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EXECUTIVE SUMMARY 

More than 20% of the secondary roads in Iowa are paved and hard-surfaced, with about 30% of 

statewide road projects slated for surfacing roadways with hot-mixed asphalt (HMA) and 

portland cement concrete (PCC). Given that paved and hard-surfaced roadways, which deliver 

access to public and private property throughout a county require continual maintenance and 

reconstruction, these roadways play a critical role in the jobs of Iowa county engineers.  

Iowa county engineers can operate their road systems by inventorying their records and 

inspecting them to perform preventive maintenance and rehabilitation. Such an inventory 

includes pavement history, pavement structural design features, pavement condition measures, 

traffic volume information, and material properties, but the lack of a reliable tool to estimate 

future pavement performance has resulted in counties encountering challenges to estimating 

remaining service life (RSL), i.e., when a pavement will reach and how long it will remain in a 

particular condition before its next rehabilitation. Accurate RSL estimations could facilitate 

maintenance and rehabilitation decisions to provide better prioritization and allocation of 

resources.  

The primary objective of this study was to develop an Iowa Pavement Analysis Techniques 

(IPAT) tool (using Microsoft Excel, macro, and Visual Basic for Applications [VBA]) to help 

engineers predict performance and RSL of Iowa county pavement systems for four pavement 

types—jointed plain concrete pavement (JPCP), asphalt concrete (AC) pavement, AC over JPCP, 

and PCC overlay at the project- and network-levels. 

The IPAT tool takes into account traffic capacities, equivalent single-axle load (ESAL) or annual 

average daily traffic (AADT), and design lifetime (based on layer ages, properties, slab 

thickness, and prior surface treatments). The IPAT tool uses a navigation panel (main tool) that 

can launch 56 sub-tools utilizing statistical- and artificial intelligence (AI)-based models to 

predict pavement performance and RSL. 

A detailed step-by-step methodology for developing pavement performance and RSL prediction 

models was established and deployed using real pavement performance data obtained from the 

Iowa Department of Transportation (DOT) Pavement Management Information System (PMIS) 

database. The developed models were evaluated and improved using available data specifically 

related to Iowa county pavement systems. As an aspect of preparing such data, the concept of an 

Iowa historical performance databank (i.e., HPD) was introduced and demonstrated using raw 

data obtained from Lee County.  

To develop RSL models, project- and network-level pavement performance models were initially 

developed using two approaches: a statistically (or mathematically) defined approach and an AI-

based approach using artificial neural network (ANN) techniques. Although both approaches can 

be utilized for predicting pavement performance and RSL at both project and network levels, the 

research team recommends using the statistics-based models for project-level predictions and the 

ANN-based models for network-level predictions. This is because the ANN-based models were 
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developed using aggregated data from statewide pavement systems and the statistics-based 

models were developed using individual pavement section data, and this difference increases the 

capability of ANN models to capture various scenarios throughout the network system. On the 

other hand, since statistics-based performance models require very few data for analysis, they 

can be extensively used when only a few details on pavement condition or structural and traffic 

data are available for the given pavement sections of interest. Another benefit of the ANN 

approach is that the fields will be automatically refined as engineers add more data through the 

user interface in the IPAT tool and have the most recent and more accurate pavement 

performance predictions for decision-making.  

To estimate RSL, the user provides threshold limits for various pavement performance 

indicators, including the international roughness index (IRI) for the statistics-based models, and 

rutting, percent cracking, and IRI for ANN-based models. The Federal Highway Administration 

(FHWA)-specified threshold limits could be utilized and assigned as default threshold limit 

values for use by the IPAT tool. The feasibility of integrating preservation and rehabilitation 

techniques for RSL predictions using ANN models was also investigated to evaluate the effects 

of treatments on pavement RSL.  

The key findings from this study and recommendations for implementation are as follows: 

• Statistics-based models provide high accuracy in IRI or pavement condition index (PCI) 

predictions when there is only a single pavement deterioration trend, as for a project-level 

pavement system. Sigmoidal equations have mainly been used in statistical model 

development, because: (1) they have a low initial slope that increases with time, and (2) they 

follow a trend in which pavement condition always gets worse and damage becomes 

irreversible, and such behavior makes these models mimic pavement deterioration behavior 

observed in field studies. 

• ANN-based models, depending on the pavement type, provide high accuracy in IRI, rutting, 

and percent cracking predictions when there are many pavement sections with a variety of 

traffic volumes, thicknesses, and other various deterioration trends, as in a network-level 

system. 

• The feasibility study for integrating pavement treatment techniques into pavement RSL 

models that was conducted highlights some challenges in the data collection phase that 

require specific parameters to be defined before predicting post-treatment performance and 

RSL. These parameters include preservation and rehabilitation treatment triggers, recovery 

percentages in performance, expected treatment service life, and pavement RSL extension 

based on the pavement type and treatment type. 

• The IPAT tool developed in this study is a user-friendly tool that provides flexibility in 

launching different types of tools based on pavement type and data available from local 

agencies. The statistics- and AI-based approaches have been successfully utilized to help 
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estimate pavement performance and RSL in facilitating decision-making and managing 

county pavement systems.  

• The Microsoft Excel-based IPAT tool could be integrated into Iowa county pavement asset 

management procedures consisting of five recommended steps: (1) data collection, (2) data 

processing, (3) data analysis, (4) data management, and (5) data-driven decision-making. 

Future research directions for fully implementing the recommended steps in Iowa county 

pavement asset management practices to fulfill county engineer needs were identified and 

recommended for the next phase of this study. These research directions, categorized into 

five topics related to each of the steps include: (1) implementing low-cost data collection 

tools for local road agencies, (2) automating or semi-automating data processing, (3) fully 

integrating maintenance/preservation/rehabilitation activities into the IPAT tool, (4) 

integrating the IPAT tool into the geographic information system (GIS) platform and/or 

software and developing a smartphone application version of IPAT tool as an official app 

under the Iowa County Engineers Association Service Bureau (ICEASB) AppSuite for better 

data management practices, and (5) developing multi-objective optimized RSL models for 

assisting in better decision-making. 
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CHAPTER 1. INTRODUCTION 

Problem Statement  

Many state transportation and local road agencies measure road conditions to evaluate the need 

for pavement preservation or rehabilitation. Remaining service life (RSL) is defined as the time 

until either a road condition index reaches its threshold limit or until the next rehabilitation or 

reconstruction event is required (Elkins et al. 2013a, Elkins et al. 2013b). Compared to a 

conventional condition index, RSL is easier to understand and provides insight by converting 

condition measures to an operational performance measure that indicates how well or how long 

the road will continue serving the public (Mack and Sullivan 2014). 

The Moving Ahead for Progress in the 21st Century (MAP-21) Act is a milestone for the US 

economy and the nation’s surface transportation program (FHWA 2012). It contains three major 

provisions (section 1203 §150, section 1106 §119, and section 1202 §135) that, when combined, 

require states to develop a far-reaching performance-based management program for pavements 

and roads. The American Association of State Highway and Transportation Officials (AASHTO) 

Standing Committee on Performance Management (SCOPM) Task Force on Performance 

Measure Development, Coordination, and Reporting produced several recommendations for 

defining national-level performance measures and target setting for pavements, including the 

international roughness index (IRI) and the pavement structural health index (PSHI) (AASHTO 

2012, AASHTO 2013). However, since such condition measurements have no time element that 

tells how long a pavement will remain in a particular condition or how pavement performance 

may change over time, pavement engineers have new need for a tool that can tell when 

preservation and rehabilitation are required for given road sections.  

Iowa has 19,166 miles of paved and hard-surface secondary roads. Iowa county engineers have 

the capability to inspect these pavements at any time, and the data they acquire includes 

pavement history (related to construction, maintenance, and rehabilitation), pavement structural 

design features, pavement condition measures, traffic volume information, and material 

properties. While collecting and using these data to develop RSL models for Iowa county 

pavement systems would be challenging, it could facilitate better decision-making in managing 

county road assets. 

Another challenge is to create tools that could enable county engineers to more easily estimate 

RSL. Since two pavements under identical conditions can have significantly different RSL 

values, there is a need to predict future pavement condition trends for more than just pavement 

surface conditions, with original equivalent single-axle load (ESAL) capacity and design lifetime 

(based on layer ages, properties, slab thickness, and prior surface treatments) factors that should 

be taken into consideration. 

Research Objectives and Scope  

The primary objective of this study is to develop an Iowa Pavement Analysis Techniques (IPAT) 
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tool for Iowa county pavement management and decision-making. Specific objectives 

established to achieve this primary objective were as follows: 

• Find the best way to model a pavement’s lifetime and make predictions as to when it will 

reach the end of its service lifetime (arrive at minimum service level) 

• Take into consideration available data such as pavement history and structure, materials, 

traffic, truck volumes, etc., for model development 

• Absorb and integrate condition data from multiple sources, such as the Iowa Department of 

Transportation (DOT) Pavement Management Information System (PMIS), Iowa Pavement 

Management Program (IPMP), engineering field assessments, and inspector team distress 

evaluations 

• Compute an RSL value for every paved segment and provide a mile versus RSL tally 

• Develop methodology to support predictive and consequence analysis 

Report Organization 

This report consists of seven chapters and three appendices as follows: 

• Chapter 1 provides an introduction, including the problem statement, research needs, and 

objectives. 

• Chapter 2 presents a review of the RSL concept, including its advantages, and discussions on 

the general relationship of RSL to pavement condition measures. 

• Chapter 3 describes a detailed step-by-step methodology for development of a framework for 

pavement performance and RSL prediction models using real pavement performance data 

obtained from the Iowa DOT PMIS database. To develop RSL models, both statistical- (or 

mathematical-) and artificial neural network (ANN)-based pavement performance models 

were initially developed. Using pavement performance models for various pavement 

performance indicators (IRI for project-level models, and rutting, percent cracking, and IRI 

for network-level models) along with the Federal Highway Administration (FHWA)-

specified threshold limits for these pavement performance indicators. RSL models for three 

pavement types are described—jointed plain concrete pavements (JPCPs) representing rigid 

pavement systems, asphalt concrete (AC) pavements representing flexible pavement systems, 

and AC over JPCP representing composite pavement systems in Iowa. These RSL models 

will significantly assist engineers in their decision-making processes. Predictions of impact 

on pavement performance are also evaluated. 

• Chapter 4 describes a detailed step-by-step methodology for development of a framework for 

an Iowa county pavement historical performance databank (HPD), with a detailed description 

of data summarization and improvements in pavement performance and RSL prediction 

models using real pavement performance data obtained from the Iowa DOT and Iowa county 

engineer’s offices. Based on the approaches in Chapter 3, the statistical- and ANN-based 

models developed using the PMIS database were validated using the HPD in this chapter for 
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JPCPs and AC pavements. The models were repeatedly improved with new input parameters 

until highly accurate pavement performance predictions for county pavements were 

achieved. RSL models were then developed for JPCP and AC pavement models. 

• Chapter 5 presents an ANN-based model developed using county portland cement concrete 

(PCC) overlays or concrete overlays obtained from previous research in the Iowa Highway 

Research Board (IHRB) Project TR-698 (Gross et al. 2017) to predict IRI and estimate RSL 

of county PCC overlays. 

• Chapter 6 discusses the feasibility of integrating preservation and rehabilitation techniques 

for RSL predictions using ANN models to evaluate the effects of treatments on RSL of 

pavements. Excel-based tools employing ANN models, which have not cooperated with the 

current version of the IPAT tool developed through this study, are introduced and discussed 

for such feasibility.  

• Chapter 7 presents the IPAT tool by describing the interface of the main navigating tool and 

providing flowcharts describing the various analysis steps for all types of pavement analysis, 

including JPCP, AC, AC over JPCP, and PCC overlays. 

• Chapter 8 presents the overall research conclusions made from the entire study, including 

detailed findings from studies conducted for each type of pavement system.  

• Chapter 9 summarizes the recommendations for implementation and future research 

directions suggested by this study.  

• Appendix A offers a step-by-step detailed standard procedure to illustrate how an Iowa HPD 

concept could be developed. This document, together with the application of methods used 

by the Iowa DOT PMIS for primary roads, delineates procedures for creating and processing 

raw data for pavements and guidelines for developing an accurate database for Iowa 

secondary roads referred to in Chapter 4. 

• Appendix B presents prototype analysis tools for preservation and rehabilitation techniques 

to be integrated into pavement performance and RSL prediction models referred to in 

Chapter 6. 

• Appendix C provides examples of MATLAB software source code for developing ANN 

models and scripts for the Visual Basic for Applications (VBA) and macro-based Excel-

based IPAT tool. 

In addition, as part of this project, the research team also developed a user guide on how to use 

the VBA- and macro-based IPAT tool described in Chapter 7. 
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CHAPTER 2. REVIEW OF RSL CONCEPT 

In general, there are two definitions for RSL: the time remaining until a condition index 

threshold limit is reached and the time remaining until the next rehabilitation or reconstruction 

event is scheduled to occur (called remaining service interval [RSI] to distinguish it from the first 

definition) (Elkins et al. 2013a, Elkins et al. 2013b, Mack and Sullivan 2014). In contrast to RSL, 

a condition measurement reflects only the current condition of the road network and has no time 

element that tells how long a pavement would be expected to remain in a given condition or how 

its performance will change over time (Figure 1).  

 
Reproduced from Mack and Sullivan 2014 

Figure 1. Pavement condition vs. age and rehabilitation  

The multiple advantages of using RSL have been reported in the literature (Mack and Sullivan 

2014), and key positive RSL features include the following: 

• Provides the time (in years) before rehabilitation is required for any given road section 

• Easy to understand (especially by the public) 

• Can be a multi-conditional measure developed from any type of functional and/or structural 

data 

• Allows agencies to distinguish between two road sections having the same current condition 

(i.e., the same current IRI) 

• Provides deeper insight by converting condition measures into an operational performance 

measure that predicts how well or how long a road will continue serving the public 

• Can be an ideal tool to address the transportation planning and performance management 

criteria requirements of the MAP-21 legislation  

The definition of RSL by different DOTs and transportation agencies may differ because factors 

affecting future conditions of pavement network might vary by state while playing an essential 

role in decision-making, life-cycle cost analysis (LCCA), planning, and budget allocations. As 

examples, the Minnesota DOT (MnDOT) considers the RSL to be the estimated time until the 
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next major rehabilitation (Kumar et al. 2018), while the Michigan DOT (MDOT) outlines the 

RSL using the Michigan ride-quality index, with the assumption of no remaining life represented 

by an index of 50. The Louisiana DOT and Development (LADOTD), using the most common 

definition used by other state agencies, refers to RSL as the time period between construction 

date and major rehabilitation date. More examples are presented in Table 1. 

Table 1. RSL definitions used by different state agencies 

State 

State 

abbreviation 

How do you define service life for concrete and asphalt 

pavements? 

British 

Columbia 
BC 

Service life: years until end-of-life rehabilitation. We get 

approximately 15 to 20 years out of asphalt pavement, dependent 

on traffic and environment. (Design life is 20 years.) End of life 

occurs with an overlay or mill-and-fill or hot in-place recycling. 

Pavement condition indices (PCIs) are used but not as 

rehabilitation triggers. 

Arizona AR 

Service life: overall condition or structural adequacy of the 

pavement structure. In asphalt, indicators include excessive 

rutting, fatigue cracking, and excessive cracking. In concrete, 

indicators entail excessive faulting and cracking and pavement 

texture. Overall capacity and user safety can also affect service 

assessments. 

Florida FL Service life: the typical time between rehabilitation projects. 

Iowa IA 

Not defined, per se. Pavements are assessed by PCI values on a 

100-point scale; below 40 requires major rehabilitation or 

reconstruction. 

Kansas KS 
Service life: the period during which pavement structure can be 

effectively and economically rehabilitated and kept in service. 

Maryland MD 

Service life: the length of time until first rehabilitation. Rehabs 

are overlays or major repair that improves structural capacity; 

after rehab, pavement begins a new service life. Preventive or 

reactive treatments that add no structure—such as patching, 

crack sealing, diamond grinding—do not end service life. 

Reconstruction is rare, reserved for realignments, traffic volume 

improvements, utility improvements, and such. 

Minnesota MN 
Service life: the time, in years, until pavement reaches a present 

pavement serviceability rating (PSR) of 2.5. 

Mississippi MS 

Service life: for design purposes, defined in years (Editor’s note: 

from construction until overlay, or from overlay to next overlay 

or end-of-life.) 

Missouri MO 

Service life: used interchangeably with design life, JPCP and 

deep-strength hot-mixed asphalt (HMA) for new pavements 

only; anticipate 45 years with interim maintenance and 

rehabilitation. 
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State 

State 

abbreviation 

How do you define service life for concrete and asphalt 

pavements? 

New 

Mexico 
NM 

Service life: in the project-level management program, defined as 

the time from when a section of pavement first enters service to 

the point its condition is such that the useful performance period 

has ended. We use 5 performance indices for asphalt pavement 

and 4 others for rigid pavement. 

Service life: in design, we estimate the number of cumulative 

ESALs for the design years in question via a design 

serviceability index of 2.5 for high volume, 2.0 for low. Rehabs 

designed for 10-year ESAL projections; new construction for 20-

year. 

New York NY 

Service life: the length of time treatment is effective, or life of 

pavement or overlay until rehabilitation is required. When rehab 

required, a pavement is scored a 5 on a scale of 10 

Rhode 

Island 
RI 

Service life (or performance period): the time between 

successive reconstructions. 

South 

Dakota 
SD We don’t use this concept. 

Utah UT 

Utah uses three terms regarding pavement life.  

RSL: estimated number of years from any given date (usually 

last survey date) for a pavement section to accumulate distress 

points equal to a threshold value (pavement distress value 

beyond which pavement considered failed).  

Design life: planned number of years from construction to 

structural failure from fatigue. For flexible pavement, we design 

for 20 years; for rigid, 40.  

Pavement life: number of years from original construction to 

complete reconstruction; we use a “pavement life strategy” for 

each family of pavements, recognizing pavement life may extend 

well beyond design life and may require multiple rehabilitation 

treatments over a lifetime. 

Virginia VA 

Service life: VaDOT currently uses a combination index of 

pavement age and visual rating of surface distresses, load-related 

and not. VaDOT anticipates moving to an automated measure of 

structural adequacy. 

Source: Adapted from McLawhorn 2004 

Conventionally, pavement condition and service time/traffic are the two key factors used to 

determine the necessity for pavement preservation and rehabilitation. Preventive triggers and 

rehabilitation triggers are always specified along with specific pavement conditions, and optimal 

timing for preservation and rehabilitation occurs when a pavement condition reaches such a 

trigger (threshold). Figure 2 depicts the typical project selection process for pavement 

preservation and rehabilitation, while Figure 3 shows the general relationship between PCI and 

RSL (Bolling 2008). 
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Adapted from Bolling 2008 

Figure 2. Typical project selection process for pavement preservation and rehabilitation 

 
Bolling 2008 

Figure 3. General relationship between PCI and RSL 

Most developed pavement RSL prediction models utilize pavement performance (i.e., distress 

and IRI) predictions using categorization of pavement RSL prediction models based on failure 

type (Witczak 1978, Vepa et al. 1996), including functional failure-based approaches, structural 

failure-based approaches, or both. Empirical models (mainly using statistical approaches) and 

mechanistic-based models (mainly using engineering principles) are two main types of 

performance models (Elkins et al. 2013a, Elkins et al. 2013b), and comparisons of the pros and 

cons of these approaches are presented in Table 2.  
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Table 2. Approaches measuring and estimating RSL 

Class 

Common 

approaches Pros Cons 

Mechanical 

• Fatigue test 

• Punch-out 

failures 

• Falling 

weight 

deflectometer 

(FWD) 

• No traffic data or 

historical 

conditions are 

needed 

• Suitable for project-

level management 

• Simple to assess the 

mechanical status 

of various 

pavements 

• The operation is 

done in a standard 

manner 

• Pavement is damaged by 

destructive tests 

• Pricy equipment 

• Non-destructive test with back-

calculation has low accuracy 

• Location and traffic effects on 

the accuracy of estimation 

• The influences of the effective 

parameters cannot be easily 

forecasted 

• Low suitability for 

management at a network-level 

Empirical 

• Life table 

• Cox 

proportional 

hazards 

• Neural 

network 

• Nomograph 

• Regression 

• Kaplan–

Meier 

• Failure time 

theory 

• If historical data are 

available, this 

approach is cheaper 

than another 

approach 

• The effects of the 

effective 

parameters can be 

predicted 

• It is relatively 

simple to do and 

merge with 

pavement 

management 

systems 

• Need enough historical data 

• Accuracy of estimation is very 

much a function of data quality 

and model format 

• Comprehensive experience and 

field knowledge are needed for 

the specification of the format 

Source: Yu 2005 

Most mechanistic-based models use statistical methods for calibration, and some of the empirical 

models incorporate engineering principles. In addition, many models using a mechanistic-based 

approach, e.g., FWD measurements and back-calculated layer moduli and some mechanistic-

based distress prediction models (Elkins et al. 2013a, Elkins et al. 2013b). Table 3 summarizes 

the related literature survey that uses different methods developed for use at the project level to 

estimate the RSL of pavements. 
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Table 3. Pavement RSL prediction models survey summary 

Model Type Note Reference 

Life table 

survivor 

curves 

Empirical 

Developed for pavements built each year from 

1903 to 1937 in 46 states; the probability 

versus time interval graph formed a survival 

curve; RSL was estimated by extrapolating the 

survival curve to 0% survival 

Winfrey and 

Howell 1968 

AASHTO 

empirical 

pavement 

design 

guides 

Empirical 

These methods use two basic empirical design 

equations (one for flexible and the other for 

rigid pavements) that relate the number of 

traffic loadings (expressed in terms of 18 kip 

[40 kN] ESALs) to pavement structural 

capacity, subgrade support properties, 

pavement serviceability changes, and 

reliability considerations; step 1: determine the 

total number of 18 kip ESAL applications that 

the pavement structure can support until it 

reaches the terminal serviceability level of 

interest; step 2: calculate the remaining ESAL 

loadings by subtracting the number of ESALs 

applied to the pavement so far from the total 

number of ESALs (determined from step 1); 

step 3: estimate RSL trough dividing the 

remaining ESAL loadings by the ESAL rate 

per year  

AASHTO 1986, 

AASHTO 1993 

Failure 

time theory 
Empirical 

The basis of the failure time theory requires 

that the underlying functional form of the 

parametric failure distribution be assumed a 

priori; this allows for estimation of the 

coefficients of those parameters and in effect 

dictates the influential factors; this may not be 

feasible when the underlying functional form 

does not match any known parametric 

statistical distribution 

Prozzi and 

Madanat 2000 

Cox PH 

model 
Empirical 

A semi-parametric model that does not require 

the survival time distribution to be known and 

can evaluate the effects of influential factors 

on pavement service life; it can take censored 

(i.e., incomplete) data into account; a 

pavement is considered to have reached the 

end of its useable life either if it is 

rehabilitated or if its condition falls below a 

specified criterion 

Yu 2005 
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Model Type Note Reference 

Kaplan-

Meier 

survival 

analysis 

(Product 

limit 

estimator 

method) 

Empirical 

A statistical technique used to generate tables 

and plots of survivor or hazard functions for 

time-to-event data; advantages of the method 

are that it accounts for censored data (i.e., 

incomplete), losses from the sample, and non-

uniform time intervals between observations; 

pavements must be grouped into families that 

have similar characteristics, traffic loadings, 

and environments; a separate survivor curve 

has to be generated for each factor of interest 

Balla 2010 

Pavement 

health track 

(PHT) 

analysis 

tool 

Mechanistic

-based 

Models based on use of default level 3 

Mechanistic-Empirical Pavement Design 

Guide (MEPDG) inputs along with the 

Highway Performance Monitoring System 

(HPMS) data are used to predict changes in 

multiple pavement condition measures 

adjusted for currently observed levels; 

pavement health is defined as the time in age 

or load application from initial construction or 

reconstruction to the first major rehabilitation 

as warranted by pavement ride and structural 

conditions 

O’Toole et al. 

2013 

Correlation 

analysis  

Mechanistic

-based 

Statistical regression model developed by 

using PCI and FWD measurement to evaluate 

pavement condition and RSL; the required 

data to predict RSL includes road information, 

traffic data, and deflection data; PCI values 

can help determine selection of treatment time 

and predict RSL; a correlation coefficient of 

0.88 has been found for the relationship 

between PCI and RSL 

Setyawan et al. 

2015 

Artificial 

intelligence 

(AI)-based 

particle 

filter 

method 

(Optimized 

support 

vector 

machine 

[SVM]) 

Empirical 

By using thickness of each pavement layer and 

temperature of asphalt surface in the presented 

AI-based model, the RSL of the pavement is 

predicted; the performance of support vector 

regression (SVR) depends on its parameters 

based on the weight of particles; the model 

was trained until the best weights were 

introduced; this model’s advantage was it was 

proposed to be used as an alternative to heavy 

FWD testing in case of availability of weather 

and pavement thickness information 

Karballaeezadeh 

et al. 2019a 
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Model Type Note Reference 

AI-based 

machine 

learning 

techniques 

Empirical 

Three models were developed using SVR, 

SVM optimized by fruit fly optimization 

algorithm (SVR-FOA), and gene expression 

programming (GEP) methods to predict RSL 

based on PCI; among these methods, the GEP 

method has been found to have the highest 

accuracy in RSL prediction 

Karballaeezadeh 

et al. 2019b, 

Nabipour et al. 

2019 
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CHAPTER 3. DEVELOPMENT OF PAVEMENT PERFORMANCE AND RSL 

PREDICTION MODELS 

Description of Overall Approaches and Data Preparation 

In this study, a detailed step-by-step methodology in the development of a framework for 

measuring project- and network-level pavement performance and RSL prediction models is 

described using real pavement performance data obtained from the Iowa DOT PMIS database. 

Project- and network-level pavement performance models are developed using two approaches: a 

statistically (or mathematically) defined approach primarily used for project-level modeling and 

analysis and an AI-based approach using ANN primarily used for network-level modeling and 

analysis. Network-level pavement performance models using statistical and AI-based approaches 

are also described. The same input parameters are used in both approaches to evaluate their 

relative success in network-level pavement performance modeling. 

Microsoft Excel-based automation tools have been developed for both project- and network-level 

pavement performance modeling and analysis to facilitate pavement performance and RSL 

model development, make future pavement performance predictions, and estimate RSL for any 

given road section. These tools, which use real pavement performance data to produce realistic 

future condition predictions, can be easily incorporated into pavement management processes to 

help engineers make better informed performance-based pavement infrastructure planning 

decisions. 

Figure 4 depicts the pavement performance and RSL model development stages followed in this 

study.  

 

Figure 4. Pavement performance and RSL model development stages 
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Initially, project- and network-level pavement performance models were developed using two 

approaches: a statistically (or mathematically) defined approach for project-level use and an AI-

based approach for network-level pavement management, with both performance models 

developed for the Iowa JPCP, AC pavement, and AC over JPCP systems considered in this 

chapter. They were also developed for the Iowa PCC overlays described in a later chapter. 

Project-level pavement performance models were developed for each pavement section of each 

pavement type, while network-level pavement performance models were developed to provide a 

pavement performance indicator or a condition matrix (i.e., distresses and IRI) for each 

pavement type. 

Once pavement performance models were developed for the four pavement types, RSLs for the 

pavement sections were calculated using threshold limits for various performance indicators. 

Based on the FHWA’s Final Rule (effective February 17, 2017) regarding the implementation of 

the performance management requirements of MAP-21 and the Fixing America’s Surface 

Transportation (FAST) Act (HR 4348 2012, Visintine et al. 2018), determination of pavement 

condition is required to be based on the following metrics: IRI, percent cracking, rutting, and 

faulting (Table 4).  

Table 4. Pavement condition rating thresholds determined by the FHWA  

Condition metric 

Performance 

level Threshold 

IRI (in./mi) (AC, JPCP, AC over JPCP, PCC overlay)  

Good <95 

Fair 95–170 

Poor >170 

Percent cracking (AC, AC over JPCP) 

Good <5% 

Fair 5%–20% 

Poor >20% 

Percent slab cracked (JPCP) 

Good <5% 

Fair 5%–15% 

Poor >15% 

Rutting (in.) (AC, AC over JPCP) 

Good <0.20 

Fair 0.20–0.40 

Poor >0.40 

Source: Visintine et al. 2018 

IRI was used as the construction trigger for the rehabilitation decision-making process in project-

level RSL calculations, and rutting, percent cracking, and IRI were used as construction triggers 

for the rehabilitation decision-making process in network-level RSL calculations. RSL was 

determined based on the year when future performance predictions reach the poor condition 

threshold for the corresponding condition metric (defined in Table 4). 

MAP-21 mandates all state highway agencies (SHAs) to develop state asset management plans, 

and in response to this mandate, all SHAs have already developed their plans as of June 30, 
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2019. As stated in its transportation asset management plan (TAMP), the Iowa DOT uses PCI as 

the pavement condition metric for tracking and communicating the overall condition of its 

pavements (Iowa DOT 2019). The U.S. Army Corps of Engineers first developed PCI in the 

1980s, after which the American Public Works Association (APWA) and the U.S. Department of 

Defense (DOD) adopted it to quantify pavement condition (ASTM 2009). A PCI rating scale was 

standardized in ASTM D6433 (ASTM 2009), Standard Practice for Roads and Parking Lots 

Pavement Condition Index Surveys, where pavement sections with a PCI value of 85% and 

above were rated to be in good condition, and those with 25%–40% were rated to be in very poor 

condition (Table 5). Furthermore, based on the rating system, pavement sections with PCI values 

between 20%–25% were rated in severe condition, while those with PCI values less than 10% 

were rated as failed (Table 5). 

