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EXECUTIVE SUMMARY 

High-mast lighting towers are widely used to illuminate large areas such as freeways, airports, 

stadiums, and sports facilities throughout the nation and across the world. Generally, these 

structures are composed of a high-mast tapered pole and luminaire assembly installed at the tip 

of the pole. Luminaire systems are installed at a high elevation to maximize the illuminated area. 

Typically, the height of these structures can be from 50 ft to 150 ft. However, because of the 

slenderness and the large mass of the structure itself, a high stress level usually appears at the 

base part of the structure while the structure is vibrating. At the same time, low structural 

damping causes stress cycles at the base part of the structure to easily accumulate, and eventually 

fatigue damage is created on the structures.  

A hand hole is commonly found near the base of these structures as the access to the electrical 

wires inside the structure. The current American Association of State Highway and 

Transportation Officials (AASHTO) design standard of high-mast lighting towers with a tube 

diameter larger than 30 in. and sign and signal support structures requires that the width of the 

hand hole shall not be greater than 40% of the tube diameter. It also specifies that when 

calculating the nominal stress at the hand hole, it should be magnified by a stress concentration 

of 4.0. However, this design standard is actually difficult to follow in some pole structures with a 

small diameter.  

A limited review of the currently fabricated structures showed that high-mast lighting towers in 

the range of 55 to 100 ft in height are most affected, where openings as large as 87% of the pole 

diameter have been used. The application of the stress concentration factor of 4.0 on these poles 

results in either increasing the thickness of the tubes or increasing the dimeter of the tube, which 

leads to a much more expensive pole and overall luminaire system.  

The goal of the research was to identify the fatigue resistance of high-mast pole specimens with 

different opening ratios of the hand hole. 

The findings of this study are as follows:  

• First, the fatigue resistance of the base-to-tube connection decreased as the opening ratio of 

the hand hole increases. Specimen A had an opening ratio of 0.46, and the fatigue resistance 

of its base-to-tube connection was determined to be higher than Category E′ and possibly 

lower than Category E. Specimen B had an opening ratio of 0.54, and the fatigue resistance 

of its base-to-tube connection was determined to be near the lower limit of Category E′. From 

the parametric study, a slightly increasing trend of stress at the base-to-tube connection was 

found as the opening ratio increases. This could be the reason that fatigue resistance 

decreases at the base-to-tube connection.  

• Second, the fatigue resistance of the hand-hole-to-tube connection might be higher than the 

base-to-tube connection, as no fatigue cracks were observed around both larger and smaller 

hand holes in both fatigue tests.  
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• Third, the location of fatigue cracks on a high-mast pole specimen might not completely 

relate to the stress response, as fatigue cracks were only observed at the base-to-tube 

connection. However, the stress response at the base-to-tube connection was lower than the 

stress response at the hand hole corners. There might be other factors such as the geometry 

near the discontinuities that determine where a fatigue crack will occur on a pole specimen.  
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1. INTRODUCTION 

1.1. General Introduction  

High-mast lighting towers are widely used to illuminate large areas such as freeways, airports, 

stadiums, and sports facilities throughout the nation and across the world. Generally, these 

structures are composed of a high-mast tapered pole and luminaire assembly installed at the tip 

of the pole. Luminaire systems are installed at a high elevation to maximize the illuminated area. 

Typically, the height of these structures can be from 50 ft to 150 ft. However, because of the 

slenderness and the large mass of the structure itself, a high stress level usually appears at the 

base part of the structure while the structure is vibrating. At the same time, low structural 

damping causes stress cycles at the base part of the structure to easily accumulate, and eventually 

fatigue damage is created on the structures.  

Historically, failures and cracking of high-mast lighting towers have been frequently reported. In 

Iowa, a high-mast lighting tower placed along I-29 near Sioux City collapsed in 2003 within its 

five-year service life. After this failure, a statewide investigation was conducted in which cracks 

were found on more than 20 other high-mast lighting towers (Dexter 2004, Phares et al. 2007). In 

western Illinois, approximately 140 aluminum lighting poles collapsed during a 2003 winter 

storm (Caracoglia and Jones 2004). Phares et al. (2007) summarized most failure events in 

history in a table that showed that cracks on high-mast lighting towers were mostly found at the 

base-plate-to-tube connection, suggesting that fatigue damage can easily develop at locations 

with high stress levels. Also, all these instances showed the vulnerability of high-mast lighting 

towers to fatigue damage and the need to study their fatigue performance.  

