited due to the high production costs, the 

application of only small amounts for the repair of existing concrete structures has been 

successful in restoring and even enhancing the mechanical properties and durability of the 

original structure. The material’s suitability for use in retrofits and its longevity make it a cost-

effective repair strategy over the life of the structure. Many studies have also shown promising 

bond strength for UHPC, making it a good candidate for the repair of existing structures. With an 

adequate interface roughness, failure will occur in the plain concrete prior to failure at the 

material interface, indicating an effective bond between UHPC and plain concrete (Harris et al. 

2015, Hussein et al. 2016). UHPC is a strong candidate for the repair of corrosion-damaged 

beam ends due to the material’s high bond strength and its ability to restore capacity while 

preventing further corrosion without the need for additional sealants.  
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High Early Strength Concrete 

A key factor in bridge repair is the speed of the repair time. For this reason, high early strength 

concrete (HESC) has been widely studied and implemented in roadway construction. There are 

many methods to create HESC, including the use of rapidly hydrating cements and chemical 

admixtures. Type III portland cement is specifically classified as providing high early strength, 

but other ASTM cement types can still be used to create HESC. Type III portland cement 

typically has smaller particle sizes compared to other cements. The smaller the particle size, the 

faster the cementitious material can achieve full hydration, which leads to higher heat of 

hydration and an increased rate of strength development. Portland cement is the most commonly 

utilized material for reaching high early strength; however, several proprietary cementitious 

products are also available. The key differences lie in the kilning process and the components 

added to accelerate strength gain. As mentioned, chemical admixtures can be used for early 

strength gain, such as in the patented 4x4 process developed by BASF Chemicals to produce 

concrete with a compressive strength of 4 ksi in four hours. These products are considerably 

more expensive than ordinary portland cements and therefore are typically used only in 

emergencies (Casanova et al. 2019, Ghafoori et al. 2017). 

Recommendations 

It is important to consider the current practices for prestressed concrete beam repair described 

above in light of the objectives and scope of this project. Specifically, the goal of the project is to 

restore the full capacity of beams experiencing deterioration and extend the service life of the 

bridge containing said beams. A particular focus is placed on retrofit concepts.  

Considering the different elements within a prestressed concrete beam and the several repair 

methods designed to address them, it is clear that no single repair procedure applies effectively to 

all scenarios. Therefore, it is necessary to develop different guidelines for various levels of 

damage or deterioration. However, some repair techniques are a necessity when applicable. 

Patching of spalled concrete is required whenever a significant portion of concrete has been 

removed, especially if steel is exposed. Additionally, strand splicing is necessary when any 

prestressing strand is severed (or nearly severed) due to corrosion or impact. These techniques 

are necessities when applicable because without them the integrity of the beam and any 

subsequent repairs are compromised. In the following sections, more specific repair methods are 

discussed for three levels of damage: light damage, moderate damage, and severe damage. 

General criteria for damage categorization are outlined below; however, individual judgement is 

required to assess in-service beams. 

Light Damage 

A lightly damaged beam, for the purposes of this report, is a beam that shows early signs of 

corrosion (e.g., fine cracking, rust stains) but no spalling of the concrete. A beam showing light 

damage likely has not experienced a structurally significant reduction in capacity; however, the 

beam’s capacity will be reduced if the damage continues. In such a beam, the corrosion process 

has already begun. Therefore, a preemptive retrofit will only be effective if it is applied before 
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the corrosion damage has become too severe. Consequently, it is necessary to address the issue 

of corrosion to prevent further damage. 

For lightly damaged beams, it is recommended that cathodic protection be employed to reduce 

the rate of corrosion. As described above under Electrochemical Corrosion Resistance, CP halts 

corrosion during the time it is applied and slows the rate of corrosion drastically even after the 

CP system is removed (ELTECH 1993). Because beam capacity is effectively unchanged at this 

level of damage, a structural retrofit is not required or recommended. Instead, CP appears to be 

the most cost-effective solution because it prevents the corrosion damage from becoming more 

severe in the future (ELTECH 1993).  

Further, CP is recommended over ECE primarily because a CP system does not require a liquid 

electrolyte. The performance of the two corrosion resistance techniques is very similar (Clemena 

and Jackson 2000). Therefore, the main distinction between the methods is the convenience that 

the CP system provides by not requiring the maintenance of a liquid electrolyte. Various anode 

materials have been tested for CP systems, including conductive mastics (ELTECH 1993). A 

conductive mastic anode system may be beneficial by providing waterproofing for the area over 

which the mastic is applied. The reasons discussed above make a CP system (with a conductive 

mastic anode) appear to be the best solution for a lightly damaged beam. 

Moderate Damage 

A moderately damaged beam is defined in this report as a beam showing signs of significant 

corrosion, small to medium sized cracks, and some delaminated or spalled concrete. As opposed 

to a lightly damaged beam, a moderately damaged beam has a reduced capacity relative to an 

undamaged beam. Corrosion has clearly occurred and progressed in a beam with moderate 

damage. Therefore, corrosion mitigation as well as a structural retrofit must be considered. 

First, as stated above under Patching, any unsound concrete must be removed and patched before 

further repair takes place. After concrete patching, it is recommended that a CP system be 

applied to reduce the corrosion rate and extend the service life of the structure. Just like in the 

case of a lightly damaged beam, corrosion will continue if left untreated in a moderately 

damaged beam. Therefore, the useful life of the structural retrofit is dictated by the amount of 

corrosion damage in the beam. Application of a CP system prevents otherwise inevitable future 

damage from occurring. 

In addition to a CP rehabilitation system, it is recommended that a moderately damaged beam 

receive a structural retrofit to restore lost capacity. Considering the definition of moderate 

damage used in this report, it is assumed that additional prestressing force from the retrofit is not 

required to restore beam capacity. Individual beam requirements are determined based on the 

judgement of the inspector and/or engineer. Assuming no additional prestressing force is 

necessary, the recommended retrofit for a moderately damaged beam is FRP sheets and stirrups 

bonded to the bottom and sides of the beam, respectively. This combination provides a reliable 

increase in beam capacity while utilizing all or most of the strength of the FRP retrofit (Kalfat et 

al. 2013). A drawback of this retrofit is the introduction of the joint failure mechanisms of the 
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FRP and steel. However, with proper design and placement of the FRP stirrups, a less brittle 

failure mode may be achieved (Kalfatet al. 2013). Finally, the relatively simple installation of 

FRP sheets and stirrups (provided they are not prestressed) makes them the most appealing 

retrofit technique for moderately damaged beams. 

Severe Damage 

A severely damaged beam, as defined in this report, is any beam exhibiting drastic corrosion of 

the embedded steel, large cracks, and significant spalling of the concrete. A severely damaged 

beam has a large reduction in capacity and may be a safety hazard if use of the structure 

continues.  

Concrete patching is a clear necessity for any severely damaged beam. However, before the 

patching material is placed, a severely damaged beam must be checked for strands in need of 

splicing. Corrosion will have progressed relatively uninhibited in a beam with this level of 

damage. As a result, exposed strands may have rusted all or nearly all of the way through. 