Table 5. Pavement condition corresponding to PCI rating scale  

Pavement 

condition 

Standard PCI 

rating scale 

Good 100 

Satisfactory 85 

Fair 70 

Poor 55 

Very Poor 40 

Serious 25 

Failed <10 

Source: Adapted from ASTM 2009 

PCI accounts for ride quality and the amount of cracking, faulting, and rutting on pavements. 

The Iowa DOT categorizes the condition of its pavements as good, fair, or poor, and uses 

different PCI threshold values for each condition category based on the roadway type (Table 6) 

(Iowa DOT 2019). 

Table 6. Iowa DOT PCI thresholds  

Condition 

metric 

Performance 

level Interstate 

Non-interstate 

NHS Non-NHS 

PCI 

Good 76–100 71–100 71–100 

Fair 51–75 46–70 41–70 

Poor 0–50 0–45 0–40 

Source: Iowa DOT 2019 

Although asset management plans had already been developed by SHAs, in almost all cases they 

exclude local roads, and asset management roadmaps for local roads are still in development in 

many states. No literature has been found to provide statewide PCI-based construction triggers 

for county roads (Saha and Ksaibati 2016). In examining an analysis of PCI’s relationship with 

IRI, the results of a study showed that a road segment could be classified as fair with PCI while 

good with IRI. An exponential regression equation was provided with IRI and PCI, with a line-
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of-equality coefficient of determination (R2) value of 59% and a correlation coefficient value (r) 

of -0.768, that showed that PCI may have a strong but opposite impact on IRI value (Hasibuan 

and Surbakti 2019). Another study conducted on 62 samples presented an overall range of IRI 

and the predicted PCI using power regression models, seen in Table 7, that resulted in an R2 

value of 59% and 66%, respectively, with strong linear dependence of variations in PCI on IRI 

(Park et al. 2007). 

Table 7. Overall range of IRI and the predicted PCI 

Pavement 

quality PCI IRI, in./mile (m/km) 

Excellent 100 0.727 (46.06) 

Very Good 85 1.055 (66.85) 

Good 70 1.650 (104.54) 

Fair 55 2.870 (181.84) 

Poor 40 5.947 (376.80) 

Very Poor 25 17.50 (1,108.80) 

Failed 10 >20 (>1,267.20) 

Source: Adapted from Park et al. 2007 

The IPMP also provides a PCI scale, as presented in Table 8. 

Table 8. PCI scale by IPMP 

Performance level PCI 

Excellent 80–100 

Good 60–80 

Fair 40–60 

Poor 20–40 

Very Poor 0–20 

Source: Nlenanya 2017 

Based on a literature review, a PCI value of 40% could be used as a threshold value for Iowa 

county roads, because: (1) this is consistent with Iowa DOT’s non-NHS poor-condition 

threshold, (2) it corresponds to the very poor PCI threshold in ASTM D6433, and (3) it is very 

similar to some counties’ PCI construction triggers, as explained in the preceding paragraphs, 

provided that local road agencies reach a consensus on this value. For demonstration purposes, as 

part of this report, a PCI value of 40% was used as the rehabilitation trigger. 

The success of the pavement performance prediction models in mimicking measured pavement 

performance indicators was quantified using R2 (equation 1), an absolute average error (AAE) 

(equation 2), and standard error of the estimates (SEE) (equation 3). Higher R2 and lower AAE 

and SEE values are indicators of the model prediction accuracy. The three equations are given as 

follows: 
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𝑅2 = 1 −
∑ (𝑦𝑗
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𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −𝑦𝑗

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 
)

2
𝑛
𝑗=1

𝑛
 (3) 

where, 

• n = Data set size 

• j = Case number in the data set 

• ymeasured = Measured IRI or calculated PCI value  

• yprediction = Model predictions for IRI and PCI 

Statistics-Based Pavement Performance Model Development and Accuracy Evaluations 

A statistically (or mathematically) defined sigmoid pavement deterioration curve-based approach 

was used in this study for project-level pavement performance model development. Sigmoidal 

equations have been most particularly used in statistical model development, because: (1) they 

have a low initial slope and an increasing slope with time, and (2) they follow a trend in which 

pavement condition always gets worse, and damage is irreversible, and both these features cause 

such models to mimic pavement deterioration behavior observed in field studies (Chen and 

Mastin 2016, Beckley 2016, Ercisli 2015). Since sigmoidal equations have been found to 

successfully model pavement deterioration when there is a single pavement deterioration trend 

(project-level), a sigmoidal equation for each pavement section in each pavement type was 

optimized so that each equation had different coefficients. IRI and PCI were used as performance 

indicators in project-level pavement performance models.  

Equation 4 is the generalized sigmoidal equation used for IRI calculation, given as follows: 

𝐼𝑅𝐼 = 𝐶1 +
𝐶2

1+𝑒(𝐶3+𝐶4×𝑎𝑔𝑒) (4) 

where, C1, C2, C3, and C4 are coefficients that represent contributions of different input 

parameters. 

Equation 5 is the generalized sigmoidal equation used for PCI calculation, given as follows: 

𝑃𝐶𝐼 =
100

1+𝑒(D+C×𝑎𝑔𝑒) (5) 
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where, C and D are coefficients that represent contributions of different input parameters. 

Sigmoidal curves were fitted to measured IRI/PCI values by minimizing the square of 

differences value between measured and predicted IRI/PCI values. The fitting process was 

carried out by manipulating prediction coefficients (equation 4 and equation 5) to produce 

minimum error. Figure 5 through Figure 7 show examples of IRI prediction models for JPCP, 

flexible, and composite (AC over JPCP) pavement types, respectively. Using these models, 

future IRI predictions can be calculated for these pavement types. 

 

Figure 5. IRI prediction model example for JPCP 

The prediction model is based on the measured IRI data given in the following equation: 

𝐼𝑅𝐼 = 80.30 +
307.34

1 + 𝑒(3.48−0.09×𝑎𝑔𝑒)
 

The section used as the example in Figure 5 is on US 18, from milepost 208.94 to 211.75, 

westbound, with an annual average daily truck traffic (AADTT) of 2,104, and it was constructed 

in 2000. 
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Figure 6. IRI prediction model for flexible pavement 

The prediction model is based on the measured IRI data given in the following equation: 

𝐼𝑅𝐼 = 42.24 +
4335.36

1 + 𝑒(7.42−0.19×𝑎𝑔𝑒)
 

The section used as the example in Figure 6 is on US 61, from milepost 167.95 to 174.74, 

northbound, with an AADTT of 1,154, and it was constructed in 1999. 

 

Figure 7. IRI prediction model for composite pavement (AC over JPCP)  
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The prediction model is based on the measured IRI data given in the following equation: 

𝐼𝑅𝐼 = 44.07 +
1197.96

1 + 𝑒(4.70−0.10×𝑎𝑔𝑒)
 

The section used as the example in Figure 7 is on US 30, from milepost 310.08 to 318.84, 

westbound, with an AADTT of 1,264, and it was restored in 2000. 

As part of this study, a Microsoft Excel macro-based automation tool was developed for 

automatically updating and improving pavement performance prediction models as more data 

were added into the model development data set. Figure 8 presents the calculation steps and 

capabilities of this automation tool.  

 

Figure 8. Project-level “tunable” pavement performance prediction automation tool 

The benefit of this tool is that as engineers add more data into the model development data set, 

they will be able to automatically refine performance prediction models and make decisions 

using the most recent and more accurate pavement performance models. Another benefit of using 

this tool is that pavement performance prediction models can be developed using very few data 

points. 

Figure 9 shows an example of IRI prediction model changes as more measured IRI data points 

are used in model development for an AC pavement section.  
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Figure 9. IRI model changes as more data points are added into the data set as an example 

for an AC pavement section 

The section used in Figure 9 is on Iowa 3, from milepost 039.09 to 044.12, eastbound, with an 

AADTT of 500, and it was constructed in 1999. 

As shown in this figure, as more data are added to the model development data set, prediction 

equations change slightly, and model accuracy increases. Note that the PCI prediction model and 

its calculation steps look similar to the IRI prediction model and calculation processes seen in 

Figure 8 and Figure 9. 

Statistics-Based Pavement RSL Model Development and Results 

Once pavement performance models have been developed for pavement sections, as discussed in 

the previous section, RSLs for these pavement sections can be calculated using threshold limits 

for the pavement performance indicators. In this study, IRI was used as a performance indicator 

for project-level RSL calculations, because: (1) it quantifies the functional performance of 

pavement systems—the aspect most road users care about—as well as giving some indirect idea 

of the structural performance of a pavement system, (2) it has been adopted as a standard for the 

Federal Highway Performance Monitoring System (Miller and Bellinger 2014), and (3) it is also 

one of the condition metrics identified for use by the FHWA (Visintine et al. 2018). The same 

threshold level recommended by the FHWA for poor pavement conditions (an IRI value of 170 

in./mi) was selected in this study as the threshold value for project-level RSL calculations 

(Visintine et al. 2018). 
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The RSL for each pavement section was calculated using the following steps: 

1. Statistically (or mathematically) defined pavement performance models were developed 

for each pavement section for each pavement type. 

2. Using the developed pavement performance models, future IRI predictions were 

calculated for each pavement section. 

3. Whether or not future IRI predictions had reached the threshold limit (170 in./mi) was 

checked.  

• If yes, the RSL value for each pavement section was calculated by subtracting the present 

year from the year when IRI predictions first reached the threshold limit (170 in./mi). 

• If no, the future IRI predictions had not reached 170 in./mi over a long period of analysis 

time (i.e., 50 years), based on available measured IRI data. In other words, these 

pavement sections performed very well in terms of smoothness criteria. Including more 

data points (i.e., future performance measurements) would change the model and increase 

its accuracy.  

The process is demonstrated in Figure 10. 

 

Figure 10. Statistics-based pavement RSL calculation steps 
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Figure 11, Figure 12, and Figure 13 show the distribution of RSL for JPCP, AC, and AC over 

JPCP sections evaluated in this study, respectively.  

 
(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 11. RSL distribution for JPCP pavement sections (rigid) 
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 12. RSL distribution for AC pavement sections (flexible) 
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 13. RSL distribution for composite pavement sections (AC over JPCP) 

Average RSL for JPCP, AC, and composite AC over JPCP sections were found to be 7.2, 9.3, 

and 4.4 years, respectively. 
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ANN-Based Pavement Performance Model Development and Accuracy Evaluations 

AI-based pavement performance models were used for network-level pavement performance 

model development in this study. AI techniques such as ANNs have been widely used to model 

complex pavement engineering problems (Ceylan et al. 2014, Kaya et al. 2017, Kaya et al. 

2018a, Kaya et al. 2018b, Citir et al. 2020a). ANN-based models can be very useful tools for 

modeling pavement deterioration when considering many pavement sections with various traffic 

volumes, thicknesses (network-level), or deterioration trends, and they are also very fast tools, 

with thousands of pavement scenarios for which various traffic volumes, thicknesses, and 

conditions can be solved in seconds. Both these features of ANN models make them useful tools 

for use in the development of network-level pavement performance modeling.  

In this study, an ANN-based pavement performance model was developed for each pavement 

performance indicator (i.e., distress, IRI) and each pavement type: rigid (JPCP), flexible (AC), 

and composite (AC over JPCP). The study used 80% of all data points in the model development 

for each pavement type, and from this set of data points, 48%, 8%, and 24%, respectively, were 

used as training, testing, and validation data sets. The remaining 20% of all data points were 

unused in model development but instead used as an independent testing data set. 

ANN models must have the following capabilities: 

• High accuracy: they must successfully produce results very similar to those from measured 

distresses 

• Physically meaningful future distress predictions: distress predictions must increase in the 

future unless a maintenance or repair activity occurs 

A Microsoft Excel macro-based network-level pavement performance prediction automation tool 

was developed that predicts future pavement performance using developed ANN models (Figure 

14).  

 

Figure 14. ANN-based pavement performance prediction automation tool 
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This tool calculates future pavement performance predictions for any pavement performance 

indicator. The following steps were used in the development of this tool: 

1. ANN models were developed in the MATLAB environment using 6 training algorithms 

and a variable number of hidden neurons (from 5 to 60). 

2. The ANN model producing the highest accuracy was selected as the final model for the 

pavement performance indicator. 

3. Weights and biases for the final ANN model were extracted into the automation tool. 

4. Using these extracted weights and biases, and using matrix multiplication, future distress 

predictions were calculated for each given thickness, accumulated ESAL traffic, age, and 

previous two years’ pavement performance records for any pavement performance 

indicator. The study assumed 1% compound truck traffic growth in calculating future 

traffic. 

As part of this study, an ANN model for each pavement type was developed for the following 

pavement performance indicators: 

• JPCP pavements: transverse cracking and IRI 

• AC and AC over JPCP: rutting, longitudinal cracking, transverse cracking, and IRI 

Input parameters used in the ANN model development and ANN model results for each 

pavement performance indicator in each pavement type are presented in the following 

paragraphs. 

ANN-Based JPCP Performance Models 

Three pavement performance ANN models were developed for JPCP pavements: transverse 

cracking, IRI approach 1, and IRI approach 2. The study used 34 JPCP pavement sections with 

396 data points in model development and independent testing. It used 190, 32, 95, and 79 data 

points, respectively, for training, testing, validation, and independent testing data sets. Table 9 

summarizes the input and output parameters used in the three ANN models developed for JPCP.  

Table 9. Parameters for three ANN models’ development for JPCP pavements 

Model name Input parameters 

Output 

parameter 

Transverse 

cracking 

PCC thickness (in.), traffic (accumulated ESALs), 

age, transverse cracking (i-2) year (% slab cracked), 

transverse cracking (i-1) year (% slab cracked) 

Transverse 

cracking (i) year 

(% slab cracked) 

IRI  

approach 1 

PCC thickness (in.), traffic (accumulated ESALs), 

age, IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) 
IRI (i) year (in./mi) 

IRI  

approach 2 

Age, transverse cracking (i) year (% slab cracked), 

IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) 
IRI (i) year (in./mi) 
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As can be seen in Table 9, PCC slab thickness, traffic (accumulated ESAL), age, and previous 

two-year pavement performance records were used in transverse cracking and IRI approach 1 

model development. In approach 2, an IRI model was developed using age, measured distress 

values (transverse cracking in this case), and the previous two years of measured IRI data. In 

approach 2, ANN-model-predicted transverse cracking values along with other input parameters 

were used as inputs to predict future IRI values. 

Figure 15 compares measured pavement condition records and ANN model predictions for JPCP 

using (a) transverse cracking, (b) IRI approach 1, and (c) IRI approach 2 ANN models, 

respectively.  

 
(a) Transverse cracking 
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(b) IRI approach 1 

 
(c) IRI approach 2 

Figure 15. Measured pavement condition records vs. ANN model predictions for JPCP 

pavements 

While the ANN models accurately predicted corresponding pavement performance indicators, 

IRI models produced more accurate predictions than the transverse cracking model because of 

their higher R2 and lower AAE values, and IRI models developed using approach 1 and approach 

2 produced similar accuracies. In all cases, high R2 and low AAE values were obtained for all 

training, testing, validation, and independent testing data sets. 
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Figure 16 compares measured pavement condition records and ANN model predictions using (a) 

transverse cracking, (b) IRI approach 1, and (c) IRI approach 2 ANN models, respectively, using 

a JPCP section as an example.  

 
(a) Transverse cracking 

 
(b) IRI approach 1 



30 

 
(c) IRI approach 2 

Figure 16. Measured pavement condition records vs. ANN model predictions for a 

particular JPCP pavement section as an example 

The section used in Figure 16 is on Iowa 5, from milepost 85.24 to 88.06, northbound, with an 

AADTT of 799, and it was constructed in 1999. 

As can be seen in Figure 16, the ANN models not only produced very similar results to measured 

pavement condition records but also produced physically meaningful future pavement condition 

predictions. Moreover, the IRI models developed using approach 1 and approach 2 produced 

very similar IRI predictions. 

ANN-Based AC Pavement Performance Models 

Five pavement performance ANN models were developed for AC pavements: rutting, 

longitudinal cracking, transverse cracking, IRI approach 1, and IRI approach 2. The study used 

35 AC pavement sections with 360 data points in model development and for independent 

testing. It used 172, 30, 86, and 72 data points, respectively, for training, testing, validation, and 

independent testing data sets. Table 10 summarizes input and output parameters used in the five 

ANN models developed for AC pavements.  
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Table 10. Parameters for five ANN models’ development for flexible pavements 

Model name Input parameters 

Output 

parameter 

Rutting 
AC thickness (in.), traffic (accumulated ESALs), age,  

rut (i-2) year (in.), rut (i-1) year (in.) 
Rut (i) year (in.) 

Longitudinal 

cracking 

AC thickness (in.), traffic (accumulated ESALs), age, 

longitudinal cracking (i-2) year (ft/mi),  

longitudinal cracking (i-1) year (ft/mi) 

Longitudinal 

cracking (i) year 

(ft/mi) 

Transverse 

cracking 

AC thickness (in.), traffic (accumulated ESALs), age, 

transverse cracking (i-2) year (ft/mi),  

transverse cracking (i-1) year (ft/mi) 

Transverse 

cracking (i) year 

(ft/mi) 

IRI  

approach 1 

AC thickness (in.), traffic (accumulated ESALs), age, 

IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) 

IRI (i) year 

(in./mi) 

IRI  

approach 2 

Age, rut (i) year (in.), longitudinal cracking (i) year (ft/mi), 

transverse cracking (i) year (ft/mi), IRI (i-2) year (in./mi),  

IRI (i-1) year (in./mi) 

IRI (i) year 

(in./mi) 

 

As can be seen in Table 10, AC layer thickness, traffic (accumulated ESAL), age, and previous 

two-year pavement performance records were used in rutting, longitudinal cracking, transverse 

cracking, and IRI approach 1 model development. In approach 2, the IRI model was developed 

using age, measured distress values (rutting, longitudinal cracking, and transverse cracking in 

this case), and the previous two years of measured IRI data. In approach 2, ANN-model-

predicted rutting and longitudinal and transverse cracking values, along with other input 

parameters, were used as inputs to predict future IRI. 

Figure 17 compares measured pavement condition records and ANN model predictions using (a) 

rutting, (b) longitudinal cracking, (c) transverse cracking, (d) IRI approach 1, and (e) IRI 

approach 2 ANN models, respectively.  
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(a) Rutting 

 
(b) Longitudinal cracking 
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(c) Transverse cracking 

 
(d) IRI approach 1 
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(e) IRI approach 2 

Figure 17. Measured pavement condition records vs. ANN model predictions for flexible 

pavements 

While the ANN models accurately predicted corresponding pavement performance indicators, 

the IRI models produced more accurate predictions compared to the rutting, longitudinal 

cracking, and transverse cracking models as shown by their higher R2 and lower AAE values. 

The IRI models developed using approach 1 and approach 2 produced similar accuracies. In all 

cases investigated, high R2 and low AAE values were obtained for all training, testing, 

validation, and independent testing data sets. 

Figure 18 compares measured pavement condition records and ANN model predictions using (a) 

rutting, (b) longitudinal cracking, (c) transverse cracking, (d) IRI approach 1, and (e) IRI 

approach 2 ANN models, respectively, for a flexible pavement section as an example.  
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(a) Rutting 

 
(b) Longitudinal cracking 
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(c) Transverse cracking 

 
(d) IRI approach 1 
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(e) IRI approach 2 

Figure 18. Measured pavement condition records vs. ANN model predictions for a 

particular flexible pavement section as an example  

The section used in Figure 18 is on US 18, from milepost 212.74 to 214.39, eastbound, with an 

AADTT of 1,885, and it was constructed in 2000. 

As can be seen in the Figure 18, the ANN models not only produced results very similar to those 

from measured pavement condition records but also made physically meaningful future 

pavement condition predictions. Moreover, the IRI models developed using approach 1 and 

approach 2 produced very similar IRI predictions. 

ANN-Based AC over JPCP Pavement Performance Models 

Five pavement performance ANN models—rutting, longitudinal cracking, transverse cracking, 

IRI approach 1, and IRI approach 2—were developed for composite pavements. The study used 

60 composite pavement sections with 524 data points in model development and independent 

testing, and it used 251, 42, 126, and 105 data points, respectively, for training, testing, 

validation, and independent testing data sets. Table 11 summarizes input and output parameters 

used in the five ANN models developed for composite pavements.  
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Table 11. Parameters for five ANN models’ development for composite pavements 

Model name Input parameters 

Output 

parameter 

Rutting 
AC thickness (in.), traffic (accumulated ESALs), age,  

rut (i-2) year (in.), rut (i-1) year (in.) 
Rut (i) year (in.) 

Longitudinal 

cracking 

AC thickness (in.), traffic (accumulated ESALs), age, 

longitudinal cracking (i-2) year (ft/mi), longitudinal 

cracking (i-1) year (ft/mi) 

Longitudinal 

cracking (i) year 

(ft/mi) 

Transverse 

cracking 

AC thickness (in.), traffic (accumulated ESALs), age, 

transverse cracking (i-2) year (ft/mi),  

transverse cracking (i-1) year (ft/mi) 

Transverse 

cracking (i) year 

(ft/mi) 

IRI  

approach 1 

AC thickness (in.), traffic (accumulated ESALs), age,  

IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) 

IRI (i) year 

(in./mi) 

IRI  

approach 2 

Age, rut (i) year (in.), longitudinal cracking (i) year (in./mi), 

transverse cracking (i) year (in./mi), IRI (i-2) year (in./mi),  

IRI (i-1) year (in./mi) 

IRI (i) year 

(in./mi) 

 

As shown in Table 11, AC thickness, traffic (accumulated ESAL), age, and previous two-year 

pavement performance records were used in rutting, longitudinal cracking, transverse cracking, 

and IRI approach 1 model development. In approach 2, an IRI model was developed using age, 

measured distress values (rutting, longitudinal cracking, and transverse cracking in this case), 

and the previous two-year measured IRI data. In approach 2, rutting, longitudinal, and transverse 

cracking values, which other ANN models predicted along with other input parameters, were 

used as inputs for predicting future IRI. 

Figure 19 compares measured pavement condition records and ANN model predictions using (a) 

rutting, (b) longitudinal cracking, (c) transverse cracking, (d) IRI approach 1, and (e) IRI 

approach 2 ANN models, respectively.  
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(a) Rutting 

 
(b) Longitudinal cracking 
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(c) Transverse cracking 

 
(d) IRI approach 1 
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(e) IRI approach 2 

Figure 19. Measured pavement condition records vs. ANN model predictions for composite 

pavements 

While the ANN models accurately predicted corresponding pavement performance indicators, 

the IRI models produced more accurate predictions compared to the rutting, longitudinal 

cracking, and transverse cracking models as shown by their higher R2 and lower AAE values. 

The IRI models developed using approach 1 and approach 2 produced similar accuracies. In all 

cases investigated, high R2 and low AAE values were obtained for all training, testing, 

validation, and independent testing data sets. 

Figure 20 compares measured pavement condition records and ANN model predictions using (a) 

rutting, (b) longitudinal cracking, (c) transverse cracking, (d) IRI approach 1, and (e) IRI 

approach 2 ANN models, respectively, using a composite pavement section as an example.  
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(a) Rutting 

 
(b) Longitudinal cracking 



43 

 
(c) Transverse cracking 

 
(d) IRI approach 1 
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(e) IRI approach 2 

Figure 20. Measured pavement condition records vs. ANN model predictions for a 

particular composite pavement section as an example  

The section used in Figure 20 is on US 20, from milepost 1.64 to 4.37, eastbound, with an 

AADTT of 2,848, and it was restored in 2004. 

As can be seen in the figure, the ANN models not only produced results very similar to measured 

pavement condition records but also produced physically meaningful future pavement condition 

predictions. Moreover, the IRI models using approach 1 and approach 2 produced very similar 

IRI predictions. 

ANN-Based Pavement RSL Model Development and Results 

Once network-level pavement performance models were developed for each pavement 

performance indicator or condition metric, the RSL for each pavement section in a road network, 

as explained in the previous section, could be calculated using these performance models and 

corresponding threshold limits for the pavement performance indicators. In this study, rutting, 

percent cracking, and IRI were used as performance indicators for network-level RSL 

calculations, because, as stated earlier, these condition metrics were determined by the FHWA 

(HR 4348 2012, Visintine et al. 2018). RSL is determined based on the year when future 

performance predictions reach a poor condition threshold (these thresholds and corresponding 

condition metrics were highlighted previously in Table 4). 

The RSL value for each pavement section in a road network was calculated based on the 

following steps: 
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1. Using developed ANN-based pavement performance models, future pavement condition 

predictions were calculated for each pavement section. 

2. Whether or not future pavement condition predictions reached threshold limits were 

checked for each corresponding condition metric previously shown in Table 4. 

• If yes, the RSL value for each pavement section was calculated by subtracting the present 

year from the year when pavement condition predictions first reached the threshold limit. 

• If no, based on available pavement condition data, future pavement condition predictions 

do not reach 170 in./mi over a long period of analysis time (i.e., 50 years). In other 

words, this means that these pavement sections perform very well in terms of the 

corresponding condition metric. However, adding more data points (i.e., future 

performance measurements) would increase the accuracy of the predictions. 

The process is demonstrated in Figure 21. 

 

Figure 21. Network-level RSL calculation steps 

ANN-Based JPCP RSL Models 

Figure 22 shows the distribution of RSL for 34 JPCP pavement sections when a percent cracking 

threshold limit of 15% was used. An ANN-based network-level transverse cracking model was 

used as the pavement performance model to calculate RSL values, and the average RSL for the 

JPCP pavement sections was found to be 2.0 years. 
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 22. RSL distribution for JPCP pavement sections using transverse cracking model 

and 15% cracking threshold limit 

Figure 23 shows the distribution of RSL for 34 JPCP pavement sections when: (1) an IRI 

threshold limit of 170 in./mi was used as the threshold limit, and (2) the ANN-based network-

level IRI model approach 1 was used as the pavement performance model in the calculation of 

RSL values. The average RSL for the JPCP pavement sections was found to be 9.6 years.  
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 23. RSL distribution for JPCP pavement sections using IRI approach 1 model and 

170 in./mi threshold limit 

Figure 24 shows the distribution of RSL for 34 JPCP pavement sections when: (1) an IRI 

threshold limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-

level IRI model approach 2 was used as the pavement performance model in the calculation of 

RSL values. The average RSL for the JPCP pavement sections was found to be 11.5 years. 
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 24. RSL distribution for JPCP pavement sections using IRI approach 2 model and 

170 in./mi threshold limit 

In summary, different average RSL results (7.2, 9.6, and 11.5 years of RSL) for the JPCP 

pavement sections were found when project-level and network-level approach 1 and approach 2 

pavement performance models, respectively, were used in the calculation of RSL. This 

difference in average RSL results might be because different pavement performance models 
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were used in the calculation of RSL. Network-level pavement performance models were 

developed for each pavement performance indicator, and a single model was used to make future 

pavement condition predictions for all pavement sections of a given pavement type. Even if 

development considered various input variables (thickness, traffic, previous years’ condition 

records, etc.), it can’t be sufficiently comprehensive to consider all variables determining 

deterioration of the pavement systems.  

On the other hand, project-level pavement performance models—valid only for the sections for 

which they were developed—were developed for each pavement section, and for pavement 

sections with not many pavement conditions records, the accuracy might not be sufficiently high; 

adding more data points (i.e., future performance measurements) would most likely increase 

these models’ accuracy. Engineers should consider various parameters in determining which 

pavement performance model (project- or network-level) should be used in the calculation of 

RSL. They might consider using network-level models if they have an insufficient number of 

pavement performance records for developing accurate project-level pavement performance 

models. Similarly, project-level models developed using many pavement performance records 

might better reflect the deterioration trend of a pavement section and enable more realistic 

pavement performance predictions compared to network-level models.  

ANN-Based AC Pavement RSL Models 

Figure 25 shows the RSL distribution for 35 flexible pavement sections when a rutting threshold 

limit of 0.4 in. was used. An ANN-based network-level rutting model was used as the pavement 

performance model in the calculation of RSL values, and the average RSL for the flexible 

pavement sections was found to be 2.3 years.  
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(b) Based on pavement length 

Figure 25. RSL distribution for flexible pavement sections using rutting model and 0.4 in. 

threshold limit 

Figure 26 shows the RSL distribution for 35 flexible pavement sections when: (1) an IRI 

threshold limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-

level IRI model approach 1 was used as the pavement performance model in the calculation of 

RSL values. The average RSL value for the flexible pavement sections was found to be 11.8 

years. 
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(b) Based on pavement length 

Figure 26. RSL distribution for flexible pavement sections using IRI approach 1 model and 

170 in./mi threshold limit 

Figure 27 shows the RSL distribution for 35 flexible pavement sections when: (1) an IRI 

threshold limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-

level IRI model approach 2 was used as the pavement performance model in the calculation of 

RSL values. The average RSL value for the flexible pavement sections was found to be 11.7 

years. 
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(b) Based on pavement length 

Figure 27. RSL distribution for flexible pavement sections using IRI approach 2 model and 

170 in./mi threshold limit 

There was no significant difference in average RSL results between cases when ANN-based 

network-level IRI approach 1 and approach 2 models were used as pavement performance 

models in the calculation of RSL. The average RSL result for the flexible pavement sections was 

slightly lower (9.3 years) when a project-level IRI model was used as the pavement performance 

model in the calculation of RSL compared to when ANN-based network-level IRI models were 

used (11.8 and 11.7 years).  