1.2. Wind Engineering of High-Mast Lighting Towers 

Wind is believed to be a major source in causing the vibration of high-mast lighting towers. A 

few types of wind forces are suspected of inducing the vibration, which include buffeting wind 

force, vortex-shedding wind force, and truck-induced wind force. To understand wind-induced 

vibration, high-mast lighting towers in the field were monitored in several studies (Ahearn and 

Puckett 2010, Goode and van de Lindt 2006, Phares et al. 2007).  

In Phares et al. (2007), two 150 ft high-mast lighting towers in Iowa were monitored. Strain 

gauges were installed around the base-to-tube connection and the hand hole corners to monitor 

the stress response during wind-induced vibrations. It was found that buffeting and vortex-

shedding wind forces can induce high stress cycles at the base. Buffeting wind force can induce 

vibration in the along-wind direction. Higher wind speed can create larger buffeting wind force. 

The highest stress at the base was found to be induced by this type of wind force. Vortex-

shedding wind force can induce vibration in the across-wind direction, which results from the 

vortices generated in the wake of the structure and usually happens at low wind speeds. From the 

monitoring data, the second-mode vortex-induced vibration was frequently observed at low wind 

speeds of 3–8 mph. The stress range during the vortex-induced vibration can be larger than the 
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constant amplitude fatigue limit (CAFL), which can possibly cause fatigue damage on the 

structure.  

In Ahearn and Puckett (2010), two high-mast lighting towers in Wyoming were monitored. 

Accelerometers were installed at certain locations on the poles to detect vortex-induced vibration 

from different modes and truck-induced vibration. Strain gauges were installed at the base to 

record the stress response during the vibration. In this study, it was found that the third-mode 

vortex-induced vibration was frequently observed, and the stress range at the base was able to 

reach the CAFL during the vibration. It was also found that the acceleration results from the 

truck-induced wind force was quite small, which indicated truck-induced vibration might not be 

a concern for fatigue damage.  

In these two studies, pluck tests were conducted to extract the dynamic property of the monitored 

structures. The monitored structures all showed a low damping ratio of the first mode around 

0.5%, and the damping ratios of the rest modes were even lower. Low mechanical damping can 

make wind-induced vibration last longer, and fatigue damage will possibly accumulate faster.  

To quantify the wind force on high-mast lighting towers, wind tunnel tests were conducted on 

scaled models to extract the aerodynamic and aeroelastic parameters. In Chang et al. (2014) and 

Phares et al. (2007), a high-mast lighting tower was modeled as a 12-sided cylinder. The wind 

tunnel tests included a static test to extract the drag and lift coefficients, a dynamic test to extract 

the vortex-shedding parameters, and a buffeting test to identify the buffeting indicial function. 

These identified parameters were later used to build a wind force equation, and a mathematical 

model was used to simulate the wind-induced response of the high-mast lighting tower.  

In Luo et al. (2017), a scaled model of a 130 ft high lighting pole was tested in a wind tunnel. 

The coefficients to calculate the wind load in the along-wind and across-wind directions on the 

structure were identified. The aerodynamic instability of the structure was also examined through 

the wind tunnel tests. 

1.3. Fatigue Performance of High-Mast Lighting Towers 

The fatigue performance of high-mast lighting towers can be evaluated through conducting 

fatigue experiments. In Rios (2007) and Stam et al. (2011), 16-sided pole specimens without 

hand holes were tested. The fillet welded base-plate-to-tube connection was evaluated as less 

than Category E′, and the full-penetration welded base-plate-to-tube connection was evaluated as 

less than Category E.  