Determination of which strands, if any, require splicing relies on the judgement of the inspector 

and/or engineer. Once the necessary strands have been spliced or it is determined that none 

require splicing, concrete patches may be applied. 

Again, it is recommended that a CP system be installed to prevent further corrosion damage to 

the embedded steel. The reactants necessary for the corrosion of steel are already present in the 

concrete and embedded steel when patches are applied, and corrosion will continue after 

patching (Clemena and Jackson 2000). In order to mitigate the damage to the concrete and 

embedded steel, as well as damage to future retrofits, the corrosion process must be slowed 

down. 

Along with a CP system, a severely damaged beam requires a structural retrofit to restore its 

significantly reduced capacity. Unlike a moderately damaged beam, it is assumed in this report 

that a severely damaged beam requires additional prestressing force supplied by the retrofit. 

Severe damage is assumed to reduce the capacity of a beam such that the beam cannot afford to 

endure a certain amount of load before the retrofit is engaged. Determinations regarding the 

capacities of individual beams, again, rely on the judgement of the inspector and/or engineer. 

Assuming additional prestressing force is required, the recommended retrofit for a severely 

damaged beam is prestressed externally mounted FRP rods. The primary benefit of this retrofit is 

the ease with which prestressing force may be applied to an in-service beam (Harries et al. 2009). 

Additionally, the placement of external rods may be tailored to meet the special requirements of 

the bridge. Finally, using FRP rods prevents the corrosion issues associated with exposed steel. 

It should be noted that the bolsters that connect the external rods to a beam may limit the amount 

of prestress that can be applied. Because the areas of force transfer are constrained to each 

bolster, high levels of stress may develop in the bolsters if prestressing force limits are exceeded.  
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SMALL-SCALE BOND TESTING 

This chapter summarizes the experimental program conducted to test patching materials for use 

in beam-end repairs. This study involved both small-scale and large-scale testing. Details on the 

materials, test specimen preparation, and laboratory test setup are described in this chapter. 

Testing took place in the Structural Engineering Research Laboratory at Iowa State University. 

Introduction 

Bond Strength Test Methods 

The bond strength between concrete and various materials has been extensively researched. Past 

studies have shown that the measured bond strength is greatly dependent on which test method is 

used, making it difficult to obtain a clear and conclusive assessment of bond performance 

(Momayez et al. 2005). To determine bond strength under tensile stresses, three common test 

methods include the pull-off test, flexural beam test, and splitting cylinder tensile test. When 

evaluating bond performance under shear stresses, researchers typically utilize a direct shear or a 

slant shear strength test (Silfwerbrand 2003, Mindess et al. 2002). 

The direct tension pull-off test follows ASTM C1583. This test is popular because the pull-off 

method can be performed both in situ and in a laboratory setting. By drilling a small partial 

shallow core in the concrete specimen, a direct tensile force is applied to a steel plate that has 

been bonded to the core’s surface. This is considered an appropriate determination of tensile 

bond strength due to the single mode of stress. However, issues may arise when using this 

method. Pull-off tests are performed on relatively small samples compared to a total bond area, 

resulting in greater sensitivity to local effects, stress disturbances, and drilling-induced damage. 

This may lead to a large amount of scatter in the data measured from direct tension tests (Zanotti 

and Randl 2019). Additionally, the shear-controlled region of a beam is not likely to undergo 

pure tensile stresses at the patch interface. For this reason, a direct tensile test would not best 

represent field conditions for this application. 

The flexural beam test for bonded materials is described in ASTM C78. Half of the beam is cast 

as the substrate and the other half is cast with the patching material. Placed under simply 

supported conditions and either single- or two-point loads, the interface is subjected to flexural 

tension. Again, with the focus of this project being predominantly on shear stresses, this method 

would not be ideal for this project.  

The splitting tensile test uses concrete cylinders under indirect tension in accordance with ASTM 

C496. For evaluation of bond strength, half of the cylinder is cast as the substrate along the 

length of the cylinder and the patching material is cast on the other half. Specimens for this test 

are easily replicable. This method is further described in later sections of this report. 

Bond strength under shear forces can be tested through direct shear to provide a clear 

demonstration of the slip behavior of bonded materials as well as to single out shear 
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performance. The steps required for direct shear testing are more complicated than for other 

types of tests. The preparation of the bond interface surface affects the test results as well as the 

bond area (Zanotti and Randl 2019, Liao et al. 2019, D’Antino et al. 2016). 

Slant shear tests are performed by placing a compressive load on a specimen with the materials 

bonded on a slanted interface. Slant shear specimens can be rectangular prisms or cylindrical. 

The testing procedure follows ASTM C882. Typically, standard 4 in. by 8 in. or 6 in. by 12 in. 

cylinder molds are used in the manufacture of slant shear samples. The stress states experienced 

during this test method can occur in real-world structures. Factors affecting this test include 

interface surface preparation and the angle of the contact plane. Multiple studies have tested for 

the most appropriate bond angle to effectively determine bond strength (Zanotti and Randl 2019, 

Naderi 2009, Clark and Gill 1985).  

Ultimately, two test methods were chosen to evaluate the bond performance of potential patching 

materials for this research project. Bond strength in terms of shear stress and tensile stress was 

determined using the slant shear strength test and the splitting tensile strength test, respectively. 

These methods were selected because they could easily be conducted within the facilities at Iowa 

State University, increasing repeatability among the multiple batches of patching material. 

Additionally, these tests attempt to replicate stress states that occur at the interface of a beam-end 

repair. 

Effects of Interfacial Preparation 

Concrete interfacial roughness plays a major role in the overall bond strength between old and 

new concrete. He et al. (2017) concluded that greater interfacial fractal dimensions contribute to 

higher new-to-old concrete mechanical strengths. Likewise, an interfacial adhesion agent was 

found to be beneficial to bonding. The study utilized iron combs of various sizes to generate 

artificial roughness (He et al. 2017). There are many other methods of modifying the interface 

layer for improving bond performance. Common methods applied in the field and for studies 

include but are not limited to wire brushing and sandblasting. Tools can be used to chip or 

groove the surface to increase the roughness level. Forming an interfacial surface from wet 

concrete is achieved in various ways. Applying a retarder to the forms allows for different levels 

of aggregate exposure. Combing a wet surface creates a roughened surface once the concrete has 

cured (Harris et al. 2015, Júlio et al. 2004, Carbonell Muñoz et al. 2014, Santos et al. 2007). In 

general, a roughness level similar to or greater than that produced by sandblasting is required for 

adequate bonding to successfully transfer forces between the old and new concrete. 

Patching Materials 

To achieve the best long-term results for the repair of concrete damaged by corrosion, materials 

with specialized properties are desired. For this study, two primary criteria were considered 

when choosing alternative patching materials. First, sufficient bond strength is necessary to 

achieve a resulting structure that behaves monolithically. As discussed above, inadequate bonds 

partially negate the desirable mechanical properties of the repair system. Second, to prevent 

continued damage from corrosive elements, low permeability and small crack widths are 
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preferred to reduce the continued penetration of chloride-laden deck runoff. Prerequisite to these 

specialized properties, patching materials must exhibit adequate mechanical properties such as 

strength, ductility, and durability. 