ANN-Based AC over JPCP RSL Models  

Figure 28 shows the RSL distribution for 60 AC over JPCP sections when a rutting threshold 

limit of 0.4 in. was used. An ANN-based network-level rutting model was used as the pavement 

performance model in calculating RSL values, and the average RSL value for the flexible 

pavement sections was 14.4 years. 
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 28. RSL distribution for composite pavement sections using rutting model and 0.4 

in. threshold limit 

Figure 29 shows the RSL distribution for 60 AC over JPCP sections when: (1) an IRI threshold 

limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-level IRI 

model approach 1 was used as the pavement performance model in the calculation of RSL 

values. The average RSL for the composite pavement sections was found to be 9.3 years. 
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 29. RSL distribution for composite pavement sections using IRI model approach 1 

and 170 in./mi threshold limit 

Figure 30 shows the RSL distribution for 60 AC over JPCP sections when: (1) an IRI threshold 

limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-level IRI 

model approach 2 was used as the pavement performance model in the calculation of RSL 

values. The average RSL value for the composite pavement sections was found to be 6.1 years. 
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 30. RSL distribution for composite pavement sections using IRI model approach 2 

and 170 in./mi threshold limit 

Average RSL values when project-level and ANN-based network-level performance models 

approach 1 and approach 2 were used to calculate RSL values for the composite pavement 

sections were found to be 4.4, 9.3, and 6.3 years.  
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Consequence Analysis of Traffic on Pavement Performance Predictions 

Impact of Traffic on JPCP Performance  

As part of this study, a consequence analysis of the developed network-level pavement 

performance models (network-level IRI approach 1 and transverse cracking), presented earlier in 

this chapter, was carried out to evaluate the effect of traffic on the ANN-based model 

predictions.  

For the sake of demonstration, a JPCP section was selected, and accumulated ESAL levels for 

this pavement section were obtained from the PMIS database. Figure 31 shows measured IRI and 

transverse cracking data for the pavement section, as well as network-level IRI approach 1 and 

transverse cracking model predictions for various traffic levels (50% reduced, 25% reduced, 

actual, 25% increased, and 50% increased).  

 
(a) IRI 
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(b) Transverse cracking 

Figure 31. ANN-based performance prediction model predictions for various traffic levels 

for a new JPCP section as an example 

The section used in the Figure 31 example is on US 151, from milepost 36.68 to 37.83, 

northbound, with an AADTT of 1,398, and it was constructed in 1998. 

As shown in Figure 31, network-level IRI and transverse cracking models produced very similar 

predictions to measured values when the actual traffic levels were used as inputs in the models. 

Moreover, the network-level models made higher IRI and transverse cracking predictions as the 

level of traffic in the model inputs increased, and vice versa.  

Impact of Traffic on AC Pavement Performance  

As part of this study, a consequence analysis of the developed network-level pavement 

performance models, as presented earlier in the chapter, was carried out to evaluate the effect of 

traffic on the ANN-based model predictions.  

For the sake of demonstration, an AC section was selected, and accumulated ESAL levels for 

this pavement section were obtained from the PMIS database. Figure 32 shows measured rutting 

and IRI data for the pavement section as well as network-level rutting and IRI approach 1 model 

predictions for various traffic levels (50% reduced, 25% reduced, actual, 25% increased and 50% 

increased).  
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(a) Rutting 

 
(b) IRI 

Figure 32. ANN-based performance prediction model predictions for various traffic levels 

for a particular AC section as an example  

The section used as an example in Figure 32 is on US 18, from milepost 212.74 to 214.39, 

eastbound, with an AADTT of 1,885, and it was constructed in 2000. 
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As can be seen in Figure 32, network-level rutting and IRI approach 1 models produce 

predictions very similar to measured values when the actual traffic levels are used as inputs in 

the models. Moreover, the network-level models produced higher rutting and IRI predictions as 

the level of traffic in the model inputs increases, and vice versa.  
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CHAPTER 4. EVALUATION OF PAVEMENT PERFORMANCE AND RSL 

PREDICTION MODELS FOR IOWA COUNTY PAVEMENT SYSTEMS 

Description of Overall Approaches and Data Preparation 

The next step of this study involved evaluating both statistical and ANN-based models 

developed using Iowa DOT’s PMIS database for two pavement types, JPCP and AC pavements, 

utilizing the Iowa county pavement database. First, a historical performance databank (i.e., HPD) 

that specifically included pavements in Lee County was developed for Iowa county pavements. 

Figure 33 indicates the stages of databank development, model validation, and development for 

pavement performance.  

 

Figure 33. Stages of HPD development and model validation  

An HPD consists of a processed distress and condition data for each road section, obtained from 

the Iowa DOT as raw data; construction, and maintenance history of pavements, generally 

provided by county engineer’s offices; and traffic data, obtained from the Iowa DOT Roadway 

Asset Management System (RAMS)/open data online. Based on input parameters used in the 

previously developed statistical- and ANN-based models, additional data such as traffic data or 

PCI could be obtained from different sources if required. A detailed step-by-step methodology of 

creating this databank, including processing raw county data, along with the standard procedure 

to develop Iowa county pavement HPD presented in Appendix A, is described in this chapter. 
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All models presented in Chapter 3 were analyzed as to whether or not they were validated with 

the HPD. In cases with no validation with the HPD, new models were developed using the PMIS 

database. After the accuracies of these models had been ensured for model development 

purposes, they were independently tested with the HPD for model testing purposes. 

As mentioned earlier, in the first stage shown in Figure 33, the HPD was developed for Iowa 

county pavements. To process the data mentioned above, two consecutive procedures were 

followed: segmentation followed by summarization. In the segmentation procedure, the 

beginning and ending points of each road section were determined, using a dynamic 

segmentation approach, a function of the geographic information system (GIS). Dynamic 

segmentation is a process that can calculate the locations of condition and distress data on 

pavement management sections at run time either in milepost or Global Positioning System 

(GPS) coordinates.  

Figure 34 reflects the segmentation procedure described in this study that consists of two 

processes: matching and sectioning. Distress and condition data for each road section, obtained 

from the Iowa DOT, include raw data for each 52 ft, or 1/100 of a mile.  
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Figure 34. Display of a pavement system used in segmentation procedures 

In Figure 34, the county road units with raw distress data are referred to as 

ROADWARE_LOCAL by the Iowa DOT. The GPS coordinates along with the distress and 

condition data were utilized from this database. The county road sections with construction 

history were obtained from the County Records database, and with these data, the project length 

of each road section could be determined. During the matching process of the segmentation 

procedure, the GPS coordinates from the Iowa DOT and project lengths from the County 

Records were matched in the county road system to determine the exact locations of county 

roads and road sections. In the sectioning process of the segmentation procedure, the distress and 

condition raw data from the Iowa DOT and construction history data from the County Records 

were joined to the determined county roads, and each county road was then divided into county 

road sections so that each had its own raw data. More step-by-step details are provided in 

Appendix A. 

Figure 35 shows an example of a summarization (i.e., processing of data) procedure for IRI data, 

with each distress and condition data value having its own summarization method.  
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Figure 35. Pavement system summarization procedure for IRI data after segmentation 

For each county road unit, referred to as 52 ft, IRI data were collected, and based on each road 

section, an average of these collected IRI data were taken to obtain one processed IRI data per 

county road section. Because of mistakes in data collection, there may sometimes be missing 

data in IRI for some county road units, and in the case of missing IRI data in a road section, the 

average of existing raw IRI data was taken and missing data ignored, as seen in Figure 35. While 

taking an average and ignoring missing data are the approaches used to process IRI raw data, 

they may be different for other distress data, such as transverse and longitudinal cracking, as 

explained in detail in Appendix A. 

The Iowa DOT has archived the raw distress data collected by third-party vendors since 2013 

when statewide collection of non-National Highway System (non-NHS) federal-aid-eligible 

roads data began. The collected and archived data from 2013, 2015, and 2017 includes 46 

counties, while the collected and archived data from 2014, 2016, and 2018 consists of 53 

counties, meaning that data are collected every year for half of the state, as seen in Figure 36. 
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Haubrich 2016 

Figure 36. Statewide collection cycles of local road raw data in Iowa 

The files are named in the Iowa DOT database as follows: 

• ROADWARE_LOCAL_2013 

• ROADWARE_LOCAL_2014 

• ROADWARE_LOCAL_2015 

• ROADWARE_LOCAL_2016 

• ROADWARE_LOCAL_2017 

These files are displayed in Figure 37, including all information related to collecting raw data, 

with Microsoft Access and/or Excel software utilized to import and export data from the Iowa 

DOT database. The developed pavement HPD is stored in an Excel format. 
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Figure 37. ROADWARE_LOCAL raw data file provided by Iowa DOT 

The independent testing data sets formed by the HPD for testing of ANN models were created 

for Lee County, Iowa, which was chosen among the 99 counties in Iowa because the Lee County 

Engineer’s Office had provided its historical pavement database. The database had a total of 62 

pavement sections and based on the availability of data and accuracy of existing data (e.g., road 

names, surface types) of County Records, 51 pavement sections were extracted including 20 

flexible pavement sections and 31 concrete pavement sections. The next data extraction was 

done based on availability and accuracy of ROADWARE_LOCAL data (e.g., raw condition and 

distress data) and traffic data. The number of pavement sections used in the models varied based 

on the input parameters of the ANN models.  

The number of pavement sections and the total number of data points for each pavement type 

and each ANN model used in this study are as follows: 

• ANN models for JPCPs: 

o 17 road sections for transverse cracking (102 data points) 

o 6 road sections for IRI approach 1 (36 data points) 

o 6 road sections for IRI approach 2 (36 data points) 

• ANN models for AC pavements: 

o 16 road sections for transverse cracking (96 data points) 

o 16 road sections for longitudinal cracking (96 data points) 

o 10 road sections for rutting (60 data points) 

o 13 road sections for IRI approach 1 (78 data points) 

o 13 road sections for IRI approach 2 (78 data points) 
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The accuracy of condition and distress predictions for the road sections, corresponding to the 

proposed model performances, were assessed by plotting target condition and distress data 

against predictions through line-of-equality and statistical criteria such as AAE and R2, and also 

SEE was utilized because these assessments were used during the first stage of the project. 

Overall, higher R2 and lower AAE and SEE values indicate higher accuracy in the model 

performance.  

In the local road data set, it was found that some pavement sections had decreased or unchanged 

measured pavement conditions and distress values over the years without observing any 

pavement maintenance or rehabilitation. Also, data sets had missing data points since the data 

provided for 2013, 2015, and 2017 for Lee County had already been collected. In these cases, 

data were first analyzed with respect to whether or not any data preparation methodology could 

be applied. If no data preparation methodology was applied to a road section, its data were 

eliminated. Figure 38 presents examples of three road sections in Lee County.  

 
(a) County Highway J72, Ambrosia Lane section 
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(b) County Highway W74, Pilot Grove Road (between Pilot Grove and J38) 

 
(c) County Highway J38, St Paul Rd (between 130th Street and 205th Avenue) 

Figure 38. Field IRI, rutting, and transverse and longitudinal cracking data records 

collected in 2013, 2015, and 2017 for Lee County 
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For each road section, four pavement performance indicators for three years were provided: IRI, 

rutting, transverse cracking, and longitudinal cracking. As can be seen in Figure 38, the overall 

trend lines representing condition and distress measurements were downward over the years, 

meaning that the road section experienced less distress with the passing years. If there was no 

record showing maintenance on these road sections that might have accounted for this over the 

years, road sections similar to those in Figure 38 were eliminated at the beginning.  

However, in any case of applying a data preparation methodology, a linear increase was assumed 

between the first and last year when data were provided, similar to the first stage of this study. 

Between the first and last year, the data that started the same as the previous year and slightly 

less than the previous year were adapted to a linear increment.  

Figure 39 provides an example of a road section in Lee County that presents four pavement 

performance indicators—IRI, rutting, transverse cracking, and longitudinal cracking—before and 

after applying this data preparation methodology to a flexible pavement section.  
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Before data preparation After data preparation 

Figure 39. Before and after applying data preparation methodology to four pavement 

performance indicators using a sample flexible pavement section  

The section used in Figure 39 is on Ortho Road in Lee County, with an annual average daily 

traffic (AADT) in 2014 of 500, was constructed in 1962, and with an overlay in 1997. 
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Using this data preparation methodology, pavement condition and distress data records can be 

made more realistic, resulting in more accurate pavement performance models and more robust 

RSL models.  

Data processing for transverse and longitudinal cracking was different than that for IRI and 

rutting measurements. Processed IRI and rutting data were achieved by taking an average of the 

raw IRI and rutting data. Before and after processing the data, the units are the same: inch/mile 

for IRI and inches for rutting, but transverse and longitudinal cracking have more raw data types, 

e.g., low, medium, and high severity and sealed transverse cracking, and low, medium, and high 

severity and sealed longitudinal cracking.  

The Iowa DOT staff recommended that it would be better to sum transverse cracking with 

different severity levels, because if transverse cracks are sealed, they are categorized as low-

severity transverse cracks. Whether or not seals are no longer in place or used, such transverse 

cracks are called high-severity transverse cracks, meaning that the models considered whether or 

not transverse cracking is sealed in all severities. The raw transverse cracking data were thus 

converted into legacy values before processing data. Details on how to convert the raw data into 

processed data are provided in Appendix A. In this case, the data preparation methodology 

mentioned above was applied to each type of raw data then processed as shown in Figure 39. 

Iowa County JPCP Case 

Statistical-Based JPCP Performance Models and RSL Models 

In this work, statistical- and AI-based methods were used to evaluate county pavement 

performance. Here, both types of models can be utilized for each county road section without 

considering project- or network-level status. A statistically defined sigmoid pavement 

deterioration curve-based approach was utilized for IRI and PCI calculations for county JPCPs in 

Iowa. The same procedure used for developing the project-level pavement performance model in 

the first stage of the project was followed for developing the sigmoidal equations. For IRI 

calculation, equation 4 (shown previously) was used to generalize the sigmoidal equation in 

which C1, C2, C3, and C4 indicate coefficients representing contributions of different input 

parameters. For PCI calculation, equation 5 (shown previously) was used to generalize the 

sigmoidal equation in which C and D are coefficients representing contributions of different 

input parameters. The sigmoidal curve fitting to measure IRI values was carried out by 

minimizing the error, the square of differences between the target, and predicted IRI values.  

Figure 40 through Figure 45 indicate some examples of IRI prediction models for county JPCPs 

that can be used to predict future IRI values for these road sections.  
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Figure 40. Statistical-based IRI prediction model results for JPCP section at 233rd Street 

The IRI prediction equation used to generate the results shown in Figure 40 is as follows: 

𝐼𝑅𝐼 = 140 +
7327.19

1 + 𝑒(6.56−0.33×𝑎𝑔𝑒)
 

The AADT in 2014 for the 233rd Street section was 210, and the section was constructed in 

2011. 

 

Figure 41. Statistical-based IRI prediction model results for JPCP section at Croton Road  
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The IRI prediction equation used to generate the results shown in Figure 41 is as follows: 

𝐼𝑅𝐼 = 123.07 +
43.15

1 + 𝑒(0.78−0.10×𝑎𝑔𝑒)
 

The AADT in 2014 for this section of Croton Road, or County Highway J62, was 170, and the 

section was constructed in 2008. 

 

Figure 42. Statistical-based IRI prediction model results for JPCP section at Wirtz Lane  

The IRI prediction equation used to generate the results shown in Figure 42 is as follows: 

𝐼𝑅𝐼 = 54.78 +
176.91

1 + 𝑒(1.92−0.07×𝑎𝑔𝑒)
 

The AADT in 2014 for the Wirtz Lane section was 170, and the section was constructed in 1995. 
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Figure 43. Statistical-based IRI prediction model results for JPCP section at 180th Avenue 

The IRI prediction equation used to generate the results shown in Figure 43 is as follows:  

𝐼𝑅𝐼 = 46.20 +
669.36

1 + 𝑒(9.35−0.09×𝑎𝑔𝑒)
 

The AADT in 2014 for the 180th Avenue section, from old US 61 to 155th Street, was 7,300, 

and the section was constructed in 1928. 

 

Figure 44. Statistical-based IRI prediction model results for JPCP section at Augusta Road 

from J48 to Iowa 16 
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The IRI prediction equation used to generate the results shown in Figure 44 is as follows: 

𝐼𝑅𝐼 = 30.67 +
308.83

1 + 𝑒(4.31−0.12×𝑎𝑔𝑒)
 

The AADT in 2014 for this section of Augusta Road, also called County Highway X38, from 

County Highway J48 to Iowa 16, was 390, and the section was constructed in 1981.  

 

Figure 45. Statistical-based IRI prediction model results for JPCP section at Augusta Road 

from J48 South to Business US 61  

The IRI prediction equation used to generate the results shown in Figure 45 is as follows: 

𝐼𝑅𝐼 = 30.00 +
146.98

1 + 𝑒(19.93−0.67×𝑎𝑔𝑒)
 

The AADT in 2014 for this section of Augusta Road, also called County Highway X38, from 

County Highway J48 southbound to Business US 61, was 420, and the section was constructed 

in 1981. 

While the sigmoidal curve-fitting models developed for measuring PCI values can also be 

utilized for county pavement systems so long as previous PCI values are provided, the HPD 

developed for Iowa county pavements does not include PCI values for county roads. A 

developed Microsoft Excel macro-based automation tool was therefore used to predict IRI and 

PCI values for county pavement systems, and as more county road data were added into the 

model, the model accuracy increased.  
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After predicting county roads’ future pavement performance, the RSLs of these roads can be 

calculated by considering the threshold limits of pavement performance indicators. As mentioned 

earlier in this report, IRI was chosen as a critical performance indicator of pavements for RSL 

calculations because the FHWA had used it and adopted it as a standard for the Highway 

Performance Monitoring System (HPMIS) as a primary indicator of functional performance of 

pavement systems (Visintine et al. 2018, Miller and Bellinger 2014). Using 170 in./mi as a 

threshold value recommended by the FHWA (Visintine et al. 2018), the RSL of a county 

pavement section can be calculated by following the steps previously presented in Figure 10 in 

Chapter 3. Based on the RSL calculation, Figure 46 shows the distribution of RSL for county 

JPCP sections. The average RSL for county JPCP sections in Lee County was found to be 13.3 

years. 
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(b) Based on pavement length 

Figure 46. RSL distribution for JPCP pavement sections in Lee County 

ANN-Based JPCP Performance Models and RSL Models 

AI-based pavement performance models were used for evaluating county pavement performance 

in this study. As mentioned in earlier sections in this report, AI-based ANN models have 

previously been utilized for complex pavement engineering problems and found to be useful and 

fast tools for a variety of pavement cases. This section describes the ANN-based pavement 

performance models developed in this study for predicting each distress and condition for JPCPs. 

As previously shown in Figure 33, the second step was to validate the existing ANN models 

developed using the PMIS database in the first stage of this study, and if those previous models 

were not validated by using the HPD, new ANN models were developed utilizing the PMIS 

database but with a new input configuration chosen based on the available data in the HPD, as 

indicated previously in Figure 33 in the step 2b.  

In this section, ANN-based pavement performance models for each performance indicator were 

validated or improved for county JPCP sections. The performance indicators were determined to 

be transverse cracking and IRI for concrete pavement. While the PMIS database was utilized for 

model development, PMIS and HPD databases were used to independently test the developed 

models. The study used 80% of the JPCP data points in the PMIS database in model 

development and used the remaining 20% for independent model testing. Model development 

included training, validation, and testing data sets created using 60%, 30%, and 10% of the 

model development data set, respectively.  

The study used 34 rigid pavement sections composed of 396 data points for each pavement 

performance indicator to develop three different ANN models: transverse cracking, IRI approach 
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1, and IRI approach 2. It used 190, 95, 32, and 79 data points from the PMIS database in 

training, validation, testing, and independent testing, respectively. Additionally, 17 and 6 county 

JPCP sections with 102 and 36 data points were used for independently testing ANN-based 

transverse cracking model and IRI approaches 1 and 2 models, respectively.  

As seen in Table 12, PCC slab thickness, traffic (accumulated AADT), pavement age, and a 

pavement performance feature ratio along with the previous two years of measured IRI data were 

chosen as inputs in model development to obtain transverse cracking as an output.  

Table 12. Parameters for three ANN models’ development for JPCP sections  

Model name Input parameters 

Output 

parameter 

Transverse 

cracking 

PCC thickness (in.), traffic (accumulated AADT), age, 

transverse cracking (i-2) year (ct./mi)/thickness (in.), 

transverse cracking (i-1) year (ct./mi)/thickness (in.) 

Transverse 

cracking (i) year 

(ct./mi) 

IRI  

approach 1 

PCC thickness (in.), traffic (accumulated AADT), age, 

IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) 
IRI (i) year (in./mi) 

IRI  

approach 2 

Age, transverse cracking (i) year (ct./mi)/age,  

IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) 
IRI (i) year (in./mi) 

 

Here, a pavement performance feature ratio was the proportion of transverse cracking in units of 

count per mile to slab thickness. The reason for using such a ratio in this part of the study was 

that county JPCP roads reflected sensitivity to the amount of transverse cracking associated with 

PCC slab thickness. Also, accumulated AADT instead of ESAL was used as the traffic input 

because of the availability of AADT data for county roads. Pavement age was updated based on 

the existence of an overlay through the service life. The input parameters of the IRI approach 1 

model were similar to the transverse cracking model except for the pavement performance 

feature ratio, where the previous two years of IRI values were used instead. Unlike the IRI 

approach 1 model, in IRI approach 2, another pavement performance feature ratio of traffic and 

thickness records was used to predict IRI values. This ratio is the proportion of transverse 

cracking in a unit of count/mile, and it can be obtained from another ANN model reflecting 

pavement age. It was found here that the association of transverse cracking with pavement age 

affected future IRI predictions. 

Figure 47a–c compares transverse cracking and IRI measured in the field to that predicted by the 

ANN models of (a) transverse cracking, (b) IRI approach 1, and (c) IRI approach 2.  
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(a) Transverse cracking 

 
(b) IRI approach 1 
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(c) IRI approach 2 

Figure 47. Measured pavement condition records vs. ANN model predictions  

While the ANN models accurately predicted corresponding pavement performance indicators, 
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as reflected in their higher average R2 and lower AAE values. While IRI models developed using 

approach 1 and approach 2 produced similar accuracy in model development, IRI approach 1 

resulted in better results for independently testing PMIS and county databases than IRI approach 

2. In all cases, high R2 and low AAE values were obtained for all training, testing, validation, 

and independent testing data sets. 

Table 13 presents all limitations of ANN models developed using the PMIS database and 
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Table 13. Limitations of PMIS database used in ANN model development and county road 

database used in testing ANN models for JPCP sections  

Transverse cracking 

ANN model limitations 

(from PMIS database) 

Measured data limitations 

(from COUNTY database) 

 Min Max Min Max 

PCC thickness (in.) 9 13 7 10 

Traffic (accumulated AADT) 8,720 973,800 523 44,300 

Pavement age (yr) 2 23 4 90 

Transverse cracking (i-2) year 

(ct./mi)/thickness (in.) 

0.0 8.7 0.0 49.6 

Transverse cracking (i-1) year 

(ct./mi)/thickness (in.) 

0.0 9.2 0.0 58.7 

IRI approach 1  

PCC thickness (in.) 9 13 7 10 

Traffic (accumulated AADT) 8,720 973,800 505 44,300 

Pavement age (yr) 2 23 4 90 

IRI (i-2) year (in./mi) 67.8 181.2 114.2 193.9 

IRI (i-1) year (in./mi) 73.3 189.5 116.1 218.1 

IRI approach 2  

Pavement age (yr) 2 23 4 90 

Transverse cracking (i) year 

(ct./mi)/age 

0.0 14.5 0.0 5.3 

IRI (i-2) year (in./mi) 64.0 156.5 114.2 194.0 

IRI (i-1) year (in./mi) 73.1 164.7 116.1 218.1 

 

Since the range of collected data for county roads is entirely different than those for the PMIS 

database, the tested data limitations might fall outside of model limitations that affect the 

accuracy shown in Figure 47 of the independent testing for county roads. Table 13 also points to 

the reasons for using pavement performance feature ratios as inputs. The ratio of transverse 

cracking to thickness used in the transverse cracking ANN model ranged from 0 to 8.7 in model 

development and from 0 to 49.6 in the County Records database. If the pavement section with 

the highest amount of transverse cracking had not been considered, the maximum ratio in the 

County Records database would be 12.6. It is clear that county pavement conditions differ even 

from one another based on transverse cracking. Also, since pavement sections with the same 

thickness of 7 in. could have the highest and lowest transverse cracking, using the relationship 

between transverse cracking and thickness produced high accuracies in model development and 

independent testing, with high R2 and low AAE and SEE.  

Figure 48 shows comparisons of the measured pavement condition records both with the ones 

predicted by ANN models and future pavement condition predictions for RSL purposes.  
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(a) Transverse cracking 

 
(b) IRI approach 1 
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(c) IRI approach 2 

Figure 48. Measured pavement condition records vs. ANN model predictions for sample 

JPCP sections  

Figure 48a shows the transverse cracking model results for the section of 233rd Street, with an 

AADT in 2014 of 210 and a construction year of 2011. Figure 48b shows the IRI approach 1 

results for the section of Wirtz Lane, with an AADT in 2014 of 170 and a construction year of 

1995. Figure 48c shows the IRI approach 2 results for the section of Croton Road, also called 

County Highway J62, with an AADT in 2014 of 170 and a construction year of 2008. 

Once ANN models for predicting the performance of county JPCP sections had been developed, 

their RSLs could be calculated using these ANN models and corresponding threshold limits for 

pavement performance indicators such as the transverse cracking and IRI used here. Figure 49 

through Figure 51 show RSL distributions using ANN-based transverse cracking model, IRI 

approach 1, and IRI approach 2 models, respectively, based on pavement ID and pavement 

length for county JPCP sections, with the threshold value for transverse cracking in Figure 49a 

taken as 15% slab cracking.  
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 49. RSL distributions using transverse cracking ANN models for rigid pavement 
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 50. RSL distributions using IRI approach 1 ANN models for rigid pavement 
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(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 51. RSL distributions using IRI approach 2 ANN models for rigid pavement 

The unit of count/mile in ANN predictions could be converted to percent cracking in RSL 

calculations. Since county JPCP sections have exhibited high IRI values, a threshold value for 

the JPCP section was considered to be 200 in./mi, although the 170 in./mi value recommended 

by the FHWA (Visintine et al. 2018) had been considered a threshold value for IRI for the rest of 

the study. The average RSL values for county JPCP sections in Lee County were found to be 

about 4.9, 6.2, and 11.2 years using the ANN-based transverse cracking, IRI approach 1, and IRI 

approach 2 models, respectively.  
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In summary, different approximate RSL values (13.3, 6.2, and 11.2 years) for county JPCP 

sections were found when a statistical-based model and ANN-based IRI approach 1 and 2 

models, respectively, were used in calculation of RSL, and this difference might be due to using 

different performance models. Although different pavement performance models for each type of 

pavement performance indicator were developed using the ANN approach, a single model for 

RSL was used to predict future pavement condition and distress values for all pavement sections 

of a given pavement type. While the ANN-based models also consider the various input 

parameters presented previously in Table 12, there might be other factors affecting the 

deterioration of the pavement systems that were not considered in the models. Since the county 

database suffers from being created with less collected field data and a lack of historical records 

for some pavement sections, the missing data points had to be statistically populated, and this 

might decrease the model accuracies when comparing to real field data in the models.  

The statistical-based models were developed for each pavement section, and considering the 

situation of insufficient pavement condition records, the model using them might have less 

accurate results, adding more field data into the models would in all likelihood increase model 

accuracies for future performance measurements. Overall, engineers should consider every 

parameter that could be used as an input into models to determine the best pavement 

performance model (i.e., statistical-based or ANN-based) for use in predicting the RSL of 

pavements. If there is less consecutive condition/distress data but a greater number of various 

input parameters (e.g., thickness, traffic), one might think of using ANN-based models. In the 

case of having a sufficient number of pavement performance records (i.e., IRI), the statistical-

based models might be used to predict future pavement performance because of their better 

reflectivity when using a greater amount of real field data. 

Iowa County AC Pavement Case 

Statistical-Based AC Pavement Performance Models and RSL Models 

A statistically defined sigmoid pavement deterioration curve-based approach was utilized for IRI 

and PCI calculations for county ACs in Iowa. The same procedure for project-level pavement 

performance model development used in the first stage of the project was followed for 

developing the sigmoidal equations. For IRI calculation, the previously given equation 4 can be 

used to generalize the sigmoidal equation, where C1, C2, C3, and C4 indicate coefficients 

representing different input parameters’ contributions. For PCI calculation, the previously given 

equation 5 can be used to generalize the sigmoidal equation, where C and D indicate coefficients 

representing contributions of different input parameters. The sigmoidal curve-fitting to measure 

IRI values was carried out by minimizing the error, i.e., the square of differences between the 

target and predicted IRI values.  

Figure 52 and Figure 53 show some examples of IRI prediction models for county ACs that can 

predict future IRI values for these road sections.  
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Figure 52. Statistical-based IRI prediction model results for Charleston Road AC section 

The equation used to generate the results in Figure 52 is as follows: 

𝐼𝑅𝐼 = 76.09 +
295.60

1 + 𝑒(4.41−0.24×𝑎𝑔𝑒)
 

The AADT in 2014 for the section of Charleston Road, also called County Highway J62 and 

255th Street, was 1,310, and the section was constructed 1976, with an overlay in 2007. 

 
(b) 

Figure 53. Statistical-based IRI prediction model results for J40 AC section 
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The equation used to generate the results in Figure 53 is as follows: 

𝐼𝑅𝐼 = 30.00 +
88.82

1 + 𝑒(4.37−0.46×𝑎𝑔𝑒)
 

The AADT in 2014 for the section of County Highway J40, from US 218 to Fort Madison, was 

2,200, and the section was constructed in 1985, with an overlay in 2006. 

The sigmoidal curve-fitting models developed for measuring PCI values can also be utilized for 

county pavement systems as long as previous PCI values are available, but the HPD developed 

for Iowa county pavements does not include PCI values for county roads. Therefore, a Microsoft 

Excel macro-based automation tool was developed to predict IRI and PCI values for county 

pavement systems. As more county road data were added into the models, their accuracy 

increased.  