In Roy et al. (2011), 16-sided pole specimens with hand holes were tested. At the base-plate-to-

tube connection, the fillet welded type without backing ring was evaluated as Category E, and 

the fillet welded type with backing ring was evaluated as lying between Category E and 

Category D. The specimen reinforced by retrofit jacket exhibited a fatigue resistance in Category 

C. All fatigue cracks were found at the weld toe of the base-plate-to-tube connection or the weld 

toe of the backing ring. No fatigue cracks were discovered around the hand hole. At the hand-
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hole-frame-to-tube connection, the fatigue resistance of a reinforced hand hole was predicted as 

Category D and an unreinforced hand hole was predicted as Category E′.  

A hand hole is commonly found on a high-mast lighting tower to allow access to the electrical 

wires. However, a hand hole creates an irregular shape on the base part of a high-mast lighting 

tower, which results in stress concentration and a high stress level around the hand hole. 

Currently, there are few studies on the influence the hand hole on a high-mast lighting tower has 

on the structure’s fatigue performance.  

In Schlatter (2017), fatigue experiments were conducted on circular tube specimens with a hand 

hole to determine the fatigue resistance of the hand hole. The hand-hole-to-tube connection 

exhibited a fatigue resistance between Category D and Category C. A fatigue experiment was 

conducted by applying fatigue loading to bend the tube specimens. However, in reality, this type 

of deformation might not be like the deformation of a high-mast lighting tower with a hand hole 

during wind-induced vibration. Also, the tube specimens in this study did not have a base plate 

and a base-plate-to-tube connection, which was not like the base part of a real high-mast lighting 

tower. Thus, these fatigue test results cannot show the influence of the hand hole on the fatigue 

resistance of a high-mast lighting tower. 

1.4. Research Objectives 

According to American Association of State Highway and Transportation Officials (AASHTO) 

specifications (AASHTO 2015), the current design standard of high-mast lighting towers with a 

tube diameter larger than 30 in. and sign and signal support structures requires that the width of 

the hand hole shall not be greater than 40% of the tube diameter. It also specifies that when 

calculating the nominal stress at the hand hole, it should be magnified by a stress concentration 

of 4.0.  

In Roy et al. (2011), mast arm specimens, which are composed of a horizontal arm and a vertical 

pole, and high-mast pole specimens were fatigue tested. The mast arm specimen has a hand hole 

on the base part of the vertical pole. Therefore, the geometry of the base part of the mast arm 

specimens was very similar to the base part of the high-mast pole specimens. The hand hole 

dimension on both specimens followed the current design standard. No fatigue cracks were 

found around the hand hole of the high-mast pole specimens; however, fatigue cracks were 

found on the corners of the hand hole on the mast arm specimens. This indicated the current 

design standard of the hand hole dimension might not be generally appropriate. Additionally, this 

design standard is actually difficult to follow in some pole structures with a small diameter.  

A limited review of the currently fabricated structures showed that high-level luminaire 

structures in the range of 55 to 100 ft height are most affected, where openings as large as 87% 

of the pole diameter (or about 28% of the pole perimeter) have been used. In sign and signal 

support structures, poles of 10 in. diameter or less appear to be the most impacted. 

Unfortunately, there are a significant number of these structures in service and planned for future 

installation.  
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In other situations, multiple openings may be needed on a particular section that cumulatively 

exceeds 40% of the pole diameter. The application of the stress concentration factor of 4.0 on 

these poles results in either increasing the thickness of the tubes or increasing the dimeter of the 

tube, which results in requiring larger foundations and also additional thickness. In one example 

of the impact, the Oklahoma Department of Transportation (DOT) had poles with diameter of 7.8 

in. that with a 4.69 in. hole resulted in a 60.2% opening. With the current standard, the poles 

need to be designed with a diameter of 11.72 in. This additional diameter would result in a much 

more expensive pole and overall luminaire system.  

To propose a safer and more realistic design standard of the hand hole, research on the influence 

of the hand hole on the fatigue performance of high-mast lighting towers is needed. In this study, 

two different high-mast pole specimens with the same base-plate-to-tube connection but a 

different size of hand hole opening were tested. Static tests were first conducted on both 

specimens to see the difference of the stress response at the base part due to the different size of 

the hand hole opening. Fatigue tests were then conducted to determine the fatigue resistance of 

both specimens. To increase the efficiency of conducting fatigue tests, an experiment setup 

similar to the one used in Rios (2007) and Stam et al. (2011) was used to test the two specimens 

at the same time. Finally, additional finite element models with different opening ratios were 

built to conduct a parametric study. Based on the parametric study and the present fatigue 

experiment, the influence of the opening ratio on the fatigue resistance of a high-mast lighting 

tower was determined in this study.  