Conventional Concrete and Cement Mortar 

A common material used in concrete girder bridge repair is normal concrete or cement mortar. 

Often utilized for mildly to moderately damaged beam ends, patching with NC or mortar 

succeeds in replacing lost concrete cover; however, this material fails to restore the original 

strength and stiffness of the girder (Shaw and Andrawes 2017). In some cases, it is sufficient to 

install a greater volume of concrete in order to restore capacity, but often the addition of 

reinforcing steel or other structural agents is required (Shield and Bergson 2018). A number of 

DOT-specified mortars are specialized to resist further chloride infiltration. Other options 

include the application of protective sealants to inhibit water and chloride penetration. Each of 

these additional steps and requirements increases the cost, effort, and traffic closure time for 

repairs (Iowa DOT 2014, Feldman et al. 1996, Hosteng et al. 2015). 

Ultra-High Performance Concrete – Proprietary 

For the structural restoration and retrofit of concrete bridges, UHPC has gained popularity in 

research and engineering practice. UHPC denotes cement-based materials demonstrating much 

higher strength and ductility and much greater long-term durability than normal concrete (Shi 

2015). UHPC is typically composed of portland cement, pozzolans (primarily micro- and nano-

silica), fine sand with optimized particle size distribution, steel fibers, normal water, 

superplasticizer, and other admixtures as required (Jafarinejad et al. 2019, Karim et al. 2019). 

The resulting composite demonstrates very high strength in compression, tension, and flexure. 

UHPC has low permeability, which allows for exceptional performance in harsh environmental 

conditions.  

Although the implementation of UHPC has been limited due to the high production costs, the 

application of only small amounts for the repair of existing concrete structures has been 

successful in restoring and even enhancing the mechanical properties and durability of the 

original structure. The material’s suitability for use in retrofits and its longevity make it a cost-

effective repair strategy over the life of the structure. Many studies have also shown promising 

bond strength for UHPC, making it a good candidate for the repair of existing structures. With an 

adequate interface roughness, failure will occur in the plain concrete prior to failure at the 

material interface, indicating an effective bond between UHPC and plain concrete (Harris et al. 

2015, Hussein et al. 2016). UHPC is a strong candidate for the repair of corrosion-damaged 

beam ends due to the material’s high bond strength and its ability to restore capacity while 

preventing further corrosion without the need for additional sealants. 
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Ultra-High Performance Concrete – Nonproprietary 

As previously stated, UHPC demonstrates promising qualities as a repair and rehabilitation 

material. However, a common factor limiting the use of UHPC is its high cost compared to 

conventional materials. Researchers at Iowa State University have been developing a 

nonproprietary alternative to the proprietary options for UHPC currently on the market. This 

nonproprietary UHPC mixture has demonstrated characteristics similar to those of proprietary 

designs (Karim et al. 2019). To diversify patching possibilities, this small-scale study included 

this nonproprietary UHPC (UHPC-NP). 

High Early Strength Concrete 

A key factor in bridge repair is the speed of the repair time. For this reason, HESC has been 

widely studied and implemented in roadway construction. There are many methods to create 

HESC, including the use of rapidly hydrating cements and chemical admixtures. Type III 

portland cement is specifically classified as providing high early strength, but other ASTM 

cement types can still be used to create HESC. Type III portland cement typically has smaller 

particle sizes compared to other cements. The smaller the particle size, the faster the 

cementitious material can achieve full hydration, which leads to higher heat of hydration and an 

increased rate of strength development. Portland cement is the most commonly utilized material 

for reaching high early strength; however, several proprietary cementitious products are also 

available. The key differences lie in the kilning process and the components added to accelerate 

strength gain. As mentioned, chemical admixtures can be used for early strength gain, such as in 

the patented 4x4 process developed by BASF Chemicals to produce concrete with a compressive 

strength of 4 ksi in four hours. These products are considerably more expensive than ordinary 

portland cements and therefore are typically used only in emergencies (Casanova et al. 2019, 

Ghafoori et al. 2017). 

Shrinkage Compensating Cement Concrete  

Early-age cracking (up to 24 hours after casting) may become problematic in concrete. It can 

have a negative effect on the aesthetics of the structure and decrease the structure’s durability 

and serviceability by facilitating the ingress of harmful materials into the concrete bulk. 

Moreover, these cracks may expand gradually during the member’s service life due to long-term 

shrinkage and/or loading. Early-age cracking is caused by two driving forces: (1) plastic 

shrinkage cracking, which is a physical phenomenon and occurs due to rapid and excessive loss 

of moisture, mainly from evaporation, and (2) chemical reactions between cement and water, 

which causes autogenous shrinkage. One method to limit the effects of early-age cracking is the 

use of shrinkage compensating cement concrete (SCC-C). Expansive components are added to 

cement to counter the shrinkage that occurs with portland cement. The development of this 

concrete type started in the 1950s when a chemical compound (C4A3S), known as Klein’s 

compound, was mixed with portland cement (Bescher 2018, Russell et al. 2002, Mather 1970, 

Chen et al. 2012, Shi 2015). ASTM C845 specifications detail the tests and qualifications for this 

Type K cement. Use of this material for the repair of damaged beam ends would be beneficial 
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because the material would not easily be penetrated by harsh agents from the environment, 

which would mitigate further corrosion of the section. 

Experimental Program 

This section summarizes the experimental program conducted for testing the bond performance 

of patching materials to be used in beam-end repairs. This study involved multiple types of 

small-scale testing. Bond strength in shear and tension specimens was determined using the slant 

shear strength test and the splitting tensile strength test, respectively. Details on the materials, 

test specimen preparation, and laboratory test setup are described in this section. Specimen 

preparation took place in the Portland Cement Concrete Laboratory and testing took place in the 

Structural Engineering Research Laboratory at Iowa State University. 

Materials and Properties 

Conventional Concrete 

The mix used to represent conventional or normal concrete in the small-scale portion of this 

research project was the Iowa standard C-4WR mixture. NC was used as the substrate material 

for all bonding tests performed. This concrete is specified to have a 28-day compressive strength 

of 4,000 psi, minimum. Mix proportions are listed in Table 3.1. 

Table 3.1. Conventional concrete mix design 

Components lb/yd3 

Cement Type I 474 

Fly ash - Class C 119 

Coarse aggregate 1,517 

Fine aggregate 1,500 

Water 255 

HRWR 3 

 

Ultra-High Performance Concrete – Nonproprietary 

The materials used for the nonproprietary UHPC (UHPC-NP) mixture for this study consisted of 

cement, silica fume, fine aggregate, masonry sand, steel fiber, high-range water reducing 

(HRWR) admixture, and water. The cement was ASTM Type I cement with a specific gravity of 

3.10. The fine aggregate was clean river sand (i.e., between 0.00 and 0.1870 in. in diameter). The 

fine aggregate was sieved to limit the maximum size to 0.0937 in. The specific gravity of the fine 

aggregate was 2.72. The masonry sand was obtained from a local supplier in Ames, Iowa. To 

obtain the desired particle packing in the mix, the masonry sand was included to form 15% of the 

total sand, following the Andreasen-Andersen particle packing curve. The steel fibers had a 
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diameter of 0.0079 in. and a length of 0.5120 in. The basic material properties and the mix 

proportions for UHPC-NP are listed in Table 3.2 and Table 3.3, respectively. 