After predicting future pavement performance of county roads, their RSLs could be calculated by 

considering threshold limits of pavement performance indicators, as presented in the previous 

sections. IRI was chosen as a critical performance indicator of pavement for RSL calculations 

since it is used by the FHWA and has been adopted as a standard for HPMIS as a primary 

indicator of functional performance of pavement systems (Visintine et al. 2018, Miller and 

Bellinger 2014), as mentioned earlier in this report. Using 170 in./mi, the threshold value 

recommended by the FHWA (Visintine et al. 2018), the RSL of a county pavement section can 

be calculated by following the steps previously presented in Figure 10 in Chapter 3. Based on 

RSL calculation, Figure 54 indicates the distribution of RSL for county AC sections. The 

average RSL for county AC sections in Lee County was found to be 26 years. 
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(b) Based on pavement length 

Figure 54. RSL distribution for AC pavement sections in Lee County 

ANN-Based AC Pavement Performance Models and RSL Models 

AI-based pavement performance models were also used for evaluating county pavement 

performance in this study, and this section presents the developed ANN-based pavement 

performance models for predicting each distress and condition for ACs. As indicated previously 

in Figure 33, the second step is to validate the existing ANN models developed using the PMIS 

database from the first stage of this study. If we suppose previous ANN models have not been 

validated using the HPD, new ANN models can be developed by utilizing the PMIS database but 

with a new input configuration based on the available data in the HPD, as indicated in Figure 33 

in step 2b. 

This section discusses the ANN-based pavement performance model for each performance 

indicator that was validated or improved for county AC sections. These performance indicators 

for flexible pavement were determined for rutting, longitudinal cracking, transverse cracking, 

and IRI. While the PMIS database was utilized for model development, both the PMIS and HPD 

databases were utilized for independent testing of developed models. The study used 80% of AC 

data points in the PMIS database in model development, and the remaining 20% were used to 

test the model independently. Model development included training, validation, and testing data 

sets created using 60%, 30%, and 10% of the model development data set, respectively.  

The study used 35 flexible pavement sections composed of 360 data points for each pavement 

performance indicator to develop five different ANN models for rutting, longitudinal cracking, 

transverse cracking, IRI approach 1, and IRI approach 2. The study used 172, 30, 86, and 72 data 

points from the PMIS database in training, validation, testing, and independent testing, 
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respectively. It used 16, 10, and 6 county AC sections with 96, 60, and 78 data points for 

independently testing ANN-based models for longitudinal cracking and transverse cracking, 

rutting, IRI approach 1, and IRI approach 2 models, respectively.  

As seen in Table 14, AC slab thickness, traffic (accumulated AADT), pavement age, and 

pavement performance values over the previous consecutive two years were chosen as inputs in 

model development to obtain rutting, longitudinal cracking, transverse cracking, and IRI 

approach 1 as output.  

Table 14. Parameters for five ANN models’ development for flexible pavements 

Model name Input parameters 

Output 

parameter 

Rutting 
AC thickness (in.), traffic (accumulated AADT), 

age, rut (i-2) year (in.), rut (i-1) year (in.) 
Rut (i) year (in.) 

Longitudinal 

cracking 

AC thickness (in.), traffic (accumulated AADT), 

age, longitudinal cracking (i-2) year (ft/mi), 

longitudinal cracking (i-1) year (ft/mi) 

Longitudinal 

cracking (i) year 

(ft/mi) 

Transverse 

cracking 

AC thickness (in.), traffic (accumulated AADT), 

age, transverse cracking (i-2) year (ft/mi), 

transverse cracking (i-1) year (ft/mi) 

Transverse 

cracking (i) year 

(ft/mi)  

IRI approach 1 
AC thickness (in.), traffic (accumulated AADT), 

age, IRI (i-2) year (in./mi),, IRI (i-1) year (in./mi) 

IRI (i) year 

(in./mi) 

IRI approach 2 

Age, rut (i) year (in.), longitudinal cracking (i) year 

(ft/mi), transverse cracking (i) year (ft/mi),  

IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) 

IRI (i) year 

(in./mi) 

 

Here, accumulated AADT instead of ESAL was used as the traffic input because of the 

availability of AADT data for county roads. Pavement age was updated based on the existence of 

overlay through the service life. Compared to the IRI approach 1 model, in IRI approach 2, 

rutting, longitudinal cracking, and transverse cracking were used instead of traffic and thickness 

records to predict IRI values.  

Figure 55a–e compares rutting, longitudinal cracking, transverse cracking, and IRI measured in 

the field to that predicted by ANN models of (a) rutting (b) longitudinal cracking, (c) transverse 

cracking, (d) IRI approach 1, and (e) IRI approach 2.  
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(a) Rutting 

 
(b) Longitudinal cracking 
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(c) Transverse cracking 

 
(d) IRI approach 1 
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(e) IRI approach 2 

Figure 55. Measured pavement condition records vs. ANN model predictions  

While the ANN models developed accurately predicted corresponding pavement performance 

indicators, the rutting model produced less accurate predictions based on their lower R2 values 

for independent testing of county database than other types of distress models. IRI models 

developed using approach 1 produced slightly better accuracies than IRI approach 2. In all cases, 

high R2 and low AAE values were obtained for all training, testing, validation, and independent 

testing data sets. 

Table 15 lists all limitations of ANN models developed using the PMIS database and measured 

data of county roads used in independent testing of ANN models.  
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Table 15. Limitations of PMIS database used in ANN model development and county road 

database used in testing ANN models for AC sections 

Rutting 

ANN model limitations 

(from PMIS database) 

Measured data limitations 

(from COUNTY database) 

 Min Max Min Max 

AC thickness (in.) 7.5 16.5 10 18 

Traffic (accumulated AADT) 1,240 110,280 417.5 9,460 

Pavement age (yr) 2 17 7 21 

Rut (i-2) year (in.)  0 0.3307 0.0673 0.1760 

Rut (i-1) year (in.)  0.0124 0.3484 0.0695 0.1829 

Longitudinal cracking 

AC thickness (in.) 7.5 16.5 6.5 22.5 

Traffic (accumulated AADT) 1,230 110,280 417.5 13,700 

Pavement age (yr) 2 18 3 27 

Longitudinal cracking (i-2) year (ft/mi)  0 5,889.8 0 6,286.3 

Longitudinal cracking (i-1) year (ft/mi) 0.8 6,039.8 10.5 6,785.5 

Transverse cracking 

AC thickness (in.) 7.5 16.5 6.5 22.5 

Traffic (accumulated AADT) 1,010 110,280 417.5 13,700 

Pavement age (yr) 2 18 3 27 

Transverse cracking (i-2) year (ft/mi) 0 4,926.2 0 6,825 

Transverse cracking (i-1) year (ft/mi) 1.6 5,149.5 20 7,290 

IRI approach 1 

AC thickness (in.) 7.5 16.5 6.5 22.5 

Traffic (accumulated AADT) 1,010 110,280 417.5 13,700 

Pavement age (yr) 2 18 4 21 

IRI (i-2) year (in./mi) 37.4 182.1 48.4 195.0 

IRI (i-1) year (in./mi) 44.4 189.5 48.6 198.7 

IRI approach 2 

Pavement age (yr) 2 17 4 21 

Rut (i) year (in.) 0.0248 0.3661 0.0714 0.2264 

Longitudinal cracking (i) year (ft/mi) 2.6 6,639.6 18.5 7,284.8 

Transverse cracking (i) year (ft/mi) 3.9 7,001.3 160.0 7,755.0 

IRI (i-2) year (in./mi) 44.5 182.1 48.4 195.0 

IRI (i-1) year (in./mi) 45.9 189.5 48.6 198.7 

 

Since the range of collected data for county roads is completely different than that for the PMIS 

database, the tested data limitations might fall outside of model limitations and affect the 

accuracy of independent testing for the County Records database seen in Figure 55.  

For example, for the ANN-based rutting model, comparing the range of accumulated AADT and 

pavement age between PMIS and county database, it can be seen that secondary roads have 

much less traffic and greater ages than primary roads, causing them to fall outside model 
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limitations and resulting in less accuracy in independent testing. Likewise, the maximum values 

of parameters in the county database for the ANN-based IRI approach 2 model exceeded the 

model limitations for the PMIS database and that might cause loss of accuracy in model 

performance.  

Figure 56 compares measured pavement condition records with ones predicted by ANN models 

and future pavement condition predictions for RSL purposes. Pavement performance predictions 

for flexible county pavements are made by ANN-based IRI approach 1, IRI approach 2, rutting, 

longitudinal cracking, and transverse cracking models. 
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(b) IRI approach 2 

 
(c) Rutting 
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(d) Longitudinal cracking 

 
(e) Transverse cracking 

Figure 56. Comparisons between measured pavement condition records and ANN model 

predictions using various models 

The sections used in Figure 56a–e, respectively are as follows:  

• IRI approach 1: Charleston Road, also called County Highway J62 and 255th Street, had an 
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• IRI approach 2: Ortho Road had an AADT in 2014 of 500, and it was constructed in 1962, 

with an overlay in 1997 

• Rutting: County Highway X23, from Iowa 2 to West Point, had an AADT in 2014 of 1,560, 

and it was constructed in 1976, with an overlay in 2008 

• Longitudinal cracking: Same section as rutting 

• Transverse cracking: Primrose Road, also called County Highway J56, at 200th Street, had 

an AADT in 2014 of 360, and it was constructed in 1968, with an overlay in 2012 

Once ANN models for predicting the performance of county AC sections were developed, their 

RSLs could be calculated using these ANN models and corresponding threshold limits for 

pavement performance indicators such as rutting, longitudinal cracking, transverse cracking, and 

IRI. Based on RSL calculation, Figure 57 and Figure 58 show the RSL distributions using ANN-

based IRI approach 1 and IRI approach 2 models, respectively, based on pavement ID and 

pavement length for county flexible pavement sections.  
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(b) Based on pavement length 

Figure 57. RSL distributions by using IRI approach 1 ANN models for flexible pavement 
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(b) Based on pavement length 

Figure 58. RSL distributions by using IRI approach 2 ANN models for flexible pavement 

The threshold value for IRI in Figure 57 and Figure 58 is 170 in./mi, as recommended by the 

FHWA (Visintine et al. 2018). More information is needed for some pavement sections with 

respect to their performance and traffic values to predict their future performance based on the 

IRI approach 2 model. Under these conditions, the average RSL for county AC sections in Lee 

County was found to be about 8.6 and 13.7 years by using ANN-based IRI approach 1 and IRI 

approach 2 models, respectively. 

In summary, different approximate RSL values (26, 8.6, and 13.7 years) for county AC sections 

were found for the statistical-based model and the ANN-based IRI approach 1 and 2 models, 

respectively, used in the calculation of RSL. This difference might be due to using different 

performance models. Although different pavement performance models for each type of 

pavement performance indicator were developed using the ANN approach, a single model for 

RSL was used to predict future pavement condition and distress values for all pavement sections 

of a given pavement type. The ANN-based models consider various input parameters also 

previously presented in Table 14, but there might be other factors not considered in the models 

that could affect pavement system deterioration. The county database also suffers from being 

created from a smaller amount of collected field data and a lack of historical records for some 

pavement sections, as mentioned earlier. The missing data points therefore had to be statistically 

populated, possibly decreasing model accuracy when compared to real field data in models. 

Based on RSL calculations, when the statistical-based IRI model was used, the average RSL (26 

years) was higher than that produced by ANN-based models (8.6 and 13.7 years).  

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

30

35

40

45

50

Pavement Length (Miles)

R
em

a
in

in
g
 S

er
v
ic

e 
L

if
e 

(Y
ea

rs
)



101 

CHAPTER 5. DEVELOPMENT AND EVALUATION OF PAVEMENT 

PERFORMANCE AND RSL PREDICTION MODELS FOR IOWA COUNTY PCC 

OVERLAYS 

Description of Overall Approaches and Data Preparation 

The rationality of the statistical and ANN-based modeling approaches described in the previous 

chapters could be further demonstrated using the Iowa county PCC overlay database developed 

as part of IHRB Project TR-698 (Gross et al. 2017) and then incorporated into the IPAT tool 

development. A historical database was provided by the Iowa Concrete Paving Association 

(ICPA) and a condition database was provided by the IPMP. Both databases were linked together 

by assigning longitude and latitude coordinates for the beginning and end of each project 

location as well as assigning a unique project identifier (Road ID) to each set of data attributed to 

a single project. 

A pavement performance model for use at both project and network levels was developed using 

an ANN-based approach. Microsoft Excel-based automation tools have also been developed for 

project-level pavement performance modeling and analysis, to make future pavement 

performance predictions, and to estimate RSL developments for any given road section. These 

tools can be incorporated into pavement management processes and help engineers make better 

infrastructure planning decisions using real pavement performance data to create realistic future 

condition predictions.  

RSL values for the pavement sections were calculated using threshold limits for the performance 

indicator once the pavement performance model had been developed. IRI was used as a 

rehabilitation trigger for deciding each management level RSL calculation, with RSL determined 

as the time between the current pavement age and the age at which future performance prediction 

reaches its threshold limit.  

The success of the pavement performance prediction models in mimicking measured pavement 

performance indicators was quantified using R2 (given previously in equation 1), AAE (given 

previously in equation 2), and SEE (given previously in equation 3). Higher R2 and lower AAE 

and SEE values are indications of accurate model prediction. 

Iowa County PCC Overlay Case 

Statistical-Based PCC Overlay Performance Models and RSL Models 

A statistically defined sigmoid pavement deterioration curve-based approach was utilized for IRI 

and PCI calculations for county PCC overlaid pavement sections in Iowa. The same procedure 

used in project-level pavement performance model development in the first stage of the project 

described in Chapter 3 was followed for developing sigmoidal equations. For IRI calculation, 

equation 4 (shown previously) was used to generalize the sigmoidal equation where C1, C2, C3, 

and C4 indicate coefficients representing contributions of different input parameters. For PCI 
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calculation, equation 5 (shown previously) was used to generalize the sigmoidal equation, where 

C and D indicate coefficients representing contributions of different input parameters. Sigmoidal 

curve-fitting to measured IRI/PCI values was carried out by minimizing the error, the square of 

differences between the target and predicted IRI/PCI values.  

Figure 59 through Figure 61 show some examples of IRI prediction models for county PCC 

overlays that can be used to predict future IRI values for these road sections.  

 

Figure 59. Statistical-based IRI prediction model results for Road ID section 1194 

The equation used to generate the results in Figure 59 is as follows: 

𝐼𝑅𝐼 = 110.07 +
49.64

1 + 𝑒(5.31−0.48×𝑎𝑔𝑒)
 

The section used in Road ID1194 had an AADT in 2014 of 360, and it had an overlay in 1999. 
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Figure 60. Statistical-based IRI prediction model results for Road ID section 1134 

The equation used to generate the results in Figure 60 is as follows: 

𝐼𝑅𝐼 = 87.98 +
1734.59

1 + 𝑒(6.62−0.14×𝑎𝑔𝑒)
 

The section used in Road ID 1134 had an AADT in 2014 of 560, and it had an overlay in 1992. 

 

Figure 61. Statistical-based IRI prediction model results for Road ID section 1120 
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The equation used to generate the results in Figure 61 is as follows: 

𝐼𝑅𝐼 = 139.26 +
45.45

1 + 𝑒(7.36−0.71×𝑎𝑔𝑒)
 

The section used in Road ID 1200 had an AADT in 2015 of 1,120, and it had an overlay in 2000. 

After future pavement performance of county roads was predicted, the RSLs of these roads could 

be calculated considering threshold limits of pavement performance indicators, as presented in 

the previous sections. IRI was chosen as a critical performance indicator of pavement for RSL 

calculations since it is used by the FHWA and adopted as a standard for HPMIS as a primary 

indicator of functional performance of pavement systems (Visintine et al. 2018, Miller and 

Bellinger 2014), as mentioned earlier in this report. Using 170 in./mi as the threshold value 

recommended by the FHWA (Visintine et al. 2018), the RSL of a county pavement section was 

calculated by following the steps previously presented in Figure 10 in Chapter 3. Based on RSL 

calculation, Figure 62 indicates the distribution of RSL for county PCC overlay sections.  
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(b) Based on pavement length 

Figure 62. RSL distribution for PCC overlay pavement sections  

A total of 18 pavement sections are shown for illustration purposes only since the results for the 

148 pavement sections used might not be readable on the RSL graph. The average RSL for 

county PCC overlay sections was found to be 15.3 years. 

ANN-Based PCC Overlay Performance Prediction and RSL Models 

In this part of the study, based on data available in the Iowa county database, the AI-based 

pavement performance model was improved and used for evaluating county composite (PCC 

overlay) pavement performance. The model predicts IRI for county PCC overlays. The database 

obtained from the Iowa DOT was utilized for model development and independent testing of 

developed models. About 85% of composite pavement data points in the county database were 

used in model development, and 15% of them, corresponding to 20 road sections, were used for 

independent testing of the developed model. In detail, the study used 148 PCC overlay pavement 

sections with 1,284 data points in model development and independent testing. It used 900, 128, 

256, and 194 data points, respectively, as training, testing, validation, and independent testing 

data sets. 

Table 16 lists the input parameters used to develop the ANN model, i.e., overlay thickness, 

traffic (accumulated AADT), pavement age, joint spacing, and previous consecutive two years of 

IRI measurements (IRI (i-2) year and IRI (i-1) year) and the output parameter was the current year IRI 

(IRI (i) year).  
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Table 16. ANN model development parameters for concrete overlay sections 

Model name Input parameters 

Output 

parameter 

IRI  
Overlay thickness (in.), traffic (accumulated AADT), age 

joint spacing (ft), IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) 
IRI (i) year (in./mi) 

 

Figure 63 compares IRI values measured in the field to those predicted by the ANN-based IRI 

model. The IRI model produced high accuracy in model development, with high R2 and low 

AAE values obtained for all training, validation, testing, and independent testing data sets. 

 

Figure 63. Measured pavement condition record vs. ANN model predictions by IRI 

Table 17 presents limitations of the ANN-based IRI model developed by using the county 

database and of the data set formed by the county database and used for independent testing.  

Table 17. Limitations of county database used in ANN model development and testing 

ANN models for concrete overlay sections 

IRI 

ANN model Limitations 

(from COUNTY database) 

Measured data limitations 

(from COUNTY database) 

 Min Max Min Max 

Overlay thickness (in.) 2 10 5 8 

Traffic (accumulated AADT) 120 90,600 240 38,750 

Pavement age (yr) 4 52 4 38 

Joint spacing (ft) 0 40 6 20 

IRI (i-2) year (in./mi) 60.5 249.7 82.4 190.9 

IRI (i-1) year (in./mi) 62.8 254.5 87.5 195.3 
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Since the range of the independent testing data set lies within the range of ANN model 

limitations, independent testing accuracy as seen in Figure 63 was high, meaning that the 

predicted IRI values were almost overlapped with the measured IRI values.  

Figure 64 shows comparisons of both the measured pavement condition records with the 

predicted ones by ANN models and future pavement condition predictions for RSL purposes.  

 
(a) Road ID 1134 

 
(b) Road ID 1247 

Figure 64. Measured pavement condition records vs. ANN model predictions using ANN-

based IRI model  

The AADT in 2002 for Road ID 1134 was 560, and it had an overlay in 1992; the AADT in 2004 

for Road ID 1247 was 890 to 1,770, and it had an overlay in 2003. 
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The RSLs of county pavements could be calculated using the ANN-based IRI model and the 

corresponding threshold limit as the pavement performance indicator. Figure 65 shows RSL 

distributions based on RSL calculation using the IRI ANN model based on pavement ID and 

pavement length for county concrete overlay sections.  

 
(a) Based on pavement section ID 

 
(b) Based on pavement length 

Figure 65. RSL distributions by using IRI ANN model for concrete overlay pavement 

sections 

The threshold value for IRI was taken to be 170 in./mi. For illustration purposes, only 18 county 
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concrete overlay sections among a total of 148 road sections from the independent testing 

database are presented. Using the ANN-based IRI model, the average RSL for county composite 

sections in Iowa was found to be about 7.4 years. 

In summary, an IRI threshold limit of 170 in./mi was used in the calculation of RSL, and 

different approximate RSL values for network-level county PCC overlay sections were found 

when statistical-based and ANN-based IRI models were used to calculate RSL. When the 

statistical-based IRI model was used, the average RSL value (15.3 years) was higher than for the 

ANN-based IRI model (7.4 years). The biggest challenge here is that concrete overlays do not 

reach their IRI threshold limit within their design life. Specifically, a statistics-based model that 

uses sigmoidal equations with low initial slope in time increments could not reach the threshold 

limit within the service life because of the low IRI increments for concrete overlay sections. In 

this case, RSL was calculated based on design life, taken to be 40 years. Since taking an average 

of only 18 pavement sections among 148 sections for the sake of demonstration could also affect 

the average RSL results when considering the network-level system, when comparing individual 

pavement cases, and evaluating the network-level system, the statistics-based model estimated 

higher RSL values than the ANN model.  
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CHAPTER 6. FEASIBILITY OF INTEGRATING PAVEMENT TREATMENT 

TECHNIQUES INTO PAVEMENT RSL MODELS 

Distresses formed for each type of pavement due to material faults, traffic loading, climate or 

environment effects, and misapplications during construction, provide an estimation of pavement 

service lives and required treatment (Durham et al. 2018, Citir et al. 2020b, and Citir et al. 2021). 

Transportation agencies decide on appropriate pavement maintenance strategies for deteriorated 

pavement sections as a function of their benefits and costs. Benefits can be determined by 

considering recovery in pavement performance that results in pavement service life extension. 

Such improvement in pavement performance, including crack seal, seal coat, slurry and chip 

seal, thin asphalt overlay, micro surfacing, etc., for flexible pavements and diamond grinding for 

rigid pavements, can be achieved by pavement preservation techniques applied earlier than the 

pavement service limit. Pavement rehabilitation such as HMA overlay can also enhance the 

pavement structure by increasing its service life and load-carrying capacity (Tighe 2013). 

Pavement management differs for each SHA preservation strategy and may reflect different 

climate and variable traffic volume conditions. For example, the New Jersey DOT (Bertucci 

2009), the California DOT (Caltrans 2013), and the Nebraska DOT (which also adopts distress 

severities and serviceability index values) (Rilett 2016) consider using a level of distress, such as 

roughness, cracking, and rutting rates, in evaluating pavement conditions, while the Rhode Island 

DOT selects appropriate strategies based on trigger values for pavement performance in 

prioritizing their maintenance activities (Coffey et al. 2015). 

As part of this study, the feasibility of integrating preservation and rehabilitation techniques for 

RSL predictions was investigated to identify the challenges and the research need and provide 

recommendations for incorporating such feasibility results into future IPAT tool updates. 

Impact of Preservation Technique on JPCP Service Life 

Data Collection and ANN Model Development 

The data used in this part of the study were collected from the Iowa DOT’s PMIS. Pavement 

response models predicting IRI and resulting in the estimation of RSL in rigid pavements have 

been developed by the Iowa State University research team as a part of a previous research 

project (Kaya 2019).  

Pavement response models predicting IRI and resulting in the prediction of RSL in rigid 

pavements were presented in Chapter 3 as IRI approach 1. Accuracy results for comparing IRI 

predictions by ANN and IRI measurements by the PMIS were shown previously in Figure 15b. 

The prediction model was trained using Levenberg-Marquardt ANN algorithms with a 

hyperbolic tangent activation function. The study used 34 pavement sections for rigid pavements 

from a total of 396 data points. It used 80% of the data points for model development and used 

the remaining 20% for independent testing of the model. Training, validation, and testing data 

sets were constructed using 60%, 30%, and 10% of the model development data set, respectively. 
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The final ANN model architecture was determined as 5-15-1 after many trials using various 

architectures. In the IRI ANN prediction model, a total of 15 hidden neurons in one hidden layer 

and five input parameters were used: PCC slab thickness, traffic (accumulated ESAL), pavement 

age, and consecutive previous two-year IRI records, IRI (i-2) year and IRI (i-1) year. The output was 

the current year IRI value, IRI (i) year. Table 18 presents the input parameters with their data 

ranges used in the development of the ANN model and the decision-making tool for preservation 

technique.  

Table 18. Parameters and data range for ANN-based IRI model development for rigid 

pavements 

Input parameters 

PMIS data range 

Min Max 

PCC slab thickness (in.) 2 23 

Traffic (accumulated ESAL) 8,720 973,800 

Pavement age (yr) 9 13 

IRI (i-2) year (in./mi) 67.8 181.2 

IRI (i-1) year (in./mi) 73.3 189.5 

 

Identification of JPCP Treatments 

In this study, impacts and contributions of a preservation treatment such as diamond grinding on 

JPCPs’ performance and RSLs were investigated. Since it is a well-known effective and low-cost 

preservation treatment, the diamond grinding technique was selected as a preservation treatment 

and applied to JPCP sections. The overall expected life extension of this preservation treatment 

on JPCP varies between 8 and 17 years. Restoring smoothness and rideability, reducing noise, 

improving surface friction, and removing faulting are counted among the benefits of diamond 

grinding (Smith et al. 2014, Jung et al. 2008, Stubstad et al. 2005).  

The FHWA Pavement Preservation Expert Task Group Rigid Subcommittee conducted a survey 

among SHAs regarding how concrete pavement preservation has been integrated into their 

pavement management system (PMS). A total of 60% of the responding agencies stated that they 

use some trigger values to decide among concrete pavement preservation options. Among these 

agencies, smoothness was reported to be the most commonly used indicator for triggering of 

pavement preservation options, although faulting, slab-cracking, and overall pavement condition 

were used as alternative indicators by some agencies (Scofield et al. 2011). Some SHAs have 

also recommended diamond grinding trigger values such as an IRI value of 107 in./mi in 

Michigan (Michigan DOT 2010) and IRI values of 100 in./mi for interstates and 125 in./mi for 

non-interstates in Iowa (Vitillo et al. 2015). A decision on whether diamond grinding is needed 

for a JPCP can be made depending on evaluating smoothness levels of the pavement. In this 

study, IRI was selected as the trigger criterion for the preservation treatment.  

A methodology developed for the Indiana DOT characterizes the impact of treatments based on 

short-term and long-term treatment effectiveness (Ong et al. 2010), considering initial change in 
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condition and rate of deterioration, respectively (Rada et al. 2018). The initial change in 

condition corresponds to the recovery in IRI after application of a treatment, i.e., it is the ratio as 

a percentage between the difference of two IRI values measured just before the treatment 

(IRIpretreatment) and right after the treatment (IRIpost-treatment) and IRIpretreatment. A study conducted to 

identify the effects of pavement preservation, restoration, and rehabilitation techniques indicated 

that an approximately 20% recovery in IRI after minimal repair on the pavement, including 

diamond grinding (Hall et al. 2002), could be achieved. Another study by Stubstad et al. (2005) 

found that IRI decreased by about 43% after diamond grinding.  

In this study, for determining the recovery in IRI, 20 road sections throughout Iowa treated with 

diamond grinding were considered, analyzing data for these road sections obtained from the 

FHWA’s Long-Term Pavement Performance (LTPP’s) program’s General Pavement Studies 

(GPS)-3 database. Figure 66, left, shows the change in IRI (ΔIRI, in./mi) as a function of 

IRIpretreatment (in./mi) for all pavement sections analyzed. This relationship was utilized to 

calculate recovery in IRI (%) that in turn was used in the calculation of post-treatment IRI. 

 

Figure 66. Regression results of LTPP JPCP sections for analyzing the immediate change 

in IRI, left, and growth rate of IRI with diamond grinding application, right 

The rate of deterioration corresponds to the growth rate of IRI, reflecting changes in performance 

of a treated pavement section over time. It quantifies the pavement deterioration retarding effect 

by the application of treatment. The growth rate is the mean of all differences of two consecutive 

IRI values among the collected field data. For example, when a road section had three years of 

IRI data (i.e., 100, 102, 104 in./mi), differences of the consecutive IRIs were taken (2 in./mi and 

2 in./mi) and mean of these differences then calculated ((2+2)/2 = 2 in./mi) as the growth rate of 

IRI for this pavement section. For long-term treatment effectiveness, the growth rate of IRI of 

treated pavement sections should be compared to the growth rate of IRI of untreated pavement 

sections (Rada et al. 2018).  

Figure 66, right, compares the mean growth rates of IRIpretreatment (in./mi/year) and IRIpost-treatment 

(in./mi/year) for the 20 Iowa LTPP sections mentioned previously. As can be seen in the figure, 

most data points fell under the line of equivalency, indicating that in most cases the pavement 

performance after application of the treatment is better than before the application of the 
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treatment. Averages of mean growth rates of IRIpretreatment and of mean growth rates of IRIpost-

treatment for all road sections were separately calculated and then proportioned. The ratio of 

average growth rates between pre- and post- treatment was calculated as 0.86, and it can be 

interpreted that the growth rate of IRIpost-treatment is 14% less than the growth rate of IRIpretreatment 

on average. This reduction in growth rate is expected to positively affect the deterioration curves 

and RSLs of the pavement sections. This ratio was applied to the ANN model to predict post-

treatment IRI, as explained in the next section. 

Analysis Results 

Consequence analysis of treatment types on rigid pavement was done using a prototype analysis 

tool as a decision-making tool for future post-treatment IRI using the developed ANN model. 

The tool is a Microsoft Excel macro-based automation tool whose interface is shown in 

Appendix B for illustration purposes. Note that this tool is a prototype tool developed separately 

from the IPAT tool as part of this study.  

To validate analysis accuracies of the ANN-based tool, a JPCP section (South Dakota 46-3012) 

from the LTPP database, with a history of diamond grinding preventive maintenance, was 

selected. This section was constructed in 1981 with a concrete slab thickness of 10.2 in., the 

LTPP began collecting data on this section in 1987, and diamond grinding was first applied to its 

surface in 1997. Considering the immediate change in IRI and growth rate after treatment, 

pretreatment and post-treatment IRI values for this JPCP section were predicted using the ANN-

based analysis tool, and comparisons of measured and predicted IRI values for the section are 

presented in Figure 67.  