1.5. Report Organization 

This report is organized as follows:  

• Chapter 2 describes the preliminary study of different types of high-mast pole specimens and 

the finite element analysis of the selected specimens  

• Chapter 3 explains the fatigue experiment that includes the experiment setup, 

instrumentation, test procedures, and test results  

• Chapter 4 shows the parametric study on the hand hole  

• Chapter 5 presents the findings of this report and proposes future work   
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2. FINITE ELEMENT ANALYSIS  

High-mast pole specimens with a hand hole have been fatigue tested in Roy et al. (2011). In this 

chapter, finite element models of the specimen Type X and Type XI in Roy et al. (2011) were 

built. To study the influence of the hand hole, the width of the opening of both initial specimens 

was increased to test another two specimens. Therefore, a total of four different pole specimen 

models were studied.  

2.1. Model Description  

In this section, four different high-mast pole specimen models were studied, which were named 

Specimen A, B, C, and D. All the specimen models were composed of a 19 ft 16-sided tube, a 

square top plate, and a circular base plate.  

Specimen A followed the design details of specimen Type XI in Roy et al. (2011). There were 

eight bolt holes on the base plate. The base-to-tube connection used the full-penetration welded 

type and had a 2 in. backing ring inside the base. The opening of the hand hole of Specimen A 

was 11 in., which was equal to 45.8% of the tube diameter. Specimen B was almost identical to 

Specimen A but had a 13 in. opening, which was equal to 54.2% of the tube diameter. See the 

dimension details in Figure 2.1.  

 

Figure 2.1. Dimension details of Specimens A and B 
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Specimen C followed the design details of specimen Type X in Roy et al. (2011). There were 16 

bolt holes on the base plate. The base-to-tube connection selected was the fillet welded type with 

no backing ring inside the base. The opening of Specimen C was 11 in., which was equal to 

45.8% of the tube diameter. Specimen D was almost identical to Specimen C but had a 13 in. 

opening, which was equal to 54.2% of the tube diameter. See the dimension details in Figure 2.2. 

 

Figure 2.2. Dimension details of Specimens C and D 

To make the connection at the base more like the real condition, a bolted connection and a solid 

foundation were also modeled (see Figure 2.3).  
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Figure 2.3. Bolted connection and foundation 

The friction coefficient is 0.2 for all the contact surfaces between the base plate, bars, and nuts 

(Oman and Nagode 2017).  

In these four specimen models, locations with high stress concentration were expected to be 

around the base-to-tube connection and the hand hole. In order to have higher accuracy at these 

locations, the finest meshes were used on the base plate, the hand hole, and the lower region of 

the tube. 

2.2. Static Analysis 

Static analysis was conducted by applying a static load at the top surface of the top plate. The 

bottom surface of the foundation was defined as fixed support. Before studying the stress 

response of the four different models, the finite element models needed to be verified first. In 

Roy et al. (2011), strain gauges were installed on specimen Type X to read the stress value 

around the base-to-tube connection and the hand hole.  

Figure 2.4 shows the 11 data points measured by the strain gauges during a static test in Roy et 

al. (2011), and the simulated stress response of Specimen C from the weld toe of the base-to-tube 

connection to the hand hole.  
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Figure 2.4. Stress response from the weld toe of the base-to-tube connection to the hand 

hole 

The simulated stress response showed strong agreement with the readings from the strain gauges, 

which indicated that the finite element model was accurately designed and the mesh quality 

around the location of interests was good enough.  

After the verification of the finite element models, a 1 kip static load was applied on each model 

to compare the stress response at the base. The hand-hole side of the specimens was in tension, 

and the back side was in compression, named Case 1. Table 2.1 shows the surface normal stress 

in the vertical direction at the base of Specimen A and Specimen B.  