Table 3.2. Basic characteristic properties of UHPC-NP 

Property Typical value 

Flow (in) 8.5 

Split tensile strength (ksi) 1.5 

7-day compressive strength (ksi) 14.2 

Resistivity (kΩ-in) 3.3 

Ultimate autogenous shrinkage (µε) 240 

Ultimate drying shrinkage (%) 0.135 

 

Table 3.3. UHPC-NP mix design 

Components lb/yd3 

Cement 1,637 

Silica fume 115 

Masonry sand 898 

Regular sand* 739 

Water 350 

Steel fibers+ 234 

HRWR 77 

*Sand passing 600 microns sieve, +2% by volume 

Ultra-High Performance Concrete – Proprietary 

The proprietary UHPC (UHPC-P) mixture utilized in this study was developed by 

LafargeHolcim and has a commercial name of Ductal. The basic properties of UHPC-P are 

presented in Table 3.4.  

Table 3.4. Basic characteristic properties of UHPC-P 

Property Typical value 

Total shrinkage at 90 days (µε) 500 

Tensile strength at 28 days (ksi) 1.3 

Compressive strength on cube at 28 days (ksi) 18 

Water porosity at 90 days (%) 6 

Diffusion coefficient of chloride ions at 90 days (ft2/s) ≤1.1x10-12 

Apparent gas permeability at 90 days (ft2) ≤5.3x10-18 

 

The materials for UHPC-P consisted of a premix binder that comprised all cement, fine sand, 

silica fume, and silica powder, along with other proprietary materials that were not disclosed by 

the manufacturer. Based on the observed properties, the powder-like premix binder of this 
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mixture also contained a type of shrinkage reducing or shrinkage compensating ingredient. The 

other materials used in UHPC-P were a polycarboxylate-based high-range water reducing 

superplasticizer admixture, water, and steel fiber. The steel fibers in this mix were the same as 

those used in the UHPC-P mix. The mix proportions for UHPC-P are listed in Table 3.5. 

Table 3.5. UHPC-P mix design 

Components lb/yd3 

Premix 3,700 

Water 219 

Super plasticizer 51 

Steel fiber 263 

 

High Early Strength Concrete 

The research team conducted preliminary testing to determine the mix design variables required 

for HESC to be used as a functional patching material. The accelerator dosage was determined 

by creating trial batches for the control mix until the minimum 12-hour compressive strength of 

3,000 psi was obtained. Additionally, the confined layout of the formwork in the large-scale 

portion of this project required the mix to have excellent workability so that it could be poured 

and completely fill the patch area. To achieve this, the mix was made to be a self-consolidating 

concrete (SCC). Water reducer was added to achieve SCC conditions in accordance with ASTM 

C1611. The mix design used in this project had a slump flow of 23 in., exceeding the 20 in. 

requirement to qualify as self-consolidating (Figure 3.1).  

 

Figure 3.1. Slump flow of self-consolidating concrete mixture 

Note that the platform for the slump flow test is imprinted with a 20 in. diameter ring 

surrounding the center where the slump form is placed. The sample in the figure is completely 
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covering that dimensioned ring and therefore surpasses its limits. The materials used for the 

HESC mix consisted of cement, fly ash, coarse and fine aggregate, an accelerating admixture, a 

polycarboxylate-based high-range water reducing superplasticizer admixture, and water. The 

cementitious components included 80% Type III portland cement with 20% Class C fly ash as a 

cement substitute for greater workability and long-term durability. The coarse aggregate 

consisted of 3/8 in. maximum size crushed limestone. The fine aggregate was clean river sand. 

The smaller size of the coarse aggregate was selected over the more typical 1 in. maximum size 

aggregate to limit any blockage that may occur in the narrow formwork of the beam patch. The 

water-to-cementitious materials ratio was 0.3 to ensure high strength. The 28-day compressive 

strength of this mix was 13,000 psi. The mix proportions for the HESC tested in this study are 

listed in Table 3.6. 

Table 3.6. HESC mix design 

Components lb/yd3 

Cement Type III 640 

Fly ash - Class C 160 

Coarse aggregate 1,591 

Fine aggregate 1,543 

Water 279.5 

Accelerator 12.9 

HRWR 14.4 

 

Shrinkage Compensating Cement Concrete 

The materials used for the SCC-C mix consisted of two types of portland cement, fly ash, coarse 

and fine aggregate, a high-range water reducing superplasticizer admixture, and water. The 

cementitious components included 68% Type I portland cement, 12% Type K portland cement, 

and 20% Class F fly ash as a cement substitute for greater workability and long-term durability. 

The coarse aggregate consisted of 1 in. maximum size crushed limestone. The fine aggregate was 

clean river sand. The water-to-cementitious materials ratio was 0.4. The 28-day compressive 

strength of this mix was 8,950 psi. The mix proportions for the SCC-C tested in this study are 

listed in Table 3.7. 

Table 3.7. SCC-C mix design 

Components lb/yd3 

Cement Type I 403 

Cement Type K 71 

Fly ash - Class F 119 

Coarse aggregate 1,517 

Fine aggregate 1,500 

Water 255 

HRWR 3.0 
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Interface Treatment 

To compare the effects of the surface roughness of the interface between conventional concrete 

and the patching materials, three levels of roughness were studied for this research. Unroughened 

(UR) samples had a relatively smooth interface surface because they were cast against foam 

forms. Roughened samples were achieved by applying a chemical retarder to the mold before 

pouring the concrete (Figure 3.2).  

  

Figure 3.2. Formwork retarder application 

After 24 hours, each roughened specimen was washed to remove the unset material and expose 

the aggregate. Mid-roughened (MR) samples had a theoretical peak-to-valley depth of 3/8 in. 

Large-roughed (LR) samples had a theoretical peak-to-valley depth of 5/8 in. Sample specimens 

showing each surface type are presented in Figure 3.3. 
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Unroughened Mid-roughened Large-roughened 

(a) 

   
Unroughened Mid-roughened Large-roughened 

(b) 

Figure 3.3. Various levels of surface roughness for the substrate specimens: (a) slant shear 

specimens and (b) splitting tensile specimens 

Splitting Tensile Strength Test 

Overview 

Splitting tensile strength testing was used to evaluate the bond performance under tensile 

stresses. During this test, the interface is put in a state of indirect tension by applying a 

compressive load along the longitudinal length of the cylinder, in-plane with the interface 

(Figure 3.4).  
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Figure 3.4. Splitting tensile strength test for characterizing bond strength 

The research team performed this test in accordance with ASTM C496. Assuming failure at the 

interface of the two materials, bond strength can be estimated from the measured ultimate 

compressive force using Equation 1. 