 

Figure 67. Comparisons of pre- and post-treatment measured IRI and IRI predicted by 

ANN model for a particular LTPP JPCP section  

The section used in Figure 67 is in South Dakota, with a Road ID of 46-3012, with an ESAL in 

2009 of 146,000, and was constructed in 1981. 
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As can be seen in the figure, the developed ANN model successfully predicted both pretreatment 

and post-treatment IRI values by producing predictions very similar to the measured IRI values. 

In evaluating the impact of a preservation technique on rigid pavement life, IRI was predicted for 

a non-interstate highway both before and after treatment application by using the prototype tool 

to discover the effects of the diamond grinding preservation technique on the RSL of the JPCP. 

Figure 68a and b show future IRI predictions for a pavement section on US 65 and its RSL 

before and after treatment, respectively.  

 
(a) IRI pretreatment and post-treatment performance prediction model results 

 
(b) RSL distribution for a JPCP section before and after treatment 

Figure 68. IRI and RSL estimations for a sample JPCP section 

The treatment trigger value was selected as an IRI of 125 in./mi based on Iowa DOT 
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applications. The threshold value of IRI was taken as 170 in./mi, determined by the FHWA 

(Visintine et al. 2018). Based on regression analysis results of the 20 Iowa LTPP sections 

presented in Figure 66, the recovery in IRI and change in growth rate after treatment were 

considered for ANN predictions. At the age of 15, the pavement exceeded the treatment trigger 

value, 125 in./mi, and diamond grinding was applied. Post-treatment IRI values were predicted 

using ANN-based developed model (IRI approach 1). The area between pretreatment and post-

treatment IRI prediction curves represents the benefit area of improved performance of the 

pavement, and the larger the area, the more benefit obtained by the treatment, resulting in more 

pavement life extension. As can be seen in Figure 68b, the diamond grinding preservation 

technique resulted in a life extension by nearly 18 years. Note that users can adjust treatment 

trigger and recovery percentage values based on their own applications. 

Key Findings and Recommendations  

A network-level pavement performance prediction automation tool using a machine-learning 

technique was explored for a proof-of-concept demonstration of the integration of JPCP 

preservation techniques with RSL predictions. Using the developed ANN model, this tool can be 

used as a decision-making tool for predicting both future pretreatment IRI and future post-

treatment IRI, depending on the selection of a particular treatment such as the currently used 

diamond grinding. The key findings and recommendations of this work can be summarized as 

follows: 

• ANN models developed for rigid pavement systems, requiring only five input parameters of 

pavement thickness, age, traffic, and previous years’ IRI values, can predict IRI with high 

accuracy when compared to actual IRI measurements from the PMIS database. 

• Since it has been trained with an adequately large number of field data points, the same 

model developed for predicting pretreatment IRI can be used for predicting post-treatment 

IRI. 

• There are several significant parameters to be defined before predicting post-treatment IRI: 

preservation treatment triggers and performance recovery percentages. The automated 

decision-making tool can provide flexibility for entering these parameters for predicting post-

treatment IRI.  

• Improving the network-level automation tool permitted the user to predict post-treatment IRI 

values. The tool is capable of providing realistic pavement performance and RSL estimations 

and could be successfully used as part of performance-based pavement management 

strategies and helping decision-makers to make better informed pavement management 

decisions by prioritizing preservation and rehabilitation needs for local agencies’ pavement 

assets. 

Impact of Preservation and Rehabilitation Techniques on AC Pavement Service Life 

Data Collection and ANN Model Development 

The data used in this part of study were collected from the Iowa DOT’s PMIS. IRI prediction 
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models resulting in the estimation of RSL in AC pavements were developed (Kaya et al. 2020) 

and are presented in Chapter 3 as IRI approach 1. For comparison of IRI predictions by ANN 

and IRI measurements by PMIS, the accuracy results were previously shown in Figure 17d. The 

prediction model was trained using Levenberg-Marquardt ANN algorithms with a hyperbolic 

tangent activation function. The study used 35 pavement sections for AC pavements, 

corresponding to a total of 430 data points. It used 80% of the data points in model development, 

and it used the remaining 20% for independent testing of the model. Training, validation, and 

testing data sets were constructed using 60%, 30%, and 10% of the model development data set, 

respectively. 

After many trials on different architectures, the final ANN model architecture was chosen to be 

5-15-1. In the IRI ANN prediction model, a total of 15 hidden neurons in one hidden layer and 

five input parameters were used: asphalt thickness, traffic (accumulated ESAL), pavement age, 

and consecutive previous two-year IRI records, IRI (i-2) year and IRI (i-1) year. The output was the 

current year IRI value, IRI (i). Table 19 lists the input parameters with their data range used in the 

development of the ANN model and the decision-making tool for use in preservation and 

rehabilitation techniques.  

Table 19. Parameters and data range used in ANN-based IRI model development for AC 

pavements 

Input parameters 

PMIS data range 

Min Max 

AC thickness (in.) 7.5 16.5 

Traffic (accumulated ESAL) 1,010 110,280 

Pavement age (yr) 2 18 

IRI (i-2) year (in./mi) 37.4 182.1 

IRI (i-1) year (in./mi) 44.4 189.5 

 

Identification of AC Pavement Treatments 

Each SHA can focus on different pavement treatments, i.e., maintenance, preservation, and 

rehabilitation techniques, to improve the functional and/or structural performance of pavements. 

Based on the literature and field data provided by the LTPP program, the Iowa DOT includes 

mostly chip seal, crack seal, slurry seal, and thin overlays as preservation and AC overlay 

rehabilitation techniques. 

Many studies have analyzed the effectiveness of different pavement treatments for AC 

pavements and evaluated performance of such treatments on pavement life using performance 

indicators such as IRI, pavement condition rating (PCR), PCI, fatigue cracking, and rut depth 

(Hall et al. 2002, Lu and Tolliver 2012) to assess treatment performance. 

In this study, because IRI has been found to sufficiently characterize the overall road quality, it 

was considered as the sole performance indicator for evaluation of treatments that include thin 
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AC overlay (i.e., non-structural or functional overlay) and structural AC overlay. Multiple 

factors, such as pavement age, ESAL, and pretreatment IRI value, impact IRI after overlay, 

significantly affect the initial effects of treatment on post-treatment IRI. Case studies indicate 

that higher initial post-treatment IRI would be expected on asphalt pavements overlaid when 

they are rougher compared to when they are smoother (Hall et al. 2002). Before developing a 

decision-making tool using ANN, the parameters related to pavement treatments must be 

identified as follows: 

• Expected treatment life 

• Expected life extension of a pavement system 

• Recovery percentage in IRI or initial IRI measurement after treatment 

• The trigger value at which a pavement condition is considered to require treatment  

While a non-structural or functional thin AC overlay improves minor rutting, surface 

deficiencies, friction, ride quality, and serviceability, and reduces pavement deterioration and 

aging, it does not structurally increase pavement strength. Depending on the pavement project, 

typical service life varies between 2 and 14 years on average (DeSousa 2011 and 2012, Wilde et 

al. 2014, Irfan et al. 2009). Structural AC overlay increases pavement strength, restores 

serviceability, and reduces aging to extend pavement service life perhaps by between 3 and 18 

years on average depending on the project. Treatment effectiveness in this study was assessed 

based on two criteria: treatment service life and pavement service life. 

Initial effects of preservation and rehabilitation techniques on IRI can be evaluated by comparing 

the last IRI measurement before treatment with the first IRI measurement after treatment. A 

study assessing the effects of pavement preservation and rehabilitation techniques using more 

than 50 pavement sections from the LTPP database indicated an approximately 15% IRI 

recovery after applying a thin overlay treatment. Mean post-treatment IRI measurements of more 

than 130 pavement sections were also found to be approximately 60 in./mi with application of a 

structural AC overlay of thicknesses of 2 in. and 5 in. (Hall et al. 2002).  

SHAs and other similar transportation agencies use different pavement preservation programs, 

including a decision-tree matrix, to determine whether a treatment needs to be applied for a 

deteriorated pavement system. Since this matrix may be different for each agency depending on 

its unique needs, there are no clear rules for timing the application of treatments. A decision tree 

included in pavement management software (i.e., Highway Pavement Management Application) 

was used by MnDOT to identify an appropriate treatment based on a PSR trigger value of 2.5 

(Wood et al. 2009). Average trigger IRI values for applying structural AC overlay and thin AC 

overlay on the pavement sections were found to be 138 in./mi and 124 in./mi, respectively (Irfan 

et al. 2009). Based on evaluation of the LTPP database with respect to structural AC overlay and 

thin AC overlay (nominally 1.5 in.), trigger values, means of pretreatment IRI measurements for 

specific pavement studies SPS-3 (preventive maintenance of flexible pavement) and SPS-5 

(rehabilitation of flexible pavement), were determined as 110 in./mi and 87 in./mi on average, 

respectively (Hall et al. 2002). A study using Indiana DOT data determined triggers for 

pavement treatments and recommended thin overlay treatment for pavements with IRI values 

less than 150 in./mi. It also described other research studies mentioning that thin AC overlays are 
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generally applied to well-conditioned pavement with IRI values less than 80 in./mi (Ong et al. 

2010). Based on the LTPP database examined from this study, 10 pavement sections throughout 

the Midwest with thin AC overlays of thicknesses between 0.5 in. and 1.5 in. had IRI trigger 

values of 94 in./mi on average before treatment.  

It is worthwhile to note that, while seal coat is commonly used in Iowa pavement sections, based 

on an evaluation of the LTPP data performed both by the project team and found in the literature, 

seal coat has no significant beneficial impact on IRI. Slurry seal application might slightly 

increase the post-treatment IRI value if the pretreatment value is less than 80 in./mi or may 

decrease the post-treatment IRI if pretreatment IRI is more than 95 in./mi (Hall et al. 2002).  

Analysis Results 

Consequence analysis of treatment types on flexible pavement was done using a prototype 

analysis tool as a decision-making tool for future post-treatment IRI using the developed ANN 

model. The tool is a Microsoft Excel macro-based automation tool whose interface is shown in 

Appendix B. Note that this tool is the prototype tool developed separately as part of this study in 

addition to the IPAT tool.  

In evaluating the impact of preservation and rehabilitation techniques on AC pavement life, IRI 

was predicted both before and after treatment application on a non-interstate highway using the 

prototype tool. Figure 69a and b provide a comparison of field PMIS data with future 

pretreatment and post-treatment IRI predictions based on IRI trigger value and threshold value 

for a pavement section on Iowa 149.  
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(b) Functional thin overlay 

Figure 69. Comparisons of field PMIS data with future pretreatment and post-treatment 

IRI predictions 

Based on field data evaluations and DOT applications, respective treatment triggers for structural 

AC overlay and thin AC overlay were selected to be an IRI value of about 150 in./mi and about 

100 in./mi for this study. The automation tool of pavement performance prediction provided the 

flexibility for changing these triggers based on an agency’s decision.  

The threshold value of IRI was 170 in./mi, as determined by the FHWA (Visintine et al. 2018), 

meaning that the pavement would be in poor condition if IRI reached this level. Based on 

previous case studies, the initial IRI value after HMA overlay rehabilitation was considered to be 

63 in./mi. In Figure 69a, the pavement was overlaid with 2 in. asphalt at the age of 19, so its age 

was reset to 0, and a previous age of 20 since construction became an age of 1 after overlaying. 

The area between pretreatment and post-treatment IRI predictions denotes the performance 

benefit area of the improved pavement performance; the area becoming larger means that more 

benefit is achieved by the treatment, reflecting greater life extension. The time between initial 

IRI and trigger IRI after post-treatment is called the treatment service life, and the time between 

the threshold IRIs before and after treatment represents pavement life extension. Therefore, for 

the case of applying AC overlay rehabilitation to this pavement, pavement service life can be 

extended by approximately 20 years, and treatment service life was found to be about 19 years. 

It was assumed that an approximate 15% IRI enhancement occurs after a thin overlay treatment, 

and Figure 69b indicates that the pavement exceeded the treatment trigger value, about 100 

in./mi, at the age of 12. After the application of a thin overlay treatment, post-treatment IRI 

predictions passed the next trigger value at the age of 15. The duration between initial post-

treatment IRI and trigger IRI after treatment is approximately three years, the approximate 

treatment service life. Using a thin overlay, the pavement service life extension was found to be 
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six years, a value supported by both the literature and case studies. Note that for a particular 

application a user can adjust initial IRI, recovery percentage, and treatment trigger.  

Figure 70 shows the failure ages of the 34 AC pavement sections from the PMIS database that 

reached the treatment trigger for thin overlay, about 100 in./mi, before and after treatment 

applications.  

 

Figure 70. Illustration of effect of thin overlay on service life based on failure age 

For example, pavement section ID 33 represents the pavement shown in Figure 69. At the age of 

12 years, it failed by passing the treatment trigger, a thin overlay treatment was applied, and at 

the age of 15 years, the pavement again exceeded the treatment trigger level. The treatment 

service life for this pavement was three years, and the mean of all pavement sections’ treatment 

service life was found to be four years for thin overlay, as denoted by the green line in Figure 70. 

The RSLs of pavements can be calculated for defining pavement design life. 

Key Findings and Recommendations  

A network-level pavement performance prediction automation tool using a machine-learning 

technique was explored for a proof-of-concept demonstration of the integration of AC pavement 

preservation and rehabilitation techniques on RSL predictions. Using the developed ANN model, 

this tool can be used as a decision-making tool for predicting both future pretreatment IRI and 

future post-treatment IRI, depending on the selection of treatments such as functional thin AC 

overlay and structural AC overlay. The findings and recommendations of this work can be 

summarized as follows:  
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• ANN models developed for AC pavement systems, requiring only five input parameters of 

pavement thickness, age, traffic, and previous years’ IRI values, can predict IRI with high 

accuracy when compared to actual IRI measurements from the PMIS database. 

• Since it has been trained with an adequately large number of field data points, the same 

model developed for predicting pretreatment IRI can be used for predicting post-treatment 

IRI. 

• There are several significant parameters to be defined before predicting post-treatment IRI: 

initial IRI after treatment or recovery percentage in performance, treatment trigger, expected 

treatment service life, and remaining pavement service life extension. The automated 

decision-making tool can provide flexibility for entering these parameters for predicting post-

treatment IRI.  
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CHAPTER 7. DEVELOPMENT AND FEATURES OF IPAT TOOL 

The IPAT tool is a Microsoft Excel macro- and VBA-based automation tool that is comprised of 

a navigation panel (main tool) and sub-tools. As can be seen in Figure 71, the IPAT tool has been 

developed to navigate and utilize all sub-tools for both the statistics-based and AI-based models 

described in previous chapters (Chapter 3, Chapter 4, and Chapter 5).  

 

 

Figure 71. Overview of sub-tools for IPAT tool 

A total of 14 sub-tools for statistics-based models and 42 sub-tools for AI-based models were 

developed to predict pavement performance and RSL. 

The interface of the main tool is shown in Figure 72. 
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Figure 72. Interface of main IPAT tool 

The process for AC over JPCP analysis is the same as for the process of AC analysis.  

The IPAT source code is provided in Appendix C. In addition, details on how to use the IPAT 

tool are provided in a standalone user guide that was also developed as part of this project. 

The flowcharts for each of the pavement performance and RSL prediction tools are shown in 

Figure 73 through Figure 81. 
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Figure 73. Flowchart of IPAT tool using statistics-based models for all pavement types 
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Figure 74. Flowchart of IPAT tool using AI-based models for all pavement types 
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Figure 75. Flowchart of IPAT tool using AI-based IRI model for JPCP 
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Figure 76. Flowchart of IPAT tool using AI-based TCRACK model for JPCP 



128 

 

Figure 77. Flowchart of IPAT tool using AI-based IRI model for AC 
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Figure 78. Flowchart of IPAT tool using AI-based RUT model for AC 
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Figure 79. Flowchart of IPAT tool using AI-based TCRACK model for AC 
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Figure 80. Flowchart of IPAT tool using AI-based LCRACK model for AC 
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Figure 81. Flowchart of IPAT tool using AI-based IRI model for PCC overlay 
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CHAPTER 8. CONCLUSIONS  

Overall Conclusions 

A detailed step-by-step methodology for the development of pavement performance and RSL 

prediction models using real pavement performance data obtained from the Iowa DOT PMIS 

database have been described and discussed. To develop RSL models, project- and network-level 

pavement performance models were initially developed using two approaches: a statistically (or 

mathematically) defined approach primarily used for project-level modeling and analysis and an 

AI-based approach using an ANN to primarily be used for network-level modeling and analysis. 

Then, using various pavement performance indicators, including IRI for project-level models as 

well as rutting, percent cracking, and IRI for network-level models, and the FHWA-specified 

threshold limits for pavement performance indicators, RSL models were developed for four 

pavement types in Iowa: JPCPs representing rigid pavement systems, AC pavements 

representing rigid pavement systems, AC over JPCP representing composite pavement systems, 

and PCC overlay (concrete overlay). Network-level pavement deterioration prediction and RSL 

models were also further improved for JPCP, AC, and PCC overlays using available data related 

to Iowa county pavements.  

A statistically (or mathematically) defined sigmoid pavement deterioration curve-based approach 

was used for project-level modeling and analysis. Sigmoidal equations were particularly used in 

the statistical model development because: (1) they have a low initial slope that increases with 

time, and (2) they follow a trend in which pavement condition always gets worse and the damage 

is irreversible; both these features make these models mimic pavement deterioration behavior 

observed in field studies. Sigmoidal equations were found to successfully model pavement 

deterioration when there was a single pavement deterioration trend (project-level). One of the 

benefits of project-level pavement performance models is that they can be developed using very 

sparse data, so they can be extensively used when only limited conditional or structural data and 

traffic data are available for given pavement sections. 

AI-based pavement performance models were primarily used for network-level modeling and 

analysis. AI techniques such as ANN-based models have been found to be great tools for 

modeling pavement deterioration when there are many pavement sections with various traffic, 

thickness, and other various deterioration trends (network-level). They are also very fast tools 

that can solve thousands of pavement scenarios with various traffic, thickness, and conditions in 

seconds. Both these features of ANN models make them excellent tools for use in the 

development of network-level pavement performance modeling.  

Network-level pavement performance models were also developed using statistical- and ANN-

based approaches, with identical input parameters used in both approaches to evaluate their 

relative success for network-level pavement performance modeling. It was found that network-

level ANN-based pavement performance models produced greater accuracy with higher R2 and 

lower AAE values compared to project-level statistical models. 

It is worth noting that while both statistics- and AI-based models can be utilized for project- and 
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network-level pavement performance and RSL estimations, the research team recommends the 

utilization of statistics-based models if one is interested in analyzing project-level pavement 

systems, while AI-based models are recommended if network-level pavement systems are 

analyzed. The reason for this recommendation is that AI-based models were developed using 

network-level databases and are more capable of capturing a variety of scenarios in pavement 

systems. Statistics-based models were developed for individual road sections, and each time the 

models are used for these particular road sections, they can be updated using more data, so they 

rely more on project-level investigation. 

As part of this study, Microsoft Excel-based automation tools collected in an IPAT tool were 

developed for both project- and network-level pavement performance modeling and analysis. 

The conclusions from the tool development are as follows: 

• The project-level pavement performance modeling and RSL calculation tool is capable of 

developing project-based statistical models for predicting future pavement performance as 

well as calculating RSL values based on user-defined threshold limits. It is also capable of 

automatically updating and improving pavement performance prediction models because it 

allows more data to be added to the model development data set. The benefit of this tool is 

that, as engineers add more data into the model development data set, they will be able to 

automatically refine performance prediction models and make decisions using more recent 

and more accurate pavement performance models.  

• The network-level pavement performance modeling tool is capable of making pavement 

performance predictions based on pre-developed ANN-based pavement performance models. 

While having only thickness, traffic, age, and the previous two years of pavement 

performance records for any pavement performance indicator, it can make future pavement 

performance calculations in less than a second for any pavement section. It is also capable of 

producing pavement performance predictions in seconds for thousands of pavement scenarios 

under various traffic, thickness, and other conditions. The network-level pavement 

performance modeling tool is also capable of: (1) making future pavement performance 

predictions for some distresses (transverse cracking, rutting, and longitudinal cracking), and 

then (2) using these predicted distress values as inputs in making future IRI predictions.  

Conclusions for the JPCP Case 

The JPCP case is described in Chapters 3 and 4, and specific related findings are summarized as 

follows: 

• Thirty-four JPCP pavement sections were used in pavement performance model development 

in this study. 

• Accurate project-level statistical-based IRI performance models and network-level AI-based 

transverse cracking, IRI approach 1, and IRI approach 2 models were developed for JPCP 

pavements. AI-based models using the PMIS database were further improved for county 
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databases by incorporating different input parameters (e.g., AADT instead of ESAL, 

pavement performance thickness ratio instead of only pavement performance). 

• Using the PMIS database: 

o Statistics-based network-level RSL estimation: An average RSL value of 7.2 years was 

found for 34 JPCP pavement sections when statistics-based pavement performance 

models were used to make future IRI predictions. An IRI threshold limit of 170 in./mi 

was used as a pavement performance indicator in project-level RSL models.  

o AI-based network-level RSL estimation: Average RSL values of 2.0, 9.6, and 11.5 years 

were found for 34 JPCP pavement sections when AI-based transverse cracking, IRI 

approach 1, and IRI approach 2 pavement performance models were used to make future 

pavement condition predictions. A percent cracking threshold limit of 15% and an IRI 

threshold limit of 170 in./mi were used in the calculation of RSL. 

• Using the Iowa county database:  

o Statistics-based network-level RSL estimation: An average RSL value of 13.3 years was 

found for 34 JPCP pavement sections when statistics-based pavement performance 

models were used to make future IRI predictions. An IRI threshold limit of 200 in./mi 

was used as a pavement performance indicator in project-level RSL models.  

o AI-based network-level RSL estimation: Average RSL values of 4.9, 6.2, and 11.2 years 

were found for 34 JPCP pavement sections when AI-based transverse cracking, IRI 

approach 1, and IRI approach 2 pavement performance models were used to make future 

pavement condition predictions. The percent cracking threshold limit was taken as 15%. 

Since county JPCP sections have exhibited high IRI values at present, an IRI threshold 

limit of 200 in./mi was used in the calculation of RSL for illustration purposes. 

• Different average IRI-based RSL results (7.2, 9.6, and 11.5 years of RSL for PMIS database 

and 13.3, 6.2, and 11.2 years of RSL for county database) for the JPCP pavement sections 

were found when statistics- and AI-based IRI approach 1 and approach 2 pavement 

performance models, respectively, were used in the calculation of RSL. This difference in 

average RSL results might be because different pavement performance models were used in 

the calculation of RSL. AI-based pavement performance models were developed for each 

pavement performance indicator, and Excel-based sub-tools were developed and utilized to 

predict future pavement condition for all pavement sections of a given pavement type. Even 

if they are developed considering various input variables (thickness, traffic, previous years’ 

condition records, etc.), they cannot be sufficiently comprehensive to consider all variables 

determining deterioration of the pavement systems. On the other hand, statistics-based 

pavement performance models, valid only for the sections for which they were developed, 

were developed for given pavement sections. For pavement sections with few pavement 
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condition records, accuracies might not be high enough, and adding more data points (i.e., 

future performance measurements) would most likely increase model accuracy. 

Conclusions for the AC Pavement Case 

The AC pavement case is described in Chapters 3 and 4, and specific related findings are 

summarized as follows: 

• Thirty-five AC pavement sections were used in pavement performance model development 

in this study. 

• Accurate project-level statistical-based IRI performance models and network-level AI-based 

rutting, longitudinal cracking, transverse cracking, IRI approach 1, and IRI approach 2 

models were developed for AC pavements. AI-based models using the PMIS database were 

improved to be used for the county database by incorporating different input parameters (e.g., 

AADT instead of ESAL) 

• Using PMIS database:  

o Statistics-based network-level RSL estimation: An average RSL value of 9.3 years was 

found for 35 AC pavement sections when statistics-based pavement performance models 

were used to make future IRI predictions. An IRI threshold limit of 170 in./mi was used 

as a pavement performance indicator in project-level RSL models.  

o AI-based network-level RSL estimation: Average RSL values of 2.3, 11.8, and 11.7 years 

were found for 35 AC pavement sections when AI-based rutting, IRI approach 1, and IRI 

approach 2 pavement performance models were used to make future pavement condition 

predictions, and a rutting threshold limit of 0.4 in. and an IRI threshold limit of 170 in./mi 

were used in the calculation of RSL. 

• Using the Iowa county database:  

o Statistics-based network-level RSL estimation: An average RSL value of 26 years was 

found for 35 AC pavement sections when statistics-based pavement performance models 

were used to make future IRI predictions. An IRI threshold limit of 200 in./mi was used 

as a pavement performance indicator in project-level RSL models.  

o AI-based network-level RSL estimation: Average RSL values of 8.6 and 13.7 years were 

found for 35 AC pavement sections when AI-based IRI approach 1 and IRI approach 2 

pavement performance models were used to make future pavement condition predictions. 

An IRI threshold limit of 170 in./mi was used in the calculation of RSL. 
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• In summary, when statistics-based and AI-based IRI approach 1 and approach 2 pavement 

performance models, respectively, were used in the calculation of RSL, there was an 

insignificant difference in average IRI-based RSL results (9.3, 11.8, and 11.7 years of RSL) 

for the PMIS database. In contrast, average IRI-based RSL results were obtained (26, 8.6, 

and 13.7 years of RSL) for the county database for the AC pavement sections. The reason for 

the wider range of years is that the county database suffers from less collected field data and 

a lack of historical records for some pavement sections. Thus, IRI may not reach the 

threshold limit in a pavement’s design life based on the given limited inputs to the model. In 

this case, RSL is calculated based on the design life duration that might result in higher 

values in network-level RSL. Adding more data points (i.e., future performance 

measurements) would change the pavement performance models as well as the calculated 

RSL results. 

Conclusions for the AC over JPCP Case  

The AC over JPCP case is described in Chapters 3, and the specific related findings are 

summarized as follows: 

• Sixty AC over JPCP sections were used in pavement performance model development in this 

study. 

• Accurate project-level statistical-based IRI performance models and network-level AI-based 

rutting, longitudinal cracking, transverse cracking, IRI approach 1, and IRI approach 2 ANN 

models were developed for composite pavements. 

• Using the PMIS database:  

o Statistics-based network-level RSL estimation: An average RSL value of 4.4 years was 

found for 60 composite pavement sections when statistics-based pavement performance 

models were used to make future IRI predictions, with an IRI threshold limit of 170 

in./mi used in the calculation of RSL. 

o AI-based network-level RSL estimation: Average RSL values of 14.4, 9.3, and 6.1 years 

were found for 60 composite pavement sections when AI-based rutting, IRI approach 1, 

and IRI approach 2 pavement performance models were used to make future pavement 

condition predictions, with a rutting threshold limit of 0.4 in. and an IRI threshold limit of 

170 in./mi used in the calculation of RSL. 

• Because of lack of available data for AC over JPCP sections in the county database, AI-based 

models could not be improved. 

• In summary, average RSL results for 60 composite pavement sections when statistics-based 

and ANN-based IRI performance models approach 1 and approach 2 were used to calculate 
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RSL values were 4.4, 9.3, and 6.3 years. Note that calculated RSL results are based on a 

limited number of data sets, developed pavement performance models, and the FHWA-

specified threshold limits, so adding more data points (i.e., future performance 

measurements) would most likely change the pavement performance models as well as the 

calculated RSL results. 

Conclusions for the PCC Overlay Case  

The PCC overlay (county overlay) case is described in Chapters 5, and the specific related 

findings are summarized as follows: 

• A total of 148 PCC overlaid pavement sections were used in pavement performance model 

development in this study. 

• Accurate project-level statistical-based IRI performance models and a network-level AI-

based IRI model were developed for PCC overlays. AI-based models using the Iowa county 

database were developed to reflect the importance of data availability and data limitations 

used in models.  

• Using Iowa county overlay databases:  

• Statistics-based network-level RSL estimation: An average RSL value of 15.3 years was 

found for 18 PCC overlaid pavement sections when statistics-based pavement 

performance models were used to make future IRI predictions. An IRI threshold limit of 

170 in./mi was used as a pavement performance indicator in project-level RSL models.  

• AI-based network-level RSL estimation: An average RSL value of 7.4 years was found for 

18 PCC overlaid pavement sections when AI-based IRI pavement performance models 

were used to make future pavement condition predictions, with an IRI threshold limit of 

170 in./mi used in the calculation of RSL. 

• In summary, average RSL results for 18 PCC overlays when statistics-based and ANN-based 

performance models were used in the calculation of RSL values were 15.3 and 7.4 years. 

Note that calculated average RSL results are based on only a limited number of pavement 

sections, and since analyzed pavement sections also had low IRI values throughout the years 

of data collection, IRI could not reach the threshold limit within the pavement’s design life, 

and RSL was calculated based on the design life, resulting in higher RSL values when using 

a statistics-based approach. However, it should be noted that the availability of more 

measured data for models could provide better patterns for predicting future data, as shown 

in the deterioration curves. 
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Conclusions for Feasibility of Integrating Pavement Treatment Techniques into RSL 

Models 

The feasibility of integrating pavement treatment techniques into RSL models is described in 

Chapter 6, and the specific related findings are summarized as follows: 

• Based on lessons learned from the feasibility study of integrating preservation and 

rehabilitation techniques to AI-based RSL models, the additional parameters to be identified 

and defined for improving model robustness include the following: 

o JPCP: preservation treatment trigger and recovery percentage 

o AC pavements: initial IRI after treatment or recovery percentage in performance, 

treatment trigger, expected treatment service life, and remaining pavement service life 

extension 
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CHAPTER 9. RECOMMENDATIONS FOR IMPLEMENTATION AND FUTURE 

RESEARCH 

This study developed the IPAT tool that Iowa county engineers can use to estimate project- and 

network-level pavement performance and RSL. The tool provides a series of options for 

estimating RSL through different approaches based on various conditions and distress data 

availability of individual counties. Such RSL estimations will allow county engineers to 

distinguish between two pavement sections having the same current condition (i.e., the same 

current IRI). This can be an ideal approach to addressing transportation planning and 

performance management criteria requirements of the MAP-21 legislation.  