Table 2.1. Surface normal stress at the base of Specimen A and Specimen B 

 Specimen A Specimen B 

Hand-

hole 

side 

  

Back 

side 

  
 

3.571 ksi 

3.028 ksi 

3.244 ksi 

4.294 ksi 

-3.389 ksi -3.550 ksi 
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On the hand-hole side, the maximum stress was shown to be at the weld toe of the base-to-tube 

connection on Specimen A; however, the maximum stress was shown at the bottom corner of the 

hand hole on Specimen B. This indicates that increasing the opening from 11 in. to 13 in. can 

result in maximum stress shifts from the base-to-tube connection to the corners of the hand hole. 

On the back side, since the geometry of the two specimens were identical, the stress responses 

were also very similar. 

Table 2.2 shows the surface normal stress in the vertical direction of Specimen C and Specimen 

D.  

Table 2.2. Surface normal stress at the base of Specimen C and Specimen D 

 Specimen C Specimen D 

Hand-

hole 

side 

  

Back 

side 

  

 

On the hand-hole side, both Specimen C and Specimen D showed the maximum stress at the 

weld toe of the base-to-tube connection. From a comparison of Specimen C and Specimen D, it 

was also found that increasing the opening of the hand hole resulted in the increase of stress at 

the corners of the hand hole. Additionally, there was a significant decrease of stress at the weld 

toe of the base-to-tube connection when increasing the opening from 11 in. to 13 in. The same 

thing was also observed in the comparison of Specimen A and Specimen B. Based on these two 

comparisons, increasing the size of the opening might increase the possibility of fatigue cracks 

appearing at the corners of the hand hole. 

Static analysis was also conducted by applying a 1 kip load in the opposite direction to make the 

hand-hole side in compression and the back side in tension, named Case 2. Table 2.3 summarizes 

the results of the static analysis. The stress range (𝑆𝑟) was defined as the range of the surface 

normal stress from Case 1 to Case 2. 

6.670 ksi 

3.077 ksi 

4.836 ksi 

4.194 ksi 

-5.638 ksi 
-5.659 ksi 
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Table 2.3. Maximum surface normal stress and stress range (Sr) at locations of interests  

Stress 

(ksi) 

Base-to-tube connection 

(hand-hole side) 

Base-to-tube connection 

(back side) Hand hole corner 

Specimens Case 1 Case 2 𝑆𝑟 Case 1 Case 2 𝑆𝑟 Case 1 Case 2 𝑆𝑟 

A 3.571 -3.285 6.856 -3.389 3.692 7.081 3.028 -3.093 6.121 

B 3.244 -2.954 6.198 -3.550 3.858 7.408 4.294 -4.369 8.663 

C 6.670 -5.914 12.584 -5.638 6.407 12.045 3.077 -3.160 6.237 

D 4.836 -4.836 9.672 -5.659 5.659 11.318 4.194 -4.194 8.388 

 

Finally, Specimen A and Specimen B were used in a fatigue experiment to study the influence of 

the opening of the hand hole on the fatigue resistance of the high-mast lighting towers. These 

specimens were selected because according to the finite element analysis, this pair of specimens 

showed the maximum stress range at different locations. It is believed that fatigue cracks would 

most likely occur at locations with high stress concentration. Therefore, Specimen A and 

Specimen B might show fatigue cracks at different locations in the fatigue test, which would 

provide critical information about the influence of the opening ratio on the fatigue performance. 

The fatigue experiment is explained in Chapter 3.  
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3. FATIGUE EXPERIMENT 

3.1. Experiment Setup 

As described in Chapter 2, Specimen A and Specimen B were selected for fatigue experiment. In 

total, four test specimens were purchased, two of Specimen A and two of Specimen B. To 

enhance the efficiency of the fatigue experiment, the experiment setup was the same setup used 

in Rios (2007) and Stam et al. (2011).  