𝑻 =
𝟐𝑷

𝝅𝒍𝒅
 (1) 

where T is the tensile stress (adhesion) in the interface, P is the ultimate compressive force 

applied during the test, l is the length of the concrete cylinder, and d is the diameter of the 

concrete cylinder. 

Specimen Preparation 

For this test, cylindrical specimens with a 4 in. diameter and an 8 in. height are formed from two 

materials connected by an interface along their length through the center of the cylinder (Figure 

3.5). A foam insert is placed inside to create a half-specimen. 

 

Figure 3.5. Splitting tensile test sample specimen 
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In this research, the conventional concrete half was cast and then cured for 28 days, after which 

the substrate was placed in the mold again and the second half of the specimen was cast using the 

patching materials. Both the NC and patching materials were poured in three layers. Each layer 

was compacted to ensure that the mold was filled uniformly and the final surface was level. 

Slant Shear Strength Test 

Overview 

Slant shear testing was used to evaluate the bond strength under simultaneous compression and 

shear stresses. This test was performed in accordance with ASTM C882. The shear and normal 

compressive stresses at the material interface can be estimated from the measured ultimate 

compressive force using Equations 2 through 4. 

𝜎𝑐 = 𝑃 𝐴𝑐⁄  (2) 

σn=σcsin2(α) (3) 

𝜏 = 0.5𝜎𝑐𝑠𝑖𝑛(2𝛼) (4) 

where σc is the axial compressive stress at failure, σn is the normal compressive stress in the 

shear surface, P is the ultimate compressive force applied during the test, α is the angle of the 

shear surface from vertical, Ac is the area of the loading surface (circle), and τ is the shear stress 

in the shear surface (Figure 3.6). 

  

Figure 3.6. Slant shear test for characterizing bond (left); slant shear stresses (right) 
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Specimen Preparation 

For this test, cylindrical specimens with a 4 in. diameter and an 8 in. height are formed from two 

materials connected by a diagonal interface that is 30° from vertical. A foam insert is placed 

inside to create the inclined surface (Figure 3.7).  

 

Figure 3.7. Slant shear test sample specimen 

The same curing process used for the splitting tensile specimens was performed for these 

specimens. Again, both the NC and patching materials were poured into the mold in three layers. 

Each layer was compacted by vibration to ensure that the mold was filled uniformly. 

Results and Discussion 

Splitting Tensile Strength Test 

All material types demonstrated excellent bond strength in tension, and the bond strengths did 

not appear to be affected by the roughness level of the interface. The adhesion stress at the time 

of failure was calculated for each sample. The true adhesion strengths could not be determined 

because at least some partial substrate failure was observed in all specimens. However, 

compared to the stress at failure observed in the plain (unbonded) material, the bonds between 

the patching materials and the substrates proved effective. As expected, both types of UHPC 

exhibited excellent tensile strength compared to the plain (unbonded) material. Figure 3.8 

illustrates that the theoretical adhesion stress at failure for the two high-strength concrete types 

(HESC and SCC-C) exceeds that of the plain (unbonded) material.  
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Figure 3.8. Adhesion stress at failure for different patching materials 

Figure 3.9 shows a broken UHPC-NP specimen after failure, with fragments on the right 

showing the substrate and the portion of substrate material that had remained bonded to the 

UHPC-NP. The condition of this sample indicates that failure of the substrate likely occurred 

before the higher strength UHPC-NP failed, resulting in much higher peak loads recorded by the 

testing machine.  

 

Figure 3.9. Example of UHPC-NP specimen after failure 

Figure 3.10 shows examples of partial substrate failures for the HESC and SCC-C specimens.  
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Figure 3.10. Examples of partial substrate failure: HESC (left), SCC-C (right) 

The adhesion values are summarized in Table 3.8. 

Table 3.8. Theoretical adhesion stress at failure 

Material Roughness Adhesion (psi) 

UHPC-NP 

Large-roughened 919 

Mid-roughened 741 

Unroughened 884 

Plain material 2,234 

UHPC-P 

Large-roughened 1,088 

Mid-roughened 1,027 

Unroughened 916 

Plain material 2,100 

HESC 

Large-roughened 531 

Mid-roughened 669 

Unroughened 630 

Plain material 714 

SCC-C 

Large-roughened 628 

Mid-roughened 580 

Unroughened 493 

Plain material 622 

 

Slant Shear Strength Test 

All slant shear specimens failed in compression, with none failing at the bond interface. The 

compressive failures for the HESC and SCC-C specimens always initiated in the substrate. These 

substrate cracks propagated through the full cylinder most commonly in form of nearly vertical 

splitting cracks before the interfacial shear stresses reached the maximum bond strength (Figure 

3.11).  
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Figure 3.11. Examples of failed slant shear specimens: HESC (left) and SCC-C (right) 

In contrast, in both types of UHPC samples, failure was localized in the substrate. Some cracking 

was visible into the UHPC material, but these cracks were arrested by the steel fibers in the 

UHPC mixes (Figure 3.12).  

   

Figure 3.12. Examples of failed UHPC slant shear specimens 

Table 3.9 summarizes the calculated interfacial shear stresses at failure. Due to the failure of the 

substrate concrete prior to failure at the bond surface, the true bond strengths under shear stresses 

did not reach their maximum values. 
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Table 3.9. Interfacial shear stress at failure 

Material Roughness σc (psi) τ (psi) Failure mode* 

UHPC-NP 

Large-roughened 5,701 2,469 NC 

Mid-roughened 3,764 1,630 NC 

Unroughened 4,096 1,774 NC 

UHPC-P 

Large-roughened 8,935 3,869 NC 

Mid-roughened 7,517 3,255 NC 

Unroughened 6,216 2,692 NC 

HESC 

Large-roughened 5,466 2,367 NC 

Mid-roughened 3,832 1,659 NC 

Unroughened 4,296 1,860 NC 

SCC-C 

Large-roughened 4,211 1,824 NC 

Mid-roughened 4,047 1,753 NC 

Unroughened 4,061 1,758 NC 

*NC – Failure initiated in normal concrete 

Summary and Conclusions 

Small-scale bond testing for this project consisted of testing four different materials to determine 

their bonding properties and their suitability for use as patch repair materials. The materials 

tested included proprietary and nonproprietary UHPC, HESC, and SCC-C. Each material was 

tested under tensile stresses and shear stresses using the splitting tensile strength test and the 

slant shear strength test, respectively.  

All material types demonstrated good tensile bond strength. The interface surface condition did 

not demonstrate a significant effect on tensile bond strength for all samples. Both the HESC and 

SCC-C bonded samples exhibited a tensile bond strength exceeding the tensile strength of the 

plain (unbonded) samples tested. Both types of UHPC samples resulted in higher peak loads 

resisted. However, for all specimens, the substrate concrete failed before the testing machine 

reached peak load. Therefore, maximum tensile bond stress could not be determined.  

All material types demonstrated good shear bond strength. No bond failures were observed 

during slant shear testing. In the case of the HESC and SCC-C samples, failure initiated in the 

substrate concrete and cracking propagated as vertical splitting cracks in nearly all specimens. 