Figure 82 illustrates how the Microsoft Excel-based IPAT tool described in this study could be 

integrated into Iowa county pavement asset management procedures. 

 

Figure 82. Pavement asset management procedures recommended by using IPAT tool 

The procedure is outlined in the following recommended steps: 

• Step 1: Data collection. Collect county pavement inventory data (e.g., construction history, 

maintenance activities) and performance history data using cost-effective methods and 

techniques.  

• Step 2: Data processing. Segment and summarize the collected data by computing locations 

of events (e.g., condition/ distress data) on linear features (e.g., pavement management 

sections) at run time (dynamically) in linear measure (e.g., milepost, latitude, and longitude) 

for individual pavement sections, and then combine them to create a standardized databank 

that merges data from different sources while preventing overlapped data. Note that 

Appendix A offers a step-by-step detailed standardized procedure to illustrate how such a 

standardized databank (i.e., an Iowa county pavement HPD) concept could be developed. 

• Step 3: Data analysis. Analyze the processed data by using the developed Microsoft Excel-

based IPAT tool to estimate the performance and RSL of county pavements at both project 

and network levels. 
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• Step 4: Data management. Integrate and store the processed and analyzed data into an 

effective data management platform or software appropriate to individual county practices. 

• Step 5: Data-driven decision-making. Prioritize and allocate resources for future pavement 

preservation and rehabilitation needs by using pavement performance and RSL predictions 

from the IPAT tool. 

Future directions for the next phase(s) of this work have been developed and recommended to 

fulfill county engineer needs for fully implementing the recommended steps in Iowa county 

pavement asset management practices. These directions can be categorized into the following 

five topics related to each step:  

• Step 1: Improve data collection practices 

Implement low-cost data collection tools for local road agencies to support more frequent 

collection of pavement performance data and establish a more synthesized and reliable 

database than what currently exists. By using such tools, local road agencies could more 

easily and accurately record the beginning and ending coordinates (latitude and longitude) for 

each road section using the standardized metadata at each agency level to prevent faults 

during data transfer and update the database when road alignments change. It is 

recommended that local agencies implement the recommendations of the IHRB project titled 

Development of a Smartphone-Based Road Performance Data Collection Tool (Ceylan et al. 

2021), for which the research team has been developing standardized nonproprietary 

collection tools (i.e., a smartphone-based road performance data collection tool and a smart 

vehicle black box) with automatic vehicle location (AVL) technology.  

• Step 2: Automate or semi-automate data processing 

Develop an automated or semi-automated data processing tool that could prevent errors in 

manual data handling and facilitate creating a databank that merges data from different 

sources and updating that database when road alignments change. 

• Step 3: Integrate maintenance/preservation/rehabilitation activities into the IPAT tool 

Improve the robustness of the AI-based RSL models developed from the feasibility study by 

addressing identified challenges and incorporating solutions to them as additional sub-tools 

in subsequent IPAT tool updates.  

• Step 4: Integrate the IPAT tool into the geographic information system (GIS) platform 

and/or software and develop a smartphone application version of the IPAT tool as an 

official app under the Iowa County Engineers Association Service Bureau (ICEASB) 

AppSuite to provide better data management practices 

Integrate IPAT predictions into a web-based platform and/or software (e.g., ArcGIS) 

appropriate to individual county practices. Such integration could provide a user-friendly 

interface, store all information in a dynamic map visualization, and track and predict 

pavement performance, access pavement data, and reevaluate pavements while observing 

them in the field to improve data management practices. The smartphone application version 
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of the IPAT tool could be developed as an official app under the ICEASB AppSuite or other 

existing database platforms used by Iowa county engineers. 

• Step 5: Develop multi-objective optimized RSL models to assist in better decision-

making 

Develop multi-objective optimized RSL models considering various pavement performance 

indicators with different priorities and budget and resource constraints. Such multi-objective 

optimized RSL models will assist in better decision-making by using strategies to prioritize 

projects for maintenance and rehabilitation plans and select cost-effective maintenance and 

rehabilitation techniques for given projects. 
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APPENDIX A. PROCEDURE TO DEVELOP IOWA COUNTY PAVEMENT 

HISTORICAL PERFORMANCE DATABANK  

Scope 

This manual describes the procedures for developing a historical performance databank (HPD) 

for Iowa county pavements. This document, together with the application of methods used by the 

Iowa Department of Transportation (DOT) for primary roads (i.e., Pavement Management 

Information Systems [PMIS]), delineates the procedures for creating and processing raw data for 

pavements and the guidelines for developing an accurate database of the secondary roads in 

Iowa. 

Data Sources 

The necessary data are divided into three groups: (1) condition and distress data, (2) construction 

history, and (3) traffic data. The condition and distress data were obtained from the Iowa DOT as 

raw data, called ROADWARE_LOCAL in this document. The construction history was provided 

by some county engineer’s offices, called County Records in this document. The traffic data 

were obtained from the Iowa DOT, the Roadway Asset Management System (RAMS)/open data 

online. 

In this manual, the following terms are used for the descriptions of pavement systems: 

• County road unit is defined as 1/100 of a mile (approximately 52 ft). The condition and 

distress data were collected for each county road unit. Also, each county road unit has its 

own beginning and ending milepost value. 

• County road section is defined as each pavement section that has the same or different 

pavement type (e.g., flexible or rigid) in a county road system. The combination of all county 

road units is called consecutive county road units, which may form a county road section. 

• County road units with raw distress data is defined as a county road system, which had raw 

data provided by the Iowa DOT. The combination of all consecutive county road 

units/sections is called a county road system. 

• County road sections with construction history is defined as a county road system, which had 

pavement historical data obtained from County Records. 

Description of Overall Procedures  

An HPD for Iowa county pavements is developed by processing data including segmentation and 

summarization procedures. The segmentation procedure defines beginning and end points for a 

road section. Subsequent to determining these points, the road sections are created. Then, distress 

and condition data corresponding to these road sections are summarized to finalize the data 

processing. Thus, the summarization procedure calculates the condition and distress data for a 

specific road section by using different summarization techniques specified according to type of 
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data. 

In the segmentation procedure, a dynamic segmentation method, which is a function of a 

geographic information system (GIS), is utilized. Dynamic segmentation is a process that has the 

ability to compute locations of events (e.g., condition/ distress data) on linear features (e.g., 

pavement management sections) at run time (dynamically) in linear measure (e.g., milepost, 

latitude, and longitude). Figure 83 indicates the overall process on how dynamic segmentation is 

applied on a database.  

 
Reproduced from Nlenanya 2017, Institute for Transportation 

Figure 83. Demonstration of application of dynamic segmentation on database 

This process is the one used in Iowa DOT segmentation, which is shown on the Iowa Pavement 

Management Program (IPMP) website. Figure 84 shows a comparison of dynamic segmentation 

by IPMP and the segmentation procedure given in this manual. Raw data 

(ROADWARE_LOCAL) are provided by Iowa DOT and construction history data (County 

Records) are provided by Iowa county engineers. 



151 

 

Figure 84. Dynamic segmentation by IPMP vs. this manual’s segmentation procedure 

The segmentation procedure shown previously in Figure 34 in Chapter 4 is composed of two 

consecutive steps: the matching process and the sectioning process.  

These steps help to create a databank that combines different data from different sources while 

preventing overlapped data. In the matching process, the project lengths are matched to specify 

the county road sections. County Records provided the project lengths. ROADWARE_LOCAL 

provided coordinates. Therefore, the project lengths need to be calculated by using these 

coordinates. In the sectioning process, after matching project lengths and/or coordinates of 

county road sections in the county road system, the consecutive county road units/sections are 

separated into portions. If the portion is the length of 52 ft, it is called a county road unit. If the 

portion is composed of consecutive county road units, it is called a county road section. Each 

portion has its own beginning and end mile and coordinates together with raw condition and 

distress data.  

The summarization procedure shown previously in Figure 35 in Chapter 4 is implemented by 

processing each data corresponding to each county road unit.  

An example using IRI distress data was indicated in Figure 35. To summarize IRI data for a road 

section, the average of raw IRI data of each county road unit is taken. In the event of missing IRI 

data in a road section, the average of existing raw IRI data was taken by ignoring missing data. 

More detail on this will be given in the following sections in this manual. Figure 83 and Figure 

84 as well as the figures from Chapter 4 referenced above have indicated the overall process for 

the development of a databank, which is composed of the combination of segmentation and 

summarization procedures.  
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Description of the Segmentation Procedure  

Step 1. Choice of County 

Depending on the availability of construction history data (e.g., pavement thickness) found in 

County Records, a specific county is chosen. 

Step 2. Preparation of Raw Data 

The file of raw data obtained from the Iowa DOT, which includes the pavement condition, and 

distress data collected from the County Records database is selected based on its year and county 

ID and opened.  

The Iowa DOT has archived the raw distress data collected by a third-party vendor since 2013 

when statewide collection of non-National Highway System (non-NHS) federal-aid-eligible 

roads began. The collected and archived data in 2013, 2015, and 2017 includes 46 counties, and 

the collected and archived data in 2014, 2016, and 2018 includes 53 counties, meaning that data 

are collected every year for about half of the state as shown previously in Figure 36 in Chapter 4. 

The files are named in the Iowa DOT database as follows: 

• ROADWARE_LOCAL_2013 

• ROADWARE_LOCAL_2014 

• ROADWARE_LOCAL_2015 

• ROADWARE_LOCAL_2016 

• ROADWARE_LOCAL_2017 

Each file is displayed as shown previously in Figure 37 in Chapter 4, including all information 

related to collected raw data. Microsoft Access and/or Excel software is utilized to import and 

export data from the Iowa DOT database. The developed pavement HPD is stored in an Excel 

format.  

Step 3. Filtration of Selected Raw Data File Based on County ID 

The selected ROADWARE_LOCAL raw data file is filtered based on the chosen county ID, as 

shown in Figure 85. 
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Figure 85. Filtration of ROADWARE_LOCAL based on county ID 

Step 4. Filtration of Selected Raw Data File Based on Road Name 

The County Records file is utilized to select a road name. After selection of road name, the 

ROADWARE_LOCAL raw data file is filtered based on road name, as shown in Figure 86. 

 

Figure 86. Filtration of ROADWARE_LOCAL based on road name 
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Here, the challenge is that a road name can be represented with a different name in every year. 

Thus, County Records and ROADWARE_LOCAL do not necessarily match. In such cases, there 

are some auxiliary sources to determine the changed road name. One of these sources is the 

Highway and Transportation Map corresponding to the related county to view each road name in 

different ways. Also, the coordinates of the chosen road section need to be compared between 

years to make sure that the same road section is surveyed in every year. Another source is 

Google Maps, which can be used to find the location and coordinates of the road sections. 

Step 5. Sorting of County Road Units 

The recorded mileages of the selected county road units are sorted in ascending order. The sorted 

column in ROADWARE_LOCAL file is named BEGIN_MILE before 2016 and 

FROM_MEASURE since 2016, as shown in Figure 87.  

 

Figure 87. Sorting of county road units 

Step 6. Calculation of Total Length of the Road Section 

County Records provided the total length of the road section. In order to match it with the 

ROADWARE_LOCAL raw data, the total length of road sections should be matched. It is 

calculated using the following equation (equation 6): 

Length of road section = END_MILE – BEGIN_MILE (before 2016) 

Length of road section = TO_MEASURE – FROM_MEASURE (since 2016)  (6) 
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In the above equations, BEGIN_MILE or FROM_MEASURE refers to the beginning mileage 

value for the first tested road unit, and END_MILE or TO_MEASURE indicates the ending 

mileage value of the last tested unit, as shown in Figure 88. 

 

Figure 88. Beginning and ending mileage values of a road section 

After a comparison between County Records and ROADWARE_LOCAL, the specified road 

length is also compared with each year’s data. For instance, if the road section has raw data 

collected in 2013, 2015, and 2017, the road lengths seen in each year should be compared as to 

whether the same road section was surveyed. 

Step 7. Comparison of Pavement Types 

The pavement type of a road section selected in County Records should be matched with the 

filtered raw data taken from ROADWARE_LOCAL. It is found in ROADWARE_LOCAL, as 

shown in Figure 89. 
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Figure 89. Checking pavement type of a road section 

Step 8. Determination of Pavement Type 

Based on Step 7, the pavement type of a road section is determined. Then, the identified 

condition and distress data are processed for this specific pavement type. They are listed as 

follows: 

For rigid pavement: 

• International roughness index (IRI) 

• Faulting  

• High, medium and low severity transverse cracking 

For flexible pavement: 

• IRI 

• Rutting 

• High, medium and low severity transverse cracking 

• High, medium and low severity longitudinal cracking 

• High, medium and low severity wheel path longitudinal cracking 

Step 9. Transfer of Arranged Raw Data 

The previous steps are completed to arrange the raw data based on the defining characteristics of 
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a road section. In this step, the compared, filtered, checked, and arranged raw data are transferred 

from Microsoft Access format to an Excel format to reduce the file size and work in detail on it. 

Thus, the arranged data are selected in the Microsoft Access software and copied to an Excel 

sheet, as shown in Figure 90. 

 

Figure 90. Transfer of arranged data to an Excel sheet 

Step 10. Repeating Transfer of Arranged Raw Data for All Years 

All transferring processes of the raw data from Microsoft Access to an Excel format is fulfilled 

for all years that were specified previously. For instance, half the raw data for Iowa is collected 

in 2013, 2015, and 2017, and the other half is collected in 2014, 2016, and 2018. An example is 

displayed in Figure 91. 
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Figure 91. Transfer of arranged data to an Excel sheet for all years 

Step 11. Elimination of Nulls in IRI  

When the condition and distress data are examined, some null values (e.g., -1), Figure 92, can be 

observed in the ROADWARE_LOCAL database.  

 

Figure 92. Null values in IRI column 
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Specifically, the null values are seen in the IRI condition data since they are collected by sensors. 

Thus, the null values might come from a data collection error. In that case, these values are 

deleted and are not taken into account of the data processing for the IRI data. When the cells in 

Excel that include null values are deleted, the rest of IRI data should be processed for a specified 

road section.  

However, other condition and distress data corresponding to the row that has null value of IRI 

still can be processed for the same road unit.  

Step 12. Filtration of Status  

Each raw data field indicates its status under the STATUS column, which is described by the 

PMIS as the status of segments that should be processed. The metadata for PMIS indicates the 

status types as follows: 

• Bridge 

• Construction 

• Duplicate 

• Failed IRI 

• LaneDeviation 

• Local 

• Matched 

• Railroad Crossing (RRX) 

• Ramp 

• Too short 

• NULL 

In the ROADWARE_LOCAL raw data, the STATUS column indicates the same categories as 

the PMIS data. Based on instructions in the PMIS metadata, only data with the STATUS of 

Matched are considered for data processing, because it is known as a valid point. An example of 

the filtered data by STATUS is displayed in Figure 93. 
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Figure 93. STATUS display 

Step 13. Copy of Raw Data Filtered by STATUS 

Although raw data are filtered by STATUS, all road units including hidden rows are counted in 

data processing even in the case of selecting all visible rows in the Excel sheet. In order to 

prevent any future errors in the calculations, all raw data filtered by STATUS are selected and 

copied in a new Excel sheet, as seen in Figure 94.  

 

Figure 94. Copying raw data sheet filtered by STATUS 

This step is applied on all years. 
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Step 14. Comparison of Coordinates of a Road Section in Each Year 

The coordinates of the beginning of a road section are shown by BEGIN_GLAT and 

BEGIN_GLON, and the ones for ending of the road section are END_GLAT and END_GLON. 

These coordinates of beginning and ending point of the road section should always be the same 

for every other year since the road location never changes. In other words, the coordinates of 

BEGIN_MILE (FROM_MEASURE) and END_MILE (TO_MEASURE) shown in the 

ROADWARE_LOCAL database should match for the years even if the beginning and ending 

mileage values do not.  

For example, if the coordinates (BEGIN_GLAT/BEGIN_GLON and END_GLAT/END_GLON) 

do not match between 2013 and 2015 at the same BEGIN_MILE and END_MILE, find the 

BEGIN_MILE and END_MILE points by their coordinates identified in 

ROADWARE_LOCAL_2013 to match with the coordinates in ROADWARE_LOCAL_2015 

(e.g., in 2013, BEGIN_MILE of the beginning point is 0 and END_MILE of the ending point is 

4.015, but in 2015 BEGIN_MILE and END_MILE might be different than the points given in 

2013 shown in Figure 95). The BEGIN_MILE and END_MILE point values between the years 

do not need to match, only the coordinates.  

For the beginning of a road section, BEGIN_GLAT and BEGIN_GLON are checked and 

END_GLAT and END_GLON are checked for the ending of a road section, as shown in Figure 

95.  
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Figure 95. Coordinates of a road section to compare between years 

Step 15. Conversion of Columns from Text to Value 

After the previous steps, the columns that will be used in the processing should be converted 

from text to value in order to prevent any possible mistakes in the calculations. For this purpose, 

Text to Columns in Excel is applied to these columns, as shown in Figure 96. 
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Figure 96. Application of Text to Columns on data columns 

Description of Summarization Procedure 

Rigid Pavements 

Condition and distress data processed for rigid pavements are IRI, faulting, and transverse 

cracking as mentioned in an earlier section. The following provides more detail on how to 

process these data.  

Condition data for rigid pavements are as follows: 

a) IRI 

• It is named IRI in all years of data 

• It is the average of left wheel IRI and right wheel IRI (e.g., PMIS metadata) 

• It is described by inch per mile in both raw data and summarized data, shown in Figure 97 

• It is summarized by taking the average of all collected IRI data for a road section 

 

Figure 97. Unit conversion in IRI 
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b) Faulting 

• It is named FAULT before 2015 and FAULTAV since 2015 

• FAULT is the average faulting only on faulted joints in a segment, meant as maximum 

faulting; FAULTAV is the average faulting on all joints in a segment, meant as average 

faulting (e.g., PMIS metadata) 

• It is described by inch in both raw data and summarized data, shown in Figure 98 

• It is summarized by taking the average of all collected FAULT or FAULTAV data for a road 

section 

 

Figure 98. Unit conversion in faulting 

Distress data for rigid pavements are as follows: 

c) Transverse cracking 

• It is named TCRACK_H, TCRACK_M, and TCRACK_L 

• TCRACK_H is the area of high severity transverse cracking; TCRACK_M is the area of 

medium severity transverse cracking; and TCRACK_L is the area of low severity transverse 

cracking 

• It is described by square feet (ft2) in raw data and by count/mile in summarized data, shown 

in Figure 99; note that square feet (ft2) in the raw data can be calculated by multiplying the 

crack length measured by the 2 ft of crack width assumed  

• Its summarization is different before and since 2016; the calculation procedures are explained 

in detail in the next sections 

 

Figure 99. Unit conversion in transverse cracking 

Before 2016: 
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1. Sum of all collected TCRACK_H/M/L data separately (ft2) 

2. Divide it by the length (mi) of road section (ft2/mi); length of road section is calculated 

by equation 6 

3. Divide it by the unit crack area (ft2), which is the crack length (ft) by the crack width (ft); 

a 10 ft lane width is assumed as the crack length (ft) and a 2 ft crack width is assumed as 

the crack width (ft) for calculating the unit crack area (ft2)  

4. Then, the processed data are recorded as TCRACKH, TCRACKM, and TRCRACKL in 

count/mi 

Since 2016: 

The Iowa DOT has stated that it is better to sum transverse cracking with different severity 

levels. The reason for that is if transverse cracks are sealed, they are categorized as low severity 

transverse cracks. If seals are no longer in place or not used at all, these transverse cracks are 

called high severity transverse cracks. This means the data consider whether the transverse 

cracking is sealed or not in its severities. Thus, the raw transverse cracking data are converted 

into legacy values before processing data. In order to convert the raw data, the following data 

columns in ROADWARE_LOCAL are utilized: 

• TCRACK_SEAL (ft2)  

• TCRACK_SEAL_H  

• TCRACK_SEAL_M  

• TCRACK_SEAL_L 

Figure 100 provides a schematic diagram that shows how to convert the raw data (ft2) into the 

legacy values (ft2).  

 



166 

 

Figure 100. Conversion of transverse cracking in all severities 
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The columns are explained as follows: 

• If high severity transverse cracking has high sealing, this transverse cracking is categorized 

as low severity transverse cracking. Thus, the value for the area of high severity transverse 

cracking (TCRACK_H) is taken as 0. However, if there is no high sealing, then the value of 

area of high severity transverse cracking is directly counted by itself. 

• If medium severity transverse cracking has medium sealing, this transverse cracking is 

categorized as low severity transverse cracking. Thus, the value for the area of medium 

severity transverse cracking (TCRACK_M) is taken as 0. However, if there is no medium 

sealing, then the value of area of medium severity transverse cracking is directly counted by 

itself. 

• Low severity transverse cracking has four steps to be converted into legacy values as follows:  

o If low severity transverse cracking does not have either medium or high sealing, the value 

for the area of low severity transverse cracking (TCRACK_L) is calculated by the sum of 

the area of sealed transverse cracking (TCRACK_SEAL) and itself. 

o If low severity transverse cracking does not have high sealing but medium sealing, the 

value for the area of low severity transverse cracking (TCRACK_L) is calculated by the 

sum of the area of sealed transverse cracking (TCRACK_SEAL), the area of medium 

severity transverse cracking (TCRACK_M), and itself. 

o If low severity transverse cracking does not have medium sealing but high sealing, the 

value for the area of low severity transverse cracking (TCRACK_L) is calculated by the 

sum of the area of sealed transverse cracking (TCRACK_SEAL), area of high severity 

transverse cracking (TCRACK_H), and itself. 

o If low severity transverse cracking has both high and medium sealing, the value for the 

area of low severity transverse cracking (TCRACK_L) is calculated by sum of the area of 

sealed transverse cracking (TCRACK_SEAL), the area of medium severity transverse 

cracking (TCRACK_M), the area of high severity transverse cracking (TCRACK_H), 

and itself. 

After the conversion of transverse cracking in all severities, they are summarized as follows: 

1. Sum of all collected TCRACK_H/M/L data separately (ft2) 

2. Divide it by the length (mi) of road section, (ft2/mi); length of road section is calculated 

by equation 6 

3. Divide it by the unit crack area (ft2), which is the unit crack length (ft) by the unit crack 

width (ft); a 10 ft lane width is assumed as the unit crack length (ft), and a 2 ft crack 

width is assumed as unit crack width (ft) 

Then, the processed data are recorded as TCRACKH, TCRACKM, and TRCRACKL in 

count/mile. 

Flexible Pavements 

Condition and distress data processed for flexible pavements are IRI, rutting, transverse 
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cracking, longitudinal cracking, and wheel path longitudinal cracking as mentioned in an earlier 

section. The following provides more detail on how to process these data.  

Condition data for flexible pavements are as follows: 

a) IRI 

• It is named IRI in all years of data 

• It is the average of left wheel IRI and right wheel IRI (e.g., PMIS metadata) 

• It is described by inch per mile in both raw data and summarized data, previously shown in 

Figure 97 

• It is summarized by taking the average of all collected IRI data for a road section 

b) Rutting 

• It is named RUT in all years of data 

• It is the average of left wheel rut and right wheel rut (e.g., PMIS metadata) 

• It is described by inch in both raw data and summarized data, shown in Figure 101 

• It is summarized by taking the average of all collected RUT data for a road section 

 

Figure 101. Unit conversion in rutting 

Distress data for flexible pavements are as follows: 

c) Transverse cracking 

• It is named TCRACK_H, TCRACK_M, and TCRACK_L 

• TCRACK_H is the area of high severity transverse cracking; TCRACK_M is the area of 

medium severity transverse cracking; and TCRACK_L is the area of low severity transverse 

cracking 

• It is described by square feet (ft2) in raw data and by count/mile in summarized data, 

previously shown in Figure 99; note that square feet (ft2) in raw data can be calculated by 

multiplying the crack length measured by the 2 ft of crack width assumed  

• Its summarization is different before and since 2016; the calculation procedures are exactly 

same as the procedure used for processing transverse cracking for rigid pavements 

d) Longitudinal cracking 
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• It is named LCRACK_H, LCRACK_M, and LCRACK_L 

• LCRACK_H is the area of high severity longitudinal cracking; LCRACK_M is the area of 

medium severity longitudinal cracking; and LCRACK_L is the area of low severity 

longitudinal cracking 

• It is described by square feet (ft2) in raw data and by ft/mi in summarized data, shown in 

Figure 102; note that square feet (ft2) in raw data can be calculated by multiplying the crack 

length measured by the 2 ft of crack width assumed  

• Its summarization is different before and since 2016, and the calculation procedures are 

explained in detail in the next sections 

 

Figure 102. Unit conversion in longitudinal cracking 

Before 2016: 

1. Sum of all collected LCRACK_H/M/L data separately (ft2) 

2. Divide it by the length (mi) of road section; length of road section is calculated by 

equation 6 

3. Divide it by the 2 ft of crack width (ft) 

4. Then, the processed data are recorded as LCRACKH, LCRACKM, and LRCRACKL in 

ft/mi 

Since 2016: 

The Iowa DOT has stated that it is better to sum longitudinal cracking with different severity 

levels. The reason for that is if longitudinal cracks are sealed, they are categorized as low 

severity longitudinal cracks. If the seals are no longer in place or not used at all, these 

longitudinal cracks are called high severity longitudinal cracks. This means the data consider 

whether the longitudinal cracking is sealed or not in all severities. Thus, the raw longitudinal 

cracking data are converted into legacy values before processing data. In order to convert the raw 

data, the following data columns in ROADWARE_LOCAL are utilized: 

• LCRACK_SEAL (ft2)  

• LCRACK_SEAL_H  

• LCRACK_SEAL_M  

• LCRACK_SEAL_L 
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Figure 103 provides a schematic diagram that shows how to convert the raw data (ft2) into the 

legacy values (ft2).  



171 

 

Figure 103. Diagram of conversion of longitudinal cracking in all severities 
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The columns are explained as follows: 

• If high severity longitudinal cracking has high sealing, this longitudinal cracking is 

categorized as low severity longitudinal cracking. Thus, the value for the area of high 

severity longitudinal cracking (LCRACK_H) is taken as 0. However, if there is no high 

sealing, then the value of the area of high severity longitudinal cracking is directly counted 

by itself. 

• If medium severity longitudinal cracking has medium sealing, this longitudinal cracking is 

categorized as low severity longitudinal cracking. Thus, the value for the area of medium 

severity longitudinal cracking (LCRACK_M) is taken as 0. However, if there is no medium 

sealing, then the value of the area of medium severity longitudinal cracking is directly 

counted by itself. 

• Low severity longitudinal cracking has four steps to be converted into legacy values as 

follows:  

o If low severity longitudinal cracking does not have either medium or high sealing, the 

value for the area of low severity longitudinal cracking (LCRACK_L) is calculated by 

the sum of the area of sealed longitudinal cracking (LCRACK_SEAL) and itself. 

o If low severity longitudinal cracking does not have high sealing but medium sealing, the 

value for the area of low severity longitudinal cracking (LCRACK_L) is calculated by 

the sum of the area of sealed longitudinal cracking (LCRACK_SEAL), area of medium 

severity longitudinal cracking (LCRACK_M), and itself. 

o If low severity longitudinal cracking does not have medium sealing but high sealing, the 

value for the area of low severity longitudinal cracking (LCRACK_L) is calculated by 

the sum of the area of sealed longitudinal cracking (LCRACK_SEAL), area of high 

severity longitudinal cracking (LCRACK_H), and itself. 

o If low severity longitudinal cracking has both high and medium sealing, the value for the 

area of low severity longitudinal cracking (LCRACK_L) is calculated by the sum of the 

area of sealed longitudinal cracking (LCRACK_SEAL), area of medium severity 

longitudinal cracking (LCRACK_M), area of high severity longitudinal cracking 

(LCRACK_H), and itself. 

After the conversion of longitudinal cracking in all severities, they are summarized as follows: 

1. Sum of all collected LCRACK_H/M/L data separately (ft2) 

2. Divide it by the length (mi) of road section (ft2/mi); length of road section is calculated 

by equation 6 

3. Divide it by the 2 ft of crack width (ft) 

Then, the processed data are recorded as LCRACKH, LCRACKM, and LRCRACKL in ft/mi. 

e) Wheel path longitudinal cracking 

• It is named LCRACKW_H, LCRACKW_M, and LCRACKW_L 
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• LCRACKW_H is the area of high severity wheel path longitudinal cracking; LCRACKW_M 

is the area of medium severity wheel path longitudinal cracking; and LCRACKW_L is the 

area of low severity wheel path longitudinal cracking 

• It is described by square feet (ft2) in raw data and by ft/mi in summarized data, shown in 

Figure 104; note that square feet (ft2) in the raw data can be calculated by multiplying the 

crack length measured by the 2 ft of crack width assumed 

• Its summarization is different before and since 2016, and the calculation procedures are 

exactly the same as the procedure used for processing longitudinal cracking for flexible 

pavements and shown in the summarization procedure of longitudinal cracking in flexible 

pavements 

 

Figure 104. Unit conversion in wheel path longitudinal cracking 

Wheel path longitudinal cracking is processed differently than the processing of longitudinal 

cracking. Thus, the following data columns in ROADWARE_LOCAL are utilized in order to 

convert the raw data: 

• LCRACKW_SEAL (ft2)  

• LCRACKW_SEAL_H  

• LCRACKW_SEAL_M  

• LCRACKW_SEAL_L 

Illustration Example: Lee County Case 

An example of data processing for a road section in Lee County is examined in the following 

steps.  