Pure substrate failure occurred for the UHPC samples. Some cracks penetrated the UHPC but 

were mitigated by the steel fibers in the mix. These results suggest that all materials provide 

adequate bond strength and are suitable for use as patch repair materials. 
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FULL-SCALE BEAM PATCHING TESTING 

This chapter summarizes the full-scale experimental program conducted on six segments of a 

prestressed concrete bridge girder. Details on the test specimens and the laboratory test setup are 

covered in this chapter. 

Specimen Preparation 

The beam used for testing was an Iowa DOT bulb-tee C-shaped beam measuring 115 ft in length 

(BTC115 beam) (Figure 4.1).  

   

Figure 4.1. BTC115 cross-section (left) and midspan reinforcement layout (right) 

This beam was provided for this research project by Forterra Building Products located in Iowa 

Falls, Iowa. The steel used for the prestressing strands had, at some point, been processed outside 

of the United States, which does not comply with requirements for use on government projects. 

However, it is important to note that the beam had not been rejected for unacceptable cracking 

during prestressing or any other structural property.  

Cutting the Beam Segments 

To cut the BTC115 beam, a wire saw method was chosen. The cutting mechanism for this type 

of saw involves a spinning diamond-studded wire being pulled through the concrete beam 

(Figure 4.2).  
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Figure 4.2. Wire saw cutting in progress 

It was more desirable to use a wire saw than a hand-held circular saw because the wire saw 

reduces cutting time and labor costs while resulting in a cleaner edge. Two end pieces 2 ft 5 in. 

in length were cut from the BTC115 beam and discarded as scrap to avoid the large amount of 

shear reinforcement in that zone. The remaining beam was then cut symmetrically in order to 

reduce variation due to changes in tendon profile. The result was eight mirrored beam segments 

that could be used in direct comparison to each other. Each segment was cut to 11 ft to ensure the 

beams would fail in shear as opposed to bending (Figure 4.3).  

 

Figure 4.3. Cut beam segment marked for artificial damage 

Simulated Damage to Beam Ends 

To investigate the effect of deterioration at the beam ends of bridge girders, the beams were 

artificially damaged to simulate damage caused by corrosion. Since the focus of this study is on 

the shear capacity of the girders, damage was focused on the webs of the beams. Additionally, 

half of the specimens were artificially damaged on the bottom flange at the beam ends. Figure 

4.4 shows the artificially damaged areas of the beam specimens.  
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Figure 4.4. Areas of simulated damage on beam specimens 

The region of concrete removed from the beam web resulted in an approximately 30% reduction 

of the width and cross-sectional area of the beam web. Each beam web had a damaged region 

with a height of approximately 1 ft, while the length of the area varied between 1 ft and 2 ft, as 

shown in Figure 4.5. The concrete was removed from the beam web by first cutting a grid with a 

depth of 1 in. Next, a hammer drill with a chisel attachment was used to remove the concrete 

within the grid, with care taken not to damage the stirrups. This process was repeated on both 

sides of the web and on each end of the specimen, and a similar process was used to remove 

concrete from the bottom flanges (Figure 4.5).  

   

Figure 4.5. Cutting and chiseling (left), damaged bottom flange (center), and damaged web 

(right) 

The ends of each beam are referred to as east and west, and the sides are referred to as north and 

south.  

An example of a final damaged specimen is shown in Figure 4.6.  

Key:

D: D1 = 0.5 in

D2 = 1 in

L: L1 = 1 ft

L2 = 2 ft

Web Damage (W):

Flange Damage (F):
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Figure 4.6. Artificially damaged beam specimen (1 ft damage) 

The use of simulated damage allowed for consistent reproduction of the damaged areas on each 

specimen so that the specimens could be tested and compared. Table 4.1 shows the dimensions 

and location of damage on each beam specimen. 

Table 4.1. Dimensions and location of damage on each beam specimen 

Beam section Damage length, ft Damage to bottom flange 

L1 2 Yes 

L2 2 No 

L3 1 Yes 

L4 1 No 

R4 1 No 

R3 1 Yes 

R2 2 No 

R1 2 Yes 

 

Overview of the Patching Plan 

Six of the eight beam specimens cut from the BTC 115 beam were tested in the full-scale portion 

of this research project. The beams are labeled L1 through L4, R2, and R3. Two beams were left 

unpatched/unrepaired, two beams were patched with HESC, and two beams were patched with 

UHPC (NP). Details about the beams, including the names used in reporting results, are 

displayed in Table 4.2.  
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Table 4.2. Damage and patching details of beam segments 

Name 

Beam 

section 

Damage 

length, ft 

Bottom flange 

damage 

Patching 

material 

HESC-1 L1 2 Yes HESC 

Control-1 L2 2 No -- 

Control-2 L3 1 Yes -- 

HESC-2 L4 1 No HESC 

UHPC-1 R2 2 No UHPC 

UHPC-2 R3 1 Yes UHPC 

 

As stated in the previous section, the BTC115 beam was cut to have mirrored beam sections. The 

mirrored pairs for direct comparison are Control-1 and UHPC-1, and Control-2 and UHPC-2. 

The HESC specimens had different damage and shear reinforcement layouts.  

Patch Fabrication Procedure 

The four beams to be repaired were prepared for patching by first cleaning with a wire brush to 

remove large debris and power washing to remove any remaining dust and debris. Formwork 

was applied around each patch area so that the patch mix could be poured into the form at one 

end and the pressure head created would fill the damaged region completely. It should be noted 

that this exact forming method would not be used in the field due to limited access to the beam 

end area. Prior to pouring the patch mix, the concrete area to be patched and the formwork was 

wetted to limit water loss from the mix (Figure 4.7).  
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Figure 4.7. Beam patching formwork (left) and wetted area to be patched (right) 

Workers transported the patch mix using buckets and poured the mixture into the forms until full. 

As the damaged areas filled with patching, more mix was added to fill the forms completely 

(Figure 4.8).  
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 Figure 4.8. Patch mix being poured into formwork 

Weep holes in the formwork were plugged when the mixture began draining (Figure 4.9).  

 

Figure 4.9. Patch mix flowing from weep holes 



41 

Damaged regions on the bottom flanges were filled with patch mix and required no formwork. 

Test cylinders were cast from each patch mix to test compression strength over time. Identical 

methods of forming and patching were used on both the UHPC specimens and the HESC 

specimens. 

Test Setup and Procedure 

Loading Setup 

Testing was performed to ensure that the maximum shear stresses occurred in the beam ends and 

that shear would be the resulting failure mode. To test the shear reaction of the beams in this 

study, four-point bending tests were carried out on the beam segments. The test setup is shown in 

Figure 4.10.  

 

 

Figure 4.10. Four-point loading laboratory test set up 
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The beam segments were simply supported with a hinge and a roller. The center-to-center span 

between supports was 10 ft. This configuration creates a low span-to-depth ratio, inducing the 

development of shear cracks. Two 10 in. by 10 in. steel plates were placed on the top surface of 

the beam to distribute the load to the beam. The two point loads were located 3 ft apart, 

symmetrical by the center of the beam span. Each point load was applied using two hydraulic 

actuators and measured using 200 kip load cells. 