Step 1. Choice of County 

Lee County was chosen as an example because there is a construction history that was obtained 

from County Records, as shown in Figure 105. 
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Figure 105. Lee County records 

From County Records, the following information is used: 

• Project Name 

• County Name 

• Project Length 

• Project Type 

• Surface Type 

• Surface Thickness 

Steps 2 and 3. Preparation of Raw Data and Filtration of Selected Raw Data Based on County 

ID 

The Iowa DOT provided all years of ROADWARE_LOCAL data based on county ID. The Lee 

County ID is 56. It is in cycle 2 (odd years) (shown previously in Figure 36). Thus, the data were 

collected for Lee County in 2013, 2015, and 2017. The files of ROADWARE_LOCAL_2013, 

ROADWARE_LOCAL_2015, and ROADWARE_LOCAL_2017 were processed. 

Step 4. Filtration of Selected Raw Data File Based on Road Name 

From the County Records of Lee County, the County Highway X38 road system was chosen, as 

shown in Figure 106.  
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Figure 106. Selection of road system X38 in Lee County 

The road name was checked in ROADWARE_LOCAL_2013, _2015, and _2017 as to whether it 

was labeled the same in every other year. It was found that the road was called X038 in the 2013 

and 2015 databases and called 330th Ave in 2017, which was not mentioned in the County 

Records database. The designation of 330th Ave in 2017 was found from the Highway and 

Transportation Map for Lee County, as shown in Figure 107 and Figure 108.  

 

Figure 107. Highway and Transportation Map for Lee County 
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Figure 108. X38 road system in Highway and Transportation Map for Lee County 

Also, the County Highway X38 road system was confirmed with Google Maps by using the 

coordinates of this road. 

In County Records, it is clear that the County Highway X38 road system is divided into three 

road sections as X38-Augusta Rd (from County Highway J48 North to Iowa 16), X38-Augusta 

Rd (between County Highway J48 sections), and X38-Augusta Rd (from County Highway J48 

South to Business US 61) as indicated in Figure 108. 

Step 5. Sorting of County Road Units 

The road units were sorted in ascending order for the years of 2013, 2015, and 2017, which are 

shown in Figure 109a, b, and c, respectively.  
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(a) 2013 

 
(b) 2015 
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(c) 2017 

Figure 109. Sorting of X38 county road units 

Step 6. Calculation of Total Length of the Road Section 

By using equation 6, the total length of the road section in the ROADWARE_LOCAL database 

is determined as follows: 

• For ROADWARE_LOCAL_2013: END_MILE–BEGIN_MILE = 7.958–0 = 7.958 mi 

• For ROADWARE_LOCAL_2015: END_MILE–BEGIN_MILE = 7.969–0 = 7.969 mi 

• For ROADWARE_LOCAL_2017: TO_MEASURE–FROM_MEASURE = 7.478–0 = 7.478 

mi 

The total length of the X38 road section in the County Records database is as follows: 

∑ 𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐿𝐸𝑁𝐺𝑇𝐻 = 1.993 + 0.631 + 3.79 = 6.414 mi 

The total length of the road section shows a slight difference between every other year in the 

ROADWARED_LOCAL database and quite a large difference between the lengths in the 

ROADWARE_LOCAL and County Records databases. Thus, the coordinates of BEGIN_MILE 

(FROM_MEASURE) and END_MILE (TO_MEASURE) need to be checked and also matched 

with each other. 
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Step 7. Comparison of Pavement Types 

The pavement types indicated in the ROADWARE_LOCAL and County Records databases 

matched with each other without issue, as shown in Figure 110. 

 

Figure 110. Database comparison of pavement types 

Step 8. Determination of Pavement Type 

After checking pavement types, the condition and distress data used in the data processing were 

determined. They are listed as follows and also shown previously in Figure 108. 

For X38-Augusta Rd (from J48 North to Iowa 16), it is rigid pavement. Thus, the data are as 

follows: 

• IRI 

• Faulting 

• Transverse cracking 

For X38-Augusta Rd (between J48 sections), it is flexible pavement. Thus, the data are as 

follows: 

• IRI 

• Rutting 

• Transverse cracking 

• Longitudinal cracking 

• Wheel path longitudinal cracking 
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For X38-Augusta Rd (from J48 South to Business US 61), it is rigid pavement. Thus, the data are 

as follows: 

• IRI 

• Faulting 

• Transverse cracking 

Steps 9 and 10. Transfer of Arranged Raw Data and Repeating It for All Years 

Each year of ROADWARE_LOCAL was copied into an Excel sheet, as shown in Figure 111. 

 

Figure 111. Transfer of arranged raw data for all years 

Step 11. Elimination of Nulls in IRI  

The IRI column was checked as to whether the field had null value or not. If there was, the null 

value would be eliminated in the IRI data processing; however, there were none. An example of 

an Excel sheet with null values to remove is shown in Figure 112. 
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Figure 112. Elimination of nulls in IRI 

Step 12. Filtration of Status  

The STATUS of the road sections was filtered by selecting only the Matched type, as shown in 

Figure 113a, b, and c for the years of 2013, 2015, and 2017, respectively. 

 
(a) 2013 
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(b) 2015 

 
(c) 2017 

Figure 113. Filtration of STATUS 

Step 13. Copy of Raw Data Filtered by STATUS 

The filtered data by STATUS were copied into a new Excel sheet for each year, as shown in 

Figure 114. 
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Figure 114. Copy of raw data filtered by STATUS for all years 

Step 14. Comparison of Coordinates of a Road Section in Each Year 

The coordinates of road sections were compared for all years. 

This step requires close attention, as many different situations might be encountered. A sample 

situation is given in the Lee County case as explained in this section.  

The beginning and ending miles and coordinates of the road sections can be combined in one 

Excel sheet for each year to be able to compare them easily. The sample Excel sheet is shown in 

Figure 115. 
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Figure 115. Combination of road sections for all years 

As shown, the coordinates of the beginning of the road section did not match, which means that 

the beginning points for collecting distress data are different. Therefore, the same (or as close as 

possible) points for the beginning coordinate were found for each year, as shown in Figure 116.  

 

Figure 116. Matching the beginning coordinates for each year 
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Then, the found beginning coordinate was set in Google Maps, shown in Figure 117, to confirm 

the location of the beginning of the road section. 

 

Figure 117. Beginning coordinate of the road section in Google Maps 

For every other year, the same process was carried out to find the beginning and ending points of 

each road section and to match them with each other. The detail on them is explained as follows: 

• For the road section of X38-Augusta Rd (from J48 South to Business US 61), the coordinates 

and total length (by equation 6) are shown in Table 20 for 2013, 2015, and 2017.  

Table 20. Length and coordinates of X38-Augusta Rd (from J48 South to Business US 61) 

Year 

BEGIN_

MILE 

END_

MILE 

BEGIN_ 

GLAT 

BEGIN_ 

GLON 

END_ 

GLAT 

END_ 

GLON 

Total 

length 

2013 
0.09 0.092 40.6470838 -91.2952130 40.647106 -91.295227 

3.53 
3.610 3.620 40.6959646 -91.2871205 40.696083 -91.287010 

2015 
0.09 0.098 40.6470277 -91.2951725 40.647129 -91.295240 

3.53 
3.616 3.626 40.6959620 -91.2871212 40.696080 -91.287010 

2017 
0.00 0.009 40.6470764 -91.2952125 40.647216 -91.295297 

3.63 
3.627 3.632 40.6960414 -91.2870431 40.696103 -91.286985 

 

After matching the coordinates and confirming the location of the road section in Google 

Maps (Figure 118), the pavement type in ROADWARE_LOCAL and County Records was 

re-matched, which is rigid pavement.  
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Figure 118. Location of X38-Augusta Rd (J48 S to Bus 61) in Google Maps and in Highway 

and Transportation Map for Lee County 

From Table 20, the total length in ROADWARE_LOCAL was calculated as 3.53 mi for 2013 

and 2015; 3.63 mi for 2017; and it is shown as 3.79 mi in County Records. It is almost the 

same value, so it is acceptable. 

• For the road section of X38-Augusta Rd (between J48 sections), the coordinates and total 

length (by equation 6) are indicated in Table 21 for 2013, 2015, and 2017.  

Table 21. Length and coordinates of X38-Augusta Rd (between J48 sections) 

Year 

BEGIN_

MILE 

END_

MILE 

BEGIN_ 

GLAT 

BEGIN_ 

GLON 

END_ 

GLAT 

END_ 

GLON 

Total 

length 

2013 
3.62 3.63 40.6960826 -91.2870095 40.696200 -91.2868967 

0.63 
4.250 4.260 40.7034462 -91.2799036 40.703563 -91.2797937 

2015 
3.626 3.636 40.6960802 -91.2870113 40.696197 -91.2868991 

0.63 
4.246 4.256 40.7033229 -91.28002 40.703440 -91.2799084 

2017 
3.632 3.642 40.6961029 -91.286985 40.696220 -91.2868718 

0.63 
4.252 4.262 40.7033508 -91.2799942 40.70347 -91.2798828 

 

After matching the coordinates and confirming the location of the road section in Google 

Maps (Figure 119), the pavement types in ROADWARE_LOCAL and County Records were 

not re-matched and are rigid and flexible pavement, respectively.  
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Figure 119. X38-Augusta Rd (between J48 sections) in Google Maps and in Highway and 

Transportation Map for Lee County 

From Table 21, the total length in ROADWARE_LOCAL was calculated as 0.63 mi, and it is 

shown as 0.631 mi in County Records. It is essentially the same value, so it is acceptable. 

• For the road section of X38-Augusta Rd (from J48 North to Iowa 16), the coordinates and 

total length (by equation 6) are indicated in  

• Table 22 for 2013, 2015, and 2017.  

Table 22. Length and coordinates of X38-Augusta Rd (from J48 North to Iowa 16) 

Year 

BEGIN_

MILE 

END_

MILE 

BEGIN_ 

GLAT 

BEGIN_ 

GLON 

END_ 

GLAT 

END_ 

GLON 

Total 

length 

2013 
4.25 4.26 40.7034462 -91.2799031 40.703563 -91.2797937 

2.53 
6.77 6.78 40.7394411 -91.2769560 40.739587 -91.2769529 

2015 
4.256 4.266 40.70344 -91.2799084 40.70356 -91.2797964 

2.50 
6.746 6.756 40.739001 -91.2769397 40.739147 -91.2769384 

2017 
4.262 4.272 40.7034689 -91.2798828 40.703590 -91.2797685 

2.51 
6.760 6.769 40.7391228 -91.2769551 40.739265 -91.2769546 

 

After matching the coordinates and confirming the location of the road section in Google 

Maps (Figure 120), the pavement type in ROADWARE_LOCAL and County Records was 

re-matched, which is rigid pavement.  
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Figure 120. X38-Augusta Rd (from J48 North to Iowa 16) in Google Maps and in Highway 

and Transportation Map for Lee County 

From  

Table 22, the total length in ROADWARE_LOCAL was calculated as 2.53, 2.50, and 2.51 

mi for 2013, 2015, and 2017, respectively, while it is shown as 1.993 mi in County Records. 

It is almost the same value, so it is acceptable.  

The results deduced from Step 14 are as follows: 

• Summary: After examinations of data taken from ROADWARE_LOCAL and County 

Records, it was seen that one county road section of X38 was recorded as flexible pavement 

in County Records while it was shown as rigid pavement in ROADWARE_LOCAL. 

o This means that there is an inconsistency in database. 

o The data should be verified with county engineers and/or Iowa DOT. 

• Assumption: County Records data were collected in 2018. 

o The mentioned road section might have been overlaid with asphalt in 2018. Thus, 

ROADWARE_LOCAL, which was collected in 2013, 2015, and 2017, might not 

represent it as flexible pavement. 

• Suggestion: Each road section can have different scenarios in its history. Thus, the 

segmentation process should be carefully performed to be able to verify all the road sections 

that were inspected. 

Step 15. Conversion of Columns from Text to Value 

All columns that are used in data processing were converted from text to value, as shown in 
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Figure 121.  

 

Figure 121. Application of text to columns for road sections of X38 

Step 16. Summarization Procedure for Rigid Pavements 

a) IRI 

IRI data were processed for X38. The results are shown in Figure 122. 
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Figure 122. Summarization of IRI data for X38 

b) Faulting 

Faulting data were processed for X38. The results are shown in Figure 123.  

 

Figure 123. Summarization of faulting data for X38 

c) Transverse Cracking 

Transverse cracking data were processed for X38. The results are shown in Figure 124a and b for 

2013/2015 and 2017, respectively.  
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(a) 2013 and 2015 

 
(b) 2017 

Figure 124. Summary of transverse cracking data for X38 

Overall Summary 

In this standard procedure, the process was presented to develop an Iowa county pavement HPD. 

Based on all steps provided in the earlier sections, the following summary is provided: 

• IPMP utilizes the dynamic segmentation approach to process and assimilate raw distress data 

collected by third-party vendor (i.e., Pathway Services Inc.). 

• The framework of an Iowa county pavement HPD is identified and developed with reference 

to a dynamic segmentation approach with two main aims: (1) to validate and refine the 



192 

simplified pavement performance and remaining service life (RSL) prediction models 

(developed using primary road PMIS data) in use of Iowa county road applications and (2) to 

develop a user manual for creating an Iowa county pavement HPD for Iowa county engineers 

who will need inputs for the IPAT tool for their own analysis.  

• The related data sources for developing an Iowa county pavement HPD include the 

following: 

o Iowa DOT ROADWARE_LOCAL data: raw condition and distress data (collected by 

third-party vendor) obtained from the Office of Analytics at Iowa DOT. 

o County Records data: county road construction history obtained from some county 

engineer offices (e.g., Lee County) during the IPAT project. 

o Traffic-related data: annual average daily truck traffic (AADTT) and equivalent single 

axle load (ESAL) obtained from the Iowa DOT RAMS/open data web portal. 

• The detailed steps identified for developing an Iowa county pavement HPD can be 

categorized into two groups: segmentation and summarizing of condition and distress data. 

• Raw condition and distress data (i.e., ROADWARE_LOCAL) taken from the Iowa DOT 

may need improvements on the following subjects: 

o Designations may change from year to year. 

▪ The descriptions of designations should be clearer if there is a change. 

o County road sections’ names can change year by year. 

▪ If so, a descriptive column named previous road name may be added into the database 

so that it makes segmentation faster 

o Length of county road sections 

▪ The beginning mile and ending mile should be the same each year. 

▪ The location of county road sections should not be changed for each year. 

• County road construction history data (i.e., County Records) taken from county engineers 

may need improvements on the following subjects: 

o The database should have at least the beginning and ending coordinates (latitude and 

longitude) to be able to achieve more accurate results by confirming it with raw condition 

and distress data (i.e., ROADWARE_LOCAL). 

o All County Records should have the same terminology in their database to prevent any 

confusion while transferring data. 

o The project name and descriptions for each county road section should be recorded with 

more information. They may be indicated by Global Positioning System (GPS) 

coordinates in a new column in the datasheet instead of describing the direction of county 

road sections as “from … to.” 

o After collecting data, the records should be performed with caution (e.g., surface type of 

pavement and so on). 

o The county road sections should be updated whenever road alignments change. 

o The maintenance applications should be recorded carefully to maintain the integrity of 

the database. 
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APPENDIX B. PROTOTYPE ANALYSIS TOOLS FOR PRESERVATION AND 

REHABILITATION TECHNIQUES 

Rigid Pavement 

The Microsoft Excel macro-based network-level pavement performance prediction automation 

tool was improved to be used for future post-treatment pavement performance estimation using 

the developed artificial neural network (ANN) model (international roughness index [IRI] 

approach 1). Figure 125 shows the interface of a sample automation tool predicting network-

level pavement post-treatment performance.  

 

Figure 125. Pavement performance prediction automation and decision-making tool using 

ANN-based IRI approach 1 model for rigid pavements 

In the section of pretreatment IRI predictions, the tool calculates the future IRI predictions as 

stated previously. Once the IRI prediction exceeds the treatment trigger value, the pavement 

performance prediction can be reset by clicking the reset pretreatment IRI button. By using the 

last predicted pretreatment IRI value and user-defined recovery percentage, post-treatment IRI (i-

2) year is calculated. The increase rate between first IRI (i-2) year and IRI (i-1) year at post-treatment 

(red cells) is determined based on the increase rate between first IRI (i-2) year and IRI (i-1) year at 

pretreatment (blue cells), multiplying it with the average ratio of growth rate (0.86). For post-

treatment IRI predictions, input parameters are fed into the tool by starting from the age when 

the treatment was applied. Then, the tool calculates future post-treatment IRI predictions by 

considering the growth rate of IRI after application of the treatment upon clicking the calculate 

future post-treatment IRI button. The post-treatment section also utilizes extracted weight and 

biases for the ANN-based IRI approach 1 model. 

Flexible Pavement 

In this part of the study, a Microsoft Excel macro-based network-level pavement performance 

prediction automation tool whose interface is shown in Figure 126 was improved for use as a 

decision-making tool for future post-treatment IRI using the developed ANN model. 
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Figure 126. Pavement performance prediction automation and decision-making tool using ANN-based IRI approach 1 model 

for flexible pavements 
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Detailed steps for use of this tool are as follows:  

1. User manual panel: Black-colored panel including descriptions for tool and how-to-use 

it. 

2. Pretreatment section: First block including pavement input parameters and performance 

predictions before applying any treatment.  

a. Input parameters: Blue-highlighted columns representing inputs to be entered, 

including pavement age, accumulated equivalent single axle load (ESAL), hot-

mixed asphalt (HMA) thickness, and previous two-year IRI values for the first 

age entered (e.g., age of 10). 

b. ANN predictions: Green-highlighted columns representing IRI predictions by 

ANN. No need to enter the previous year’s IRIs for each age; the ANN model 

predicts them. The last column indicates the predicted pretreatment IRI 

corresponding to each pavement age.  

3. Post-treatment section: Second block including pavement input parameters and 

performance predictions after applying any treatment.  

a. Input parameters: Blue-highlighted columns representing inputs to be entered, 

including pavement age since construction and treatment, accumulated ESAL, 

HMA thickness, and previous two-year IRI values for the first age entered (e.g., 

age of 21). Thin overlay treatments were considered to be 1 in. thick. In the case 

of structural HMA overlay, the thickness changes based on the entered overlay 

thickness, which is added to the existing HMA thickness. 

b. ANN predictions: Green-highlighted columns representing IRI predictions by 

ANN. The last column indicates the predicted post-treatment IRI corresponding to 

each pavement age.  

4. Analysis tool panel: 

a. Button to calculate future pretreatment IRI predictions 

b. Button to select a treatment type 

i. HMA overlay (structural) 

ii. Thin overlay (non-structural) 

c. Information panel to be entered when selecting HMA overlay treatment, including 

overlay thickness, initial IRI, and IRI trigger value. It becomes inactivated when 

selecting thin overlay treatment. 

d. Button to reset pretreatment IRI when it reaches the IRI trigger value, and to 

calculate initial post-treatment IRI, new HMA thickness, age since construction 

and treatment. 

e. Button to calculate future post-treatment IRI predictions after applying a 

treatment. Clicking this button calculates the deterioration rate between IRIi-2 and 

IRIi-1 in the pretreatment section (blue cells) and applies it to between IRIi-2 and 

IRIi-1 in the post-treatment section (red cells).  

f. Button to calculate the remaining service life (RSL). RSL before treatment is 

calculated by subtracting the failed age of the pavement based on the IRI trigger 

value from the entered design life. RSL after treatment is calculated by 

subtracting the failed age of the treated pavement based on the IRI trigger value 

from the stated design life. 
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The life extension per treatment based on the calculated RSL before and after treatment can be 

determined. The statewide preservation and rehabilitation decision-making tool using ANN 

provides flexibility to choose two different treatment types with the capability of trying different 

parameters, such as thickness and threshold IRI value-triggered treatment.  
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APPENDIX C. PROGRAMMING CODE OF IOWA PAVEMENT ANALYSIS 

TECHNIQUES (IPAT) 

Example of Source Code by MATLAB Software to Develop Artificial Neural Network 

(ANN) Models 

% This script assumes these variables are defined: 

% 

% x - input data. 

% t - target data. 

  

x = Input'; 

t = Output'; 

  

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. SuiTable in low memory situations. 

trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation. 

  

% Create a Fitting Network 

hiddenLayerSize = 5; 

net = fitnet(hiddenLayerSize,trainFcn); 

  

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

net.input.processFcns = {'removeconstantrows','mapminmax'}; 

net.output.processFcns = {'removeconstantrows','mapminmax'}; 

  

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand'; % Divide data randomly 

net.divideMode = 'sample'; % Divide up every sample 

net.divideParam.trainRatio = 60/100; 

net.divideParam.valRatio = 30/100; 

net.divideParam.testRatio = 10/100; 

net.trainParam.epochs = 1000; 

net.trainParam.max_fail = 500; 

  

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net.performFcn = 'mse'; % Mean Squared Error 

  

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 
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net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

 'plotregression', 'plotfit'}; 

  

% Train the Network 

[net,tr] = train(net,x,t); 

  

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

  

% Recalculate Training, Validation and Test Performance for Performance  

% Indicator (PI) 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformancePI = perform(net,trainTargets(1,:),y(1,:)) 

  

valPerformancePI = perform(net,valTargets(1,:),y(1,:)) 

  

testPerformancePI = perform(net,testTargets(1,:),y(1,:)) 

  

PIPerform=[trainPerformancePI,testPerformancePI,valPerformancePI] 

  

TrainPredict=y; 

TestPredict=y; 

ValPredict=y; 

  

[row, col] = find(isnan(trainTargets)); 

    TrainPredict(:,col)= []; 

    trainTargets(:,col)=[]; 

[row1, col1] = find(isnan(testTargets)); 

    TestPredict(:,col1)= []; 

    testTargets(:,col1)=[]; 

[row2, col2] = find(isnan(valTargets)); 

    ValPredict(:,col2)= []; 

    valTargets(:,col2)=[];  

 %% Rsquare (Performance Indicator)    

   PITrainSELine=sum((TrainPredict(1,:)-trainTargets(1,:)).^2) 

   PITrainSEY=sum((TrainPredict(1,:)-mean2(TrainPredict(1,:))).^2) 

   PIR2LOETrain=1-(PITrainSELine/PITrainSEY) 

    

   PIValidSELine= sum((ValPredict(1,:)-valTargets(1,:)).^2) 

   PIValidSEY= sum((ValPredict(1,:)-mean2(ValPredict(1,:))).^2) 

   PIR2LOEVal= 1-(PIValidSELine/PIValidSEY) 
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   PITestSELine= sum((TestPredict(1,:)-testTargets(1,:)).^2) 

   PITestSEY=sum((TestPredict(1,:)-mean2(TestPredict(1,:))).^2) 

   PIR2LOETest=1-(PITestSELine/PITestSEY) 

    

   PI_R2=[PIR2LOETrain,PIR2LOETest,PIR2LOEVal]; 

 

% Deployment 

% Change the (false) values to (true) to enable the following code blocks. 

% See the help for each generation function for more information. 

if (false) 

 % Generate MATLAB function for neural network for application 

 % deployment in MATLAB scripts or with MATLAB Compiler and Builder 

 % tools, or simply to examine the calculations your trained neural 

 % network performs. 

 genFunction(net,'myNeuralNetworkFunction'); 

 y = myNeuralNetworkFunction(x); 

end 

if (false) 

 % Generate a matrix-only MATLAB function for neural network code 

 % generation with MATLAB Coder tools. 

 genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

 y = myNeuralNetworkFunction(x); 

end 

if (false) 

 % Generate a Simulink diagram for simulation or deployment with. 

 % Simulink Coder tools. 

 gensim(net); 

end 
 

Example of Script by Visual Basic for Applications (VBA) in Excel to Develop IPAT Main 

Tool 

Private Sub flexiblepic_Click() 

End Sub 

Private Sub Frame2_Click() 

End Sub 

Private Sub Label20_Click() 

End Sub 

Private Sub Label14_Click() 

End Sub 

Private Sub Label15_Click() 

End Sub 

Private Sub Label28_Click() 

End Sub 

Private Sub Label31_Click() 

End Sub 
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Private Sub Label38_Click() 

End Sub 

Private Sub Label46_Click() 

End Sub 

Private Sub Label5_Click() 

End Sub 

Private Sub Label26_Click() 

End Sub 

Private Sub PLpage_Click() 

End Sub 

Private Sub Label58_Click() 

End Sub 

Private Sub Label59_Click() 

End Sub 

Private Sub Label61_Click() 

End Sub 

Private Sub Label63_Click() 

End Sub 

Private Sub Label65_Click() 

End Sub 

Private Sub Label73_Click() 

End Sub 

Private Sub Label76_Click() 

End Sub 

Private Sub MultiPage_NL_PI_RUT_Change() 

End Sub 

Private Sub MultiPage_NL_PI_TCRACK_Change() 

End Sub 

Private Sub UserForm_Click() 

End Sub 

Private Sub MultiPage_NL_PI_IRI_Change() 

End Sub 

Private Sub Back2_NLAsphalt_Click() 

 NLpage_Asphalt_PI.Hide 

 NLpage_PT.Show 

End Sub 

 

Private Sub UserForm_Initialize() 

 Me.MultiPage_NL_PI_IRI.Visible = False 

 Me.MultiPage_NL_PI_RUT.Visible = False 

 Me.MultiPage_NL_PI_TCRACK.Visible = False 

 Me.MultiPage_NL_PI_LCRACK.Visible = False 

 Me.flexiblepic.Visible = True 

  

 With Me.PLPPI 

 .Clear ' clear previous items (not to have "doubles") 
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 .AddItem "Select" 

 .AddItem "IRI" 

 .AddItem "Rutting" 

 .AddItem "Transverse Cracking" 

 .AddItem "Longitudinal Cracking" 

 End With 

  

End Sub 

 

Private Sub PLPPI_Change() 

 

 If Me.PLPPI.Value = "Select" & "" Then 

  Me.flexiblepic.Visible = True 

  Me.MultiPage_NL_PI_IRI.Visible = False 

  Me.MultiPage_NL_PI_RUT.Visible = False 

  Me.MultiPage_NL_PI_TCRACK.Visible = False 

  Me.MultiPage_NL_PI_LCRACK.Visible = False 

 End If 

 '************************************IRI************************************** 

If Me.PLPPI.Value = "IRI" Then 

  Me.MultiPage_NL_PI_IRI.Visible = True 

  Me.MultiPage_NL_PI_RUT.Visible = False 

  Me.MultiPage_NL_PI_TCRACK.Visible = False 

  Me.MultiPage_NL_PI_LCRACK.Visible = False 

  Me.flexiblepic.Visible = False 

'  Me.MultiPage_NL_PI_IRI.BackColor = vbBlack 

 End If 

 

 With MultiPage_NL_PI_IRI 

 'The next 2 lines disable Page2 & Page3 

 .Pages(1).Enabled = False 

 .Pages(2).Enabled = False 

 'Make Page1 the active page 

 .Value = 0 

  

 Yes.Value = False 

 No.Value = False 

  

 Me.trf1.Visible = False 

 Me.trf2.Visible = False 

 Me.trf3.Visible = False 

 Me.Yes_trf.Visible = False 

 Me.No_trf.Visible = False 

 Me.Yes_trf1.Visible = False 

 Me.No_trf1.Visible = False 

 Me.ESAL.Visible = False 



202 

 Me.AADT.Visible = False 

 End With 

'********************************RUTTING************************************ 

 If Me.PLPPI.Value = "Rutting" Then 

  Me.MultiPage_NL_PI_IRI.Visible = False 

  Me.MultiPage_NL_PI_RUT.Visible = True 

  Me.MultiPage_NL_PI_TCRACK.Visible = False 

  Me.MultiPage_NL_PI_LCRACK.Visible = False 

  Me.flexiblepic.Visible = False 

 End If 

  

 With MultiPage_NL_PI_RUT 

 'The next 2 lines disable Page2 & Page3 

 .Pages(1).Enabled = False 

 .Pages(2).Enabled = False 

 'Make Page1 the active page 

 .Value = 0 

 

 Yes_rut.Value = False 

 No_rut.Value = False 

 

 Me.trf2_rut.Visible = False 

 Me.ESAL_rut.Visible = False 

 Me.AADT_rut.Visible = False 

 End With 

'***********************TRANSVERSE CRACKING****************************** 

 If Me.PLPPI.Value = "Transverse Cracking" Then 

  Me.MultiPage_NL_PI_IRI.Visible = False 

  Me.MultiPage_NL_PI_RUT.Visible = False 

  Me.MultiPage_NL_PI_TCRACK.Visible = True 

  Me.MultiPage_NL_PI_LCRACK.Visible = False 

  Me.flexiblepic.Visible = False 

 End If 

  

 With MultiPage_NL_PI_TCRACK 

 'The next 2 lines disable Page2 & Page3 

 .Pages(1).Enabled = False 

 .Pages(2).Enabled = False 

 'Make Page1 the active page 

 .Value = 0 

 

 Yes_tcrack.Value = False 

 No_tcrack.Value = False 

 

 Me.trf2_tcrack.Visible = False 

 Me.ESAL_tcrack.Visible = False 
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 Me.AADT_tcrack.Visible = False 

 End With 

'*************************LONGITUDINAL CRACKING************************** 

 If Me.PLPPI.Value = "Longitudinal Cracking" Then 

  Me.MultiPage_NL_PI_IRI.Visible = False 

  Me.MultiPage_NL_PI_RUT.Visible = False 

  Me.MultiPage_NL_PI_TCRACK.Visible = False 

  Me.MultiPage_NL_PI_LCRACK.Visible = True 

  Me.flexiblepic.Visible = False 

 End If 

  

 With MultiPage_NL_PI_LCRACK 

 'The next 2 lines disable Page2 & Page3 

 .Pages(1).Enabled = False 

 .Pages(2).Enabled = False 

 'Make Page1 the active page 

 .Value = 0 

 

 Yes_lcrack.Value = False 

 No_lcrack.Value = False 

 

 Me.trf2_lcrack.Visible = False 

 Me.ESAL_lcrack.Visible = False 

 Me.AADT_lcrack.Visible = False 

 End With 

 

End Sub 

'***************************************************************************** 

'************************************IRI************************************** 

'***************************************************************************** 

Private Sub Yes_Click() 

 Me.trf1.Visible = True 

 Me.Yes_trf.Visible = True 

 Me.No_trf.Visible = True 

 Me.trf2.Visible = False 

 Me.ESAL.Visible = False 

 Me.AADT.Visible = False 

 Me.trf3.Visible = False 

 Me.Yes_trf1.Visible = False 

 Me.No_trf1.Visible = False 

  

 With MultiPage_NL_PI_IRI 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 

 End With 
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End Sub 

Private Sub No_Click() 

 With MultiPage_NL_PI_IRI 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 

 End With 

 MsgBox "You need the required data to launch the tool." 