Loading Protocols 

During the first beam test, initial loading was applied in 25 kip increments until the capacity of 

the actuators was reached. Cracking on the beam surface was tracked at 100 kip increments. 

After initial loading, the beam was loaded to the maximum and unloaded for three additional 

cycles. Cracking and crack propagation were tracked at each additional maximum loading. After 

completion of the first beam test, a load increment of 50 kips rather than 25 kips was used for the 

initial loading on the remaining beams. 

Instrumentation and Data Recorded 

Three types of instruments were used for this study: string potentiometers, concrete strain 

gauges, and DC linear variable differential transformers (LVDTs).  

The string potentiometers were located at the quarter points of the span (i.e., 2.5 ft from the 

supports) and at the center (i.e., 5 ft from the supports). All string potentiometers were placed 

along the centerline of the specimen in the longitudinal direction.  

Four concrete strain gauges measuring longitudinal strain were placed at the beam midspan. Two 

gauges were placed on the web and two were placed on the top and bottom flange of the beam to 

monitor the compressive and tensile strains along the beam height. Note that beam specimen L2 

did not have longitudinal strain gauges on the web of the beam, only the top and bottom flange. 

Two strain gauge rosettes were placed on the web of the beam located approximately along the 

theoretical propagation of the shear cracking above the neutral axis at each end of the specimen. 

The rosettes measured the average strains in the web at 0°, 45°, and 90° at the location of the 

rosettes. These data were then used to calculate principal strains within the two critical locations 

on the beam. For concrete strain gauges to function properly, the sensors cannot be placed over 

any voids on the surface. Small voids (>0.125 in.) were filled with epoxy and sanded down so 

that only the strain in the concrete would control and be measured. Larger voids had to be 

avoided entirely. In the presence of large voids, the rosettes on each beam could not be placed in 

the exact same location and were shifted up to 2 in. in any direction while remaining as close as 

possible to the theoretical cracking path.  

To measure the separation between the patch and the beam during loading, one horizontal and 

one vertical LVDT was placed on each patched section. Note that the beam specimen without 

patching did not have LVDT sensors. Instrumentation types and locations are shown in Figure 

4.11.  
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Figure 4.11. Beam instrumentation schematic 

Results and Discussion 

Cracking Behavior 

The first sign of visible cracking in the Control-1 specimen occurred between 250 and 300 kips. 

Cracking propagated in the upper web at 35° from horizontal. Cracking occurred above the 

theoretical shear patch. Existing cracks that had formed due to cutting of the pretensioned steel 

cables expanded horizontally at loadings greater than 250 kips. Cracking propagated 

approximately 1 to 2 in. in each of the second and third load cycles, with little to no propagation 

in the final loading. The final crack pattern is shown in Figure 4.12.  
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(a) Northwest (b) Southwest 

  
(c) Southeast (d) Northeast 

Figure 4.12. Crack pattern of Control-1 

The Control-2 specimen was the only beam specimen to reach total failure. Significant shear 

cracking occurred in the web above the theoretical shear cracking path. The results of the initial 

loading had otherwise been comparable to those of other beam specimens. Cracking first 

occurred between 250 kips and 300 kips. During the second loading cycle, brittle failure 

occurred at a peak load of 400.6 kips (Figure 4.13).  
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Figure 4.13. Control-2 failure 

The first stirrup from the south bearing fractured in one location: the bottom flange (Figure 

4.14). Because of this, the mode of failure is assumed to be confinement failure, which caused 

the bottom flange to burst.  

 

Figure 4.14. Fractured stirrup on bottom flange of Control-2 

It should also be noted that the prestressed strands shrank approximately 1.25 in. into the beam 

following the bursting failure in the bottom flange. This indicates that there was prestressing 
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force remaining in the strands after the full-length beam was cut into the shorter test specimens 

(Figure 4.15). 

 

Figure 4.15. South beam end of Control-2 after failure 

The first sign of visible cracking in the UHPC-1 and UHPC-2 specimens occurred between 300 

and 350 kips. Cracking started in the existing concrete outside of the repair region. Cracking 

propagated in the upper web at 40° from horizontal. Cracking occurred both above the 

theoretical shear path and along the expected path. Some existing cracks that had formed due to 

cutting of the pretensioned steel cables expanded horizontally at loadings greater than 300 kips. 

Cracking propagated approximately 1 to 2 in. in each of the second and third load cycles, with 

little to no propagation in the final loading. Visible cracking can be seen within the UHPC 

patching surface for both specimens, demonstrating an adequate bond between the patching 

material and the substrate (Figure 4.16 and Figure 4.17).  
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(a) Northwest (b) Southwest 

  
(c) Southeast (d) Northeast 

Figure 4.16. UHPC-1 crack pattern 
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(a) Northwest (b) Southwest 

  
(c) Southeast (d) Northeast 

 
(e) Beam end 

Figure 4.17. UHPC-2 crack pattern 

Visible cracks appeared on the bottom flange of UHPC-2 at the interface of the NC and UHPC 

patch at loadings greater than 300 kips (Figure 4.18). 



49 

 

Figure 4.18. UHPC-2 south flange patch cracking along interface 

The first sign of visible cracking in the HESC-1 and HESC-2 specimens occurred between 300 

and 350 kips. Cracking started in the existing concrete outside of the repair region. Cracking 

propagated in the upper web at 45° from horizontal. Cracking occurred both above the 

theoretical shear path and along the expected path. Some existing cracks that had formed due to 

cutting of the pretensioned steel cables expanded horizontally at loadings greater than 300 kips. 

Cracking propagated approximately 1 to 2 in. in each of the second and third load cycles, with 

little to no propagation in the final loading. Visible cracking can be seen within the HESC 

patching surface for both specimens, demonstrating an adequate bond between the patching 

material and the substrate (Figure 4.19 and Figure 4.20). No visible cracks appeared on the 

bottom flange at the interface of the NC and HESC patch. 
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(a) Northwest (b) Southwest 

  
(c) Southeast (d) Northeast 

 

 

Figure 4.19. HESC-1 crack pattern 
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(a) Northwest (b) Southwest 

  
(c) Southeast (d) Northeast 

Figure 4.20. HESC-2 crack pattern 

Loads, Strains, and Deflections 

Only one of the six beams (Control-2) reached failure during testing. Failure occurred during the 

second load cycle at a peak load of 400.6 kips. To allow a comparison of all of the beam 

specimens, the data presented in this section are from the first loading cycle. Cracking occurred 

in each of the tests during the first loading cycle, at which point some of the data recorded were 

no longer usable. 
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The maximum loads applied to the specimens are listed in Table 4.3.  

Table 4.3. Maximum load for each specimen 

Specimen Max load (kips) 

UHPC-1 421.9 

UHPC-2 425.3 

HESC-1 424.1 

HESC-2 423.3 

Control-1 429.2 

Control-2 424.6 

 

A plot of load versus midspan displacement for all specimens is depicted in Figure 4.21.  

 

Figure 4.21. Load versus midspan displacement for all six specimens 

For comparison, the midspan displacement values at a load of 421.9 kips are presented for all 

specimens in Table 4.4. 

Table 4.4. Vertical deflection at midspan (in.) 

UHPC-1 UHPC-2 HESC-1 HESC-2 Control-1 Control-2 

0.182 0.199 0.207 0.210 0.224 0.215 
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From Figure 4.21 and Table 4.4, it can be seen that the beams that had undergone patching repair 

had lower deflections, with UHPC demonstrating the lowest values. However, given that the 

beam height is 45 in. and the maximum difference in total vertical displacement is less than 0.06 

in., these results may not be considered significant. 

While recording data for principal strain, multiple strain gauges within individual rosettes failed, 

resulting in inaccurate calculations. The results from those gauges were not included in the 

analysis comparing the different beams. Due to the variance in the exact location of each rosette 

on different beam specimens and the propagation of cracks through strain gauges during multiple 

tests, direct comparison is difficult. Table 4.5 shows the maximum and minimum strains 

experienced in each beam specimen at the location of the strain rosette.  

Table 4.5. Principal strain 

Beam 

specimen 

North South 

Max Min Max Min 

UHPC-1 168 -673 -- -- 

UHPC-2 5,451 1,513 6,328 -1,292 

HESC-1 390 -303 393 -592 

HESC-2 7,283 -7,803 36,955 -20,942 

Control-1 -- -- 717 -496 

Control-2 221 -519 272 -336 

 

Note that any strain value surpassing -2,000 µε represents cracked concrete. UHPC-2, HESC-2, 

and Control-2 all had a crack propagate through at least one strain gauge rosette during testing. 

Displacement gauges placed on each patch were used to record the separation between the patch 

and the beam and thereby indicate when the patch delaminated from the beam. The displacement 

gauge readings shown in Table 4.6 are all below 0.01 in.  

Table 4.6. Patch interface separation 

Specimen 

Sensor Location 

North South 

Vertical (in.) Horizontal (in.) Vertical (in.) Horizontal (in.) 

UHPC-1 -- -- -0.0025 -0.0008 

UHPC-2 -0.0037 -0.0003 -0.0008 -0.0020 

HESC-1 -0.0031 -- -0.0026 -0.0007 

HESC-2 -0.0029 -- -0.0004 -- 

 

The data recorded by the sensors used in this experiment do not overcome the bounds of error. 

This means that the beam web patches did not separate from the beam substrate. Both the UHPC 

and HESC patches demonstrated adequate bonding performance in full-scale testing.  
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Summary and Conclusions 

• Upon completion of the monotonic loads, all of the repaired specimens maintained their 

integrity and performance with no failure. There were no significant differences observed in 

behavior under shear loading among the four patch-repaired girders in the large-scale study.  

• The beams with patch repairs experienced lower maximum strains and deflections despite 

being subject to a greater maximum load, indicating that the patching exhibited good bond 

behavior during loading and unloading.  

• Failure of one of the unrepaired beams due to confinement failure demonstrated one 

consequence of the loss of concrete cover caused by beam-end damage. Both the UHPC and 

HESC patches demonstrated good bonding to the beam substrate during full-scale testing. 

Patch repairs are significantly less expensive than beam replacement and are considered to be 

conventional bridge repairs. 

• Further research on the practical aspects and strength-enhancing capabilities of UHPC and 

HESC for beam-end repair in shear-critical regions is recommended through field 

investigations. 

  



55 

SUMMARY AND CONCLUSIONS 

Summary 

In this study, the efficacy of UHPC and HESC for strengthening and repairing damaged 

prestressed concrete beam ends was evaluated. First, a review of current repair strategies was 

conducted to determine the key qualities of effective repair methods. The use of unique materials 

with enhanced properties to perform patch repairs was ultimately selected as the repair method 

evaluated in this research project. Small-scale laboratory testing was conducted to evaluate the 

bond strength of various potential patching materials in terms of shear stress and tensile stress. 

Full-scale laboratory testing was conducted to determine the properties and performance of 

UHPC and HESC as beam patching materials. Six artificially damaged prestressed concrete 

beams were tested in full-scale experiments: two without repair, two repaired with UHPC, and 

two repaired with HESC.  

Observations indicated excellent patch bonding by the two materials tested in the full-scale 

portion of this research. Failure of one of the unrepaired beams (Control-1) due to confinement 

failure demonstrated one consequence of the loss of concrete cover and damage to the 

reinforcing steel caused by the beam-end damage.  

Conclusions and Recommendations 

The conclusions presented below were drawn from the small-scale testing of the bond strengths 

of various patching materials and the performance of repaired and unrepaired full-scale beam 

specimens. 

The following conclusions were drawn from the small-scale investigation of bond strength: 

• Small-scale bond testing for this project consisted of testing four different materials to 

determine their bonding properties and their suitability for use as patch repair materials. The 

materials tested included proprietary and nonproprietary UHPC, HESC, and SCC-C. Each 

material was tested under tensile stresses and shear stresses using the splitting tensile strength 

test and the slant shear strength test, respectively.  

• All material types demonstrated satisfactory tensile bond strength. The interface surface 

condition did not demonstrate a significant effect on tensile bond strength for all samples. 

Both the HESC and SCC-C bonded samples exhibited a tensile bond strength exceeding the 

tensile strength of the plain (unbonded) samples tested. Both types of UHPC samples resulted 

in higher peak loads resisted. However, for all specimens, the substrate concrete failed before 

the testing machine reached peak load. Therefore, maximum tensile bond stress could not be 

determined. 

• All of the tested material types demonstrated appropriate shear bond strength. No bond 

failures were observed during slant shear testing. In the case of the HESC and SCC-C 
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samples, failure initiated in the substrate concrete and cracking propagated as vertical 

splitting cracks in nearly all specimens. Pure substrate failure occurred for the UHPC 

samples. Some cracks penetrated the UHPC but were mitigated by the steel fibers in the mix. 

These results suggest that all of the identified materials provide adequate bond strength and 

are suitable for use as patch repair materials. 

The following conclusions were drawn from the full-scale shear test of six beam specimens to 

investigate the efficacy of the patch repair method using different materials: 

• Upon completion of the monotonic loads, all of the repaired specimens maintained their 

integrity and performance with no failure. There were no significant differences observed in 

behavior under shear loading among the four patch-repaired girders in the large-scale study.  

• Failure of one of the unrepaired beams due to confinement failure demonstrated one 

consequence of the loss of concrete cover caused by corrosion damage. Both the UHPC and 

HESC patches demonstrated good bonding to the beam substrate during full-scale testing. 

Patch repairs are significantly less expensive than beam replacement and are considered to be 

conventional bridge repairs. 

• The beams with patch repairs experienced lower maximum strains and deflections despite 

being subject to a greater maximum load, indicating that the patching exhibited good bond 

behavior during loading and unloading.  

• Further research on the practical aspects and strength-enhancing capabilities of UHPC and 

HESC for beam-end repair in shear-critical regions is recommended through field 

investigations. 
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