 

End Sub 

Private Sub Yes_trf_Click() 

 Me.trf2.Visible = True 

 Me.ESAL.Visible = True 

 Me.AADT.Visible = True 

 Me.trf3.Visible = False 

 Me.Yes_trf1.Visible = False 

 Me.No_trf1.Visible = False 

  

 With MultiPage_NL_PI_IRI 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 

 End With 

 ESAL.Enabled = True 

 AADT.Enabled = True 

 trf2.Enabled = True 

 ESAL.Object.Value = False 

 AADT.Object.Value = False 

End Sub 

Private Sub No_trf_Click() 

 Me.trf3.Visible = True 

 Me.Yes_trf1.Visible = True 

 Me.No_trf1.Visible = True 

 With MultiPage_NL_PI_IRI 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 

 End With 

 Yes_trf1.Enabled = True 

 No_trf1.Enabled = True 

 trf3.Enabled = True 

 Yes_trf1.Object.Value = False 

 No_trf1.Object.Value = False 

End Sub 

Private Sub Yes_trf1_Click() 

 Me.trf3.Visible = True 

 Me.Yes_trf1.Visible = True 

 Me.No_trf1.Visible = True 
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 With MultiPage_NL_PI_IRI 

  .Pages(0).Enabled = False 

  .Pages(1).Enabled = True 

  .Pages(2).Enabled = True 

  .Value = 1 

 Me.CommandButton1.Enabled = False 

 Me.CommandButton2.Enabled = True 

 Me.CommandButton3.Enabled = False 

 End With 

  

 Me.trf2.Enabled = False 

 Me.ESAL.Enabled = False 

 Me.AADT.Enabled = False 

 trf3.Enabled = True 

 Yes_trf1.Enabled = True 

 No_trf1.Enabled = True 

 

End Sub 

Private Sub No_trf1_Click() 

 With MultiPage_NL_PI_IRI 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 

 End With 

 MsgBox "You need the required data to launch the tool." 

  

 Me.trf1.Visible = True 

 Me.Yes_trf.Visible = True 

 Me.No_trf.Visible = True 

 Me.trf3.Visible = True 

 Me.Yes_trf1.Visible = True 

 Me.No_trf1.Enabled = False 

 

End Sub 

Private Sub ESAL_Click() 

 If ESAL.Value = True Then 

  AADT.Value = False 

  AADT.Enabled = False 

 Else 

  AADT.Enabled = True 

 End If 

  

 With MultiPage_NL_PI_IRI 

  .Pages(0).Enabled = False 

  .Pages(1).Enabled = True 

  .Pages(2).Enabled = True 

  .Value = 1 
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 Me.CommandButton1.Enabled = False 

 Me.CommandButton2.Enabled = False 

 Me.CommandButton3.Enabled = True 

 

 End With 

End Sub 

Private Sub AADT_Click() 

 If AADT.Value = True Then 

  ESAL.Value = False 

  ESAL.Enabled = False 

 Else 

  ESAL.Enabled = True 

 End If 

 

 With MultiPage_NL_PI_IRI 

  .Pages(0).Enabled = False 

  .Pages(1).Enabled = True 

  .Pages(2).Enabled = True 

  .Value = 1 

 Me.CommandButton1.Enabled = True 

 Me.CommandButton2.Enabled = False 

 Me.CommandButton3.Enabled = False 

 

 End With 

End Sub 

 

'Location of EXCEL tool and transferring data to this tool_LAUNCH TOOL 1 

Private Sub CommandButton1_Click() 

 Me.CommandButton2.Enabled = False 

 Me.CommandButton3.Enabled = False 

  

 Dim xWB As Workbook 

 Dim wbName As String 

 Dim wbSheet As Worksheet 

 Dim iRow As Long 

  

 On Error Resume Next 

 Set xWB = Workbooks.Open(ThisWorkbook.Path & "\" & " County_HMA_IRI_Approach 1-

ANN Tool.xlsm") 'UPDATE filename 

 wbName = xWB.Name 

  If Err.Number <> 0 Then 

   MsgBox "Tool does not exist!" 

   Err.Clear 

  End If 

 

 Set wbSheet = xWB.Sheets("Interface") 
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  With wbSheet 

   .Unprotect 

    Contents = True 

   .Range("A2").Value = Me.TextBox1.Value 

   .Range("B2").Value = Me.TextBox2.Value 

   .Range("C2").Value = Me.TextBox3.Value 

   .Range("D2").Value = Me.TextBox4.Value 

   .Range("E2").Value = Me.TextBox5.Value 

   .Range("F2").Value = Me.TextBox6.Value 

  End With 

   

End Sub 

'Location of EXCEL tool and transferring data to this tool_LAUNCH TOOL 2 

Private Sub CommandButton2_Click() 

 Me.CommandButton1.Enabled = False 

 Me.CommandButton3.Enabled = False 

  

 Dim xWB As Workbook 

 Dim wbName As String 

 Dim wbSheet As Worksheet 

 Dim iRow As Long 

  

 On Error Resume Next 

 Set xWB = Workbooks.Open(ThisWorkbook.Path & "\" & " 

CountyandPMIS_HMA_IRI_Approach 2-ANN Tool.xlsm") 'UPDATE filename 

 wbName = xWB.Name 

  If Err.Number <> 0 Then 

   MsgBox "Tool does not exist!" 

   Err.Clear 

  End If 

   

 Set wbSheet = xWB.Sheets("Interface") 

  With wbSheet 

   .Unprotect 

    Contents = True 

   .Range("A2").Value = Me.TextBox1.Value 

   .Range("B2").Value = Me.TextBox2.Value 

   .Range("C2").Value = Me.TextBox3.Value 

   .Range("D2").Value = Me.TextBox4.Value 

   .Range("E2").Value = Me.TextBox5.Value 

   .Range("F2").Value = Me.TextBox6.Value 

 End With 

  

End Sub 

 

'Location of EXCEL tool and transferring data to this tool_LAUNCH TOOL 3 
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Private Sub CommandButton3_Click() 

 Me.CommandButton1.Enabled = False 

 Me.CommandButton2.Enabled = False 

' Me.Visible = True 

  

 Dim xWB As Workbook 

 Dim wbName As String 

 Dim wbSheet As Worksheet 

 Dim iRow As Long 

  

 On Error Resume Next 

 Set xWB = Workbooks.Open(ThisWorkbook.Path & "\" & " PMIS_HMA_IRI_Approach 1-

ANN Tool.xlsm") 'UPDATE filename 

 wbName = xWB.Name 

  If Err.Number <> 0 Then 

   MsgBox "Tool does not exist!" 

   Err.Clear 

  End If 

   

 Set wbSheet = xWB.Sheets("Interface") 

 With wbSheet 

   .Unprotect 

    Contents = True 

   .Range("A2").Value = Me.TextBox1.Value 

   .Range("B2").Value = Me.TextBox2.Value 

   .Range("C2").Value = Me.TextBox3.Value 

   .Range("D2").Value = Me.TextBox4.Value 

   .Range("E2").Value = Me.TextBox5.Value 

   .Range("F2").Value = Me.TextBox6.Value 

 End With 

 

End Sub 

 

Private Sub Back1_Click() 

 ESAL.Value = False 

 AADT.Value = False 

 Yes.Value = False 

 No.Value = False 

 Yes_trf1.Value = False 

 No_trf1.Value = False 

 TextBox1.Text = "" 

 TextBox2.Text = "" 

 TextBox3.Text = "" 

 TextBox4.Text = "" 

 TextBox5.Text = "" 

 TextBox6.Text = "" 
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 MultiPage_NL_PI_IRI.Pages(0).Enabled = True 

 Me.MultiPage_NL_PI_IRI.Value = 0 

 

 trf1.Visible = False 

 Yes_trf.Visible = False 

 No_trf.Visible = False 

 trf2.Visible = False 

 AADT.Visible = False 

 ESAL.Visible = False 

 trf3.Visible = False 

 Yes_trf1.Visible = False 

 No_trf1.Visible = False 

   

End Sub 

 

'Private Sub Back2_Click() 

' Me.MultiPage_NL_PI_IRI.Value = 1 

'End Sub 

 

'Private Sub Next2_Click() 

' Me.MultiPage_NL_PI_IRI.Value = 2 

'End Sub 

'Me.MultiPage_NL_PI_IRI_Next2.Hide 

 

'***************************************************************************** 

'********************************RUTTING************************************ 

'***************************************************************************** 

Private Sub Yes_rut_Click() 

 Me.trf2_rut.Visible = True 

 Me.ESAL_rut.Visible = True 

 Me.AADT_rut.Visible = True 

 With MultiPage_NL_PI_RUT 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 

 End With 

 ESAL_rut.Enabled = True 

 AADT_rut.Enabled = True 

 trf2_rut.Enabled = True 

 ESAL_rut.Object.Value = False 

 AADT_rut.Object.Value = False 

End Sub 

Private Sub No_rut_Click() 

 With MultiPage_NL_PI_RUT 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 
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 End With 

 MsgBox "You need the required data to launch the tool." 

 

End Sub 

 

Private Sub ESAL_rut_Click() 

 If ESAL_rut.Value = True Then 

  AADT_rut.Value = False 

  AADT_rut.Enabled = False 

 Else 

  AADT_rut.Enabled = True 

 End If 

  

 With MultiPage_NL_PI_RUT 

  .Pages(1).Enabled = True 

  .Pages(2).Enabled = True 

  .Value = 1 

 Me.CommandButton4.Enabled = False 

 Me.CommandButton5.Enabled = True 

 

 End With 

End Sub 

Private Sub AADT_rut_Click() 

 If AADT_rut.Value = True Then 

  ESAL_rut.Value = False 

  ESAL_rut.Enabled = False 

 Else 

  ESAL_rut.Enabled = True 

 End If 

 

 With MultiPage_NL_PI_RUT 

  .Pages(1).Enabled = True 

  .Pages(2).Enabled = True 

  .Value = 1 

 Me.CommandButton4.Enabled = True 

 Me.CommandButton5.Enabled = False 

  

 End With 

End Sub 

'Location of EXCEL tool and transferring data to this tool_LAUNCH TOOL 1 

Private Sub CommandButton4_Click() 

 Dim xWB As Workbook 

 Dim wbName As String 

 Dim wbSheet As Worksheet 

 Dim iRow As Long 
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 On Error Resume Next 

 Set xWB = Workbooks.Open(ThisWorkbook.Path & "\" & " County_HMA_Rut-ANN 

Tool.xlsm") 'UPDATE filename 

 wbName = xWB.Name 

  If Err.Number <> 0 Then 

   MsgBox "Tool does not exist!" 

   Err.Clear 

  End If 

   

 Set wbSheet = xWB.Sheets("Interface") 

 With wbSheet 

   .Unprotect 

    Contents = True 

   .Range("A2").Value = Me.TextBox8.Value 

   .Range("B2").Value = Me.TextBox9.Value 

   .Range("C2").Value = Me.TextBox10.Value 

   .Range("D2").Value = Me.TextBox11.Value 

   .Range("E2").Value = Me.TextBox12.Value 

   .Range("F2").Value = Me.TextBox13.Value 

 End With 

  

End Sub 

'Location of EXCEL tool and transferring data to this tool_LAUNCH TOOL 2 

Private Sub CommandButton5_Click() 

 Dim xWB As Workbook 

 Dim wbName As String 

 Dim wbSheet As Worksheet 

 Dim iRow As Long 

  

 On Error Resume Next 

 Set xWB = Workbooks.Open(ThisWorkbook.Path & "\" & " PMIS_HMA_Rut-ANN 

Tool.xlsm") 'UPDATE filename 

 wbName = xWB.Name 

  If Err.Number <> 0 Then 

   MsgBox "Tool does not exist!" 

   Err.Clear 

  End If 

   

 Set wbSheet = xWB.Sheets("Interface") 

 With wbSheet 

   .Unprotect 

    Contents = True 

   .Range("A2").Value = Me.TextBox8.Value 

   .Range("B2").Value = Me.TextBox9.Value 

   .Range("C2").Value = Me.TextBox10.Value 

   .Range("D2").Value = Me.TextBox11.Value 
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   .Range("E2").Value = Me.TextBox12.Value 

   .Range("F2").Value = Me.TextBox13.Value 

 End With 

  

End Sub 

Private Sub Back1_rut_Click() 

 ESAL_rut.Value = False 

 AADT_rut.Value = False 

 Yes_rut.Value = False 

 No_rut.Value = False 

 TextBox8.Text = "" 

 TextBox9.Text = "" 

 TextBox10.Text = "" 

 TextBox11.Text = "" 

 TextBox12.Text = "" 

 TextBox13.Text = "" 

  

 Me.MultiPage_NL_PI_RUT.Value = 0 

 

 AADT_rut.Visible = False 

 ESAL_rut.Visible = False 

 trf2_rut.Visible = False 

 

End Sub 

 

'Private Sub Back2_rut_Click() 

' Me.MultiPage_NL_PI_RUT.Value = 1 

'End Sub 

 

Private Sub Next2_rut_Click() 

 Me.MultiPage_NL_PI_RUT.Value = 2 

End Sub 

 

'***************************************************************************** 

'*********************TRANSVERSE CRACKING******************************** 

'***************************************************************************** 

Private Sub Yes_tcrack_Click() 

 Me.trf2_tcrack.Visible = True 

 Me.ESAL_tcrack.Visible = True 

 Me.AADT_tcrack.Visible = True 

 With MultiPage_NL_PI_TCRACK 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 

 End With 

 ESAL_tcrack.Enabled = True 

 AADT_tcrack.Enabled = True 
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 trf2_tcrack.Enabled = True 

 ESAL_tcrack.Object.Value = False 

 AADT_tcrack.Object.Value = False 

End Sub 

Private Sub No_tcrack_Click() 

 With MultiPage_NL_PI_TCRACK 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 

 End With 

 MsgBox "You need the required data to launch the tool." 

 

End Sub 

 

Private Sub ESAL_tcrack_Click() 

 If ESAL_tcrack.Value = True Then 

  AADT_tcrack.Value = False 

  AADT_tcrack.Enabled = False 

 Else 

  AADT_tcrack.Enabled = True 

 End If 

  

 With MultiPage_NL_PI_TCRACK 

  .Pages(1).Enabled = True 

  .Pages(2).Enabled = True 

  .Value = 1 

 Me.CommandButton6.Enabled = False 

 Me.CommandButton7.Enabled = True 

 

 End With 

End Sub 

Private Sub AADT_tcrack_Click() 

 If AADT_tcrack.Value = True Then 

  ESAL_tcrack.Value = False 

  ESAL_tcrack.Enabled = False 

 Else 

  ESAL_tcrack.Enabled = True 

 End If 

 

 With MultiPage_NL_PI_TCRACK 

  .Pages(1).Enabled = True 

  .Pages(2).Enabled = True 

  .Value = 1 

 Me.CommandButton6.Enabled = True 

 Me.CommandButton7.Enabled = False 

  

 End With 
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End Sub 

'Location of EXCEL tool and transferring data to this tool_LAUNCH TOOL 1 

Private Sub CommandButton6_Click() 

 Dim xWB As Workbook 

 Dim wbName As String 

 Dim wbSheet As Worksheet 

 Dim iRow As Long 

  

 On Error Resume Next 

 Set xWB = Workbooks.Open(ThisWorkbook.Path & "\" & " County_HMA_TCrack-ANN 

Tool.xlsm") 'UPDATE filename 

 wbName = xWB.Name 

  If Err.Number <> 0 Then 

   MsgBox "Tool does not exist!" 

   Err.Clear 

  End If 

   

 Set wbSheet = xWB.Sheets("Interface") 

 With wbSheet 

   .Unprotect 

    Contents = True 

   .Range("A2").Value = Me.TextBox15.Value 

   .Range("B2").Value = Me.TextBox16.Value 

   .Range("C2").Value = Me.TextBox17.Value 

   .Range("D2").Value = Me.TextBox18.Value 

   .Range("E2").Value = Me.TextBox19.Value 

   .Range("F2").Value = Me.TextBox20.Value 

 End With 

     

End Sub 

'Location of EXCEL tool and transferring data to this tool_LAUNCH TOOL 2 

Private Sub CommandButton7_Click() 

 Dim xWB As Workbook 

 Dim wbName As String 

 Dim wbSheet As Worksheet 

 Dim iRow As Long 

  

 On Error Resume Next 

 Set xWB = Workbooks.Open(ThisWorkbook.Path & "\" & " PMIS_HMA_TCrack-ANN 

Tool.xlsm") 'UPDATE filename 

 wbName = xWB.Name 

  If Err.Number <> 0 Then 

   MsgBox "Tool does not exist!" 

   Err.Clear 

  End If 
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 Set wbSheet = xWB.Sheets("Interface") 

 With wbSheet 

   .Unprotect 

    Contents = True 

   .Range("A2").Value = Me.TextBox15.Value 

   .Range("B2").Value = Me.TextBox16.Value 

   .Range("C2").Value = Me.TextBox17.Value 

   .Range("D2").Value = Me.TextBox18.Value 

   .Range("E2").Value = Me.TextBox19.Value 

   .Range("F2").Value = Me.TextBox20.Value 

 End With 

    

End Sub 

Private Sub Back1_tcrack_Click() 

 ESAL_tcrack.Value = False 

 AADT_tcrack.Value = False 

 Yes_tcrack.Value = False 

 No_tcrack.Value = False 

 TextBox15.Text = "" 

 TextBox16.Text = "" 

 TextBox17.Text = "" 

 TextBox18.Text = "" 

 TextBox19.Text = "" 

 TextBox20.Text = "" 

  

 Me.MultiPage_NL_PI_TCRACK.Value = 0 

 

 AADT_tcrack.Visible = False 

 ESAL_tcrack.Visible = False 

 trf2_tcrack.Visible = False 

 

End Sub 

 

'Private Sub Back2_tcrack_Click() 

' Me.MultiPage_NL_PI_TCRACK.Value = 1 

'End Sub 

 

'***************************************************************************** 

'*********************LONGITUDINAL CRACKING****************************** 

'***************************************************************************** 

Private Sub Yes_lcrack_Click() 

 Me.trf2_lcrack.Visible = True 

 Me.ESAL_lcrack.Visible = True 

 Me.AADT_lcrack.Visible = True 

 With MultiPage_NL_PI_LCRACK 

  .Pages(1).Enabled = False 
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  .Pages(2).Enabled = False 

 End With 

 ESAL_lcrack.Enabled = True 

 AADT_lcrack.Enabled = True 

 trf2_lcrack.Enabled = True 

 ESAL_lcrack.Object.Value = False 

 AADT_lcrack.Object.Value = False 

End Sub 

Private Sub No_lcrack_Click() 

 With MultiPage_NL_PI_LCRACK 

  .Pages(1).Enabled = False 

  .Pages(2).Enabled = False 

 End With 

 MsgBox "You need the required data to launch the tool." 

 

End Sub 

 

Private Sub ESAL_lcrack_Click() 

 If ESAL_lcrack.Value = True Then 

  AADT_lcrack.Value = False 

  AADT_lcrack.Enabled = False 

 Else 

  AADT_tcrack.Enabled = True 

 End If 

  

 With MultiPage_NL_PI_LCRACK 

  .Pages(1).Enabled = True 

  .Pages(2).Enabled = True 

  .Value = 1 

 Me.CommandButton10.Enabled = False 

 Me.CommandButton11.Enabled = True 

 

 End With 

End Sub 

Private Sub AADT_lcrack_Click() 

 If AADT_lcrack.Value = True Then 

  ESAL_lcrack.Value = False 

  ESAL_lcrack.Enabled = False 

 Else 

  ESAL_lcrack.Enabled = True 

 End If 

 

 With MultiPage_NL_PI_LCRACK 

  .Pages(1).Enabled = True 

  .Pages(2).Enabled = True 

  .Value = 1 
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 Me.CommandButton10.Enabled = True 

 Me.CommandButton11.Enabled = False 

  

 End With 

End Sub 

'Location of EXCEL tool and transferring data to this tool_LAUNCH TOOL 1 

Private Sub CommandButton10_Click() 

 Dim xWB As Workbook 

 Dim wbName As String 

 Dim wbSheet As Worksheet 

 Dim iRow As Long 

  

 On Error Resume Next 

 Set xWB = Workbooks.Open(ThisWorkbook.Path & "\" & " County_HMA_LCrack-ANN 

Tool.xlsm") 'UPDATE filename 

 wbName = xWB.Name 

  If Err.Number <> 0 Then 

   MsgBox "Tool does not exist!" 

   Err.Clear 

  End If 

   

 Set wbSheet = xWB.Sheets("Interface") 

 With wbSheet 

   .Unprotect 

    Contents = True 

   .Range("A2").Value = Me.TextBox22.Value 

   .Range("B2").Value = Me.TextBox23.Value 

   .Range("C2").Value = Me.TextBox24.Value 

   .Range("D2").Value = Me.TextBox25.Value 

   .Range("E2").Value = Me.TextBox26.Value 

   .Range("F2").Value = Me.TextBox27.Value 

 End With 

  

End Sub 

'Location of EXCEL tool and transferring data to this tool_LAUNCH TOOL 2 

Private Sub CommandButton11_Click() 

 Dim xWB As Workbook 

 Dim wbName As String 

 Dim wbSheet As Worksheet 

 Dim iRow As Long 

  

 On Error Resume Next 

 Set xWB = Workbooks.Open(ThisWorkbook.Path & "\" & " PMIS_HMA_LCrack-ANN 

Tool.xlsm") 'UPDATE filename 

 wbName = xWB.Name 

  If Err.Number <> 0 Then 



218 

   MsgBox "Tool does not exist!" 

   Err.Clear 

  End If 

   

 Set wbSheet = xWB.Sheets("Interface") 

 With wbSheet 

   .Unprotect 

    Contents = True 

   .Range("A2").Value = Me.TextBox22.Value 

   .Range("B2").Value = Me.TextBox23.Value 

   .Range("C2").Value = Me.TextBox24.Value 

   .Range("D2").Value = Me.TextBox25.Value 

   .Range("E2").Value = Me.TextBox26.Value 

   .Range("F2").Value = Me.TextBox27.Value 

 End With 

      

End Sub 

Private Sub Back1_lcrack_Click() 

 ESAL_lcrack.Value = False 

 AADT_lcrack.Value = False 

 Yes_lcrack.Value = False 

 No_lcrack.Value = False 

 TextBox22.Text = "" 

 TextBox23.Text = "" 

 TextBox24.Text = "" 

 TextBox25.Text = "" 

 TextBox26.Text = "" 

 TextBox27.Text = "" 

      

 Me.MultiPage_NL_PI_LCRACK.Value = 0 

 

 AADT_lcrack.Visible = False 

 ESAL_lcrack.Visible = False 

 trf2_lcrack.Visible = False 

 

End Sub 

 

'Private Sub Back2_lcrack_Click() 

' Me.MultiPage_NL_PI_LCRACK.Value = 1 

'End Sub 

 

Private Sub UserForm1_Click() 

 

End Sub 
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Example of Script by Macro in Excel to Develop IPAT Sub-Tools for Predicting Each 

Performance Indicator 

Sub BackMain() 

End Sub 

********************************View_IRI_Model Macro************************* 

 

Sub ViewIRIModel() 

Sheets("IRI").Select 

End Sub 

 

******************************** Goback_IRI Macro **************************** 

Sub GoBackIRI() 

Sheets("Interface").Select 

End Sub 

 

************************** CalculateFutureRSL Macro **************************** 

Sub CalculateFutureRSL() 

'To hide screen during macro run 

 Application.ScreenUpdating = False 

  

'To unprotect locked cells 

Sheets("Interface").Unprotect 

 

'Automate 'Calculate Sheet' 

Sheets("Interface").Select 

ActiveSheet.Calculate 

Sheets("RSL").Select 

ActiveSheet.Calculate 

 

Sheets("Interface").Select 

Range("J3:M16").Font.Color = RGB(0, 0, 0) 

Range("L2:M2").Font.Color = RGB(0, 0, 0) 

Range("B14:D23").Font.Color = RGB(0, 0, 0) 

Range("B14:D23").Font.Bold = True 

Range("B14:D15").Font.Size = 13 

Range("B16:D23").Font.Italic = True 

Range("B16:D23").Font.Size = 13 

 

Sheets("Interface").Select 

Range("B14:D23").Interior.Color = RGB(146, 208, 80) 

  

Sheets("Interface").Range("B14:D15").Select 

 With Selection 

  .HorizontalAlignment = xlCenter 

  .VerticalAlignment = xlCenter 
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  .Merge 

 End With 

Sheets("RSL").Select 

Range("O15").Select 

Selection.Copy 

Sheets("Interface").Select 

Range("B14").Select 

ActiveSheet.Paste Link:=True 

Sheets("Interface").Select 

 

Sheets("Interface").Range("B16:D23").Select 

 With Selection 

  .HorizontalAlignment = xlCenter 

  .VerticalAlignment = xlCenter 

  .WrapText = True 

  .Merge 

 End With 

Sheets("RSL").Select 

Range("O16").Select 

Selection.Copy 

Sheets("Interface").Select 

Range("B16:D23").Select 

On Error Resume Next 

ActiveSheet.Paste Link:=True 

On Error GoTo 0 

Sheets("Interface").Select 

   

''To protect locked cells 

'Sheets("Inputs").Protect 

' Contents = True 

 

'To show screen after macro run 

Application.ScreenUpdating = True 

 

End Sub 

 

************************** Reset Macro **************************** 

Sub Reset() 

 

''To unprotect locked cells 

'Sheets("Interface").Unprotect 

 

Sheets("Interface").Select 

 Range("A2:F2").Clear 

 Range("A2:F2").Interior.Color = RGB(155, 194, 230) 

 Range("G2:I16").Clear 
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 Range("G2:I16").Interior.Color = RGB(155, 194, 230) 

 Range("J2:K2").Clear 

 Range("J2:K2").Interior.Color = RGB(155, 194, 230) 

 Range("J3:K16").Clear 

  

 Range("J3:M16").Interior.Color = RGB(146, 208, 80) 

 Range("L2:M2").Interior.Color = RGB(146, 208, 80) 

 Range("L2:M16").Font.Color = RGB(146, 208, 80) 

 

Dim myRange1 As Range 

Set myRange1 = Range("A2:F2") 

With myRange1.Borders 

 .LineStyle = xlContinuous 

 .ColorIndex = 0 

 .TintAndShade = 0 

 .Weight = xlThin 

End With 

 

Dim myRange2 As Range 

Set myRange2 = Range("G2:K16") 

With myRange2.Borders 

 .LineStyle = xlContinuous 

 .ColorIndex = 0 

 .TintAndShade = 0 

 .Weight = xlThin 

End With 

'Range("J3:M16").Font.Color = RGB(146, 208, 80) 

'Range("L2:M2").Font.Color = RGB(146, 208, 80) 

 

Range("B14:D23").Clear 

Range("B14:D23").Interior.Color = RGB(27, 55, 114) 

 

''To protect locked cells 

'Sheets("Interface").Protect 

' Contents = True 

End Sub 

 

************************** CalculateFutureIRI Macro **************************** 

 

Sub CalculateFutureIRI() 

 

'To hide screen during macro run 

 Application.ScreenUpdating = False 

' 

''To unprotect locked cells 

'Sheets("Interface").Unprotect 
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Sheets("Interface").Select 

Range("L2:M2").Font.Color = RGB(0, 0, 0) 

Range("J3:M16").Font.Color = RGB(0, 0, 0) 

 

''Automate 'Calculate Sheet' 

' 

'Sheets("RSL").Select 

'ActiveSheet.Calculate 

''Sheets("Interface").Select 

'''ActiveSheet.Calculate 

' 

' Sheets("RSL").Select 

' Range("H2:H16").Select 

' Application.CutCopyMode = False 

' Selection.Copy 

' Sheets("Interface").Select 

' Range("L2:L16").Select 

' Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

'  :=False, Transpose:=False 

  

 Range("K2").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J3").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M2").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K3").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

Range("K3").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J4").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M3").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K4").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 



223 

 

Range("K4").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J5").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M4").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K5").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

Range("K5").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J6").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M5").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K6").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

Range("K6").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J7").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M6").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K7").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

Range("K7").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J8").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 
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 Range("M7").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K8").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

 Range("K8").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J9").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M8").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K9").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

 Range("K9").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J10").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M9").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K10").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

 Range("K10").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J11").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M10").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K11").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 



225 

 Range("K11").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J12").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M11").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K12").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

 Range("K12").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J13").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M12").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K13").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

Range("K13").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J14").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M13").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K14").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

Range("K14").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J15").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M14").Select 
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 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K15").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

Range("K15").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("J16").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 Range("M15").Select 

 Application.CutCopyMode = False 

 Selection.Copy 

 Range("K16").Select 

 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

  :=False, Transpose:=False 

 

''To protect locked cells 

'Sheets("Interface").Protect 

' Contents = True 

'To show screen after macro run 

Application.ScreenUpdating = True 

 

End Sub 
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