Two test specimens were connected to a loading box, and two ends of the setup were designed as 

cylinder supports. An actuator was attached to the top of the loading box to provide the fatigue 

load and create fatigue stress cycles at the base of both specimens. Figure 3.1 shows the model 

and a photograph of the entire fatigue experiment setup, and Figure 3.2 provides photographs of 

the details.  
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Figure 3.1. Fatigue experiment setup (bottom) and model (top) 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 3.2. Fatigue experiment setup details 

The actuator, Figure 3.2 (a), was installed on a steel frame, Figure 3.2 (f), and connected with the 

top plate of the loading box. It is capable of both displacement and load control. The load cell of 

the actuator used MTS Model 661, for which the maximum capacity is 55 kips.  

The whole setup can be seen as a simply supported beam. Therefore, the support on one side, 

Figure 3.2 (b), was designed to rotate freely, and the support on the other side, Figure 3.2 (c), 

was designed to rotate and move freely in a two-dimensional (2D) plane. To make sure the 

whole setup can only move in a 2D plane, two triangle stiffener plates were installed on one side 

of the supports to restrict the movement in the out-of-plane direction (see Figure 3.2 (d)). 

The bolted connection, Figure 3.2 (e), between the test specimens and the loading box followed 

the specification from AASHTO (2015) and the Iowa DOT. Grade 105 threaded bars were used. 
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Nuts and washers were placed on both sides of the side plates of the loading box and both sides 

of the base plate of the test specimens. According to the Iowa DOT, the minimum torque 

requirement for a Grade 105 1.75 in. anchor bolt is 796 ft-lb. A hydraulic wrench was used to 

tighten the nuts to meet the required torque. 

The loading box was composed of five steel plates, which were two side plates, a top plate, a 

bottom plate, and a middle plate. The plates were fillet welded. There were eight bolt holes on 

each side plate to connect to the specimens. There were four bolt holes on the top plate to 

connect to the actuator. See the dimension details in Figure 3.3.  

 

Figure 3.3. Dimension details of loading box 
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3.2. Instrumentation   

Sensors including strain gauges and displacement sensors were used in the experiment, and all 

the sensors were connected to a data acquisition system to record the data. The details are given 

in the following subsections.  

3.2.1. Strain Gauges 

Two types of strain gauges were used: axial gauge and gradient gauge (see Figure 3.4).  

   

Figure 3.4. Axial gauge (left) and gradient gauge (right) 

An axial gauge can measure the surface strain in one direction and returns only one strain value. 

A gradient gauge contains five axial gauges. It also measures the surface strain in one direction 

but is able to return five strain values along one direction, which gives more information about a 

location of interest.  

Strain gauges were installed for two different purposes. First, strain gauges were installed at hot-

spot locations, named hot-spot gauges. Figure 3.5 shows the location and photograph of the hot-

spot gauges.  
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Figure 3.5. Hot-spot gauges (bottom) and locations (top) 

Second, four axial gauges were placed on the hand-hole side and the back side at 150 in. and 170 

in. from the base plate and named control gauges. See the location and photograph of the control 

gauges in Figure 3.6.  
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Figure 3.6. Control gauges (right) and locations (left) 

Control gauges were placed away from the hand hole to avoid the geometry effect. Therefore, 

the reading from the control gauges would ideally be very similar to the nominal stress at their 

locations. Then, the nominal stress at the base-to-tube connection can be calculated by the 

nominal stress at the control gauges.  

The location of the control gauges was decided by a static analysis on finite element models. A 

1 kip static load was applied on the top plate. Figure 3.7 shows the surface normal stress and the 

nominal stress from the top of the hand hole to the top plate.  

   

Figure 3.7. Simulated stress response from the top of the hand hole to the top plate 
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The surface normal stress is nearing the nominal stress when the location is getting away from 

the geometry effect of the hand hole. It was found that on the hand-hole side, the surface normal 

stress is almost the same as the nominal stress when the location is at least 140 in. from the base 

plate. Therefore, the research team decided to place control gauges at 150 in. and 170 in. from 

the base plate on both the hand-hole side and the back side. 

3.2.2. Displacement Sensors 

The research team chose to use the HX-PA-10-NJC from UniMeasure for displacement sensors. 

The measurement range of this sensor is 10 in. Displacement sensors were screwed to a wood 

brick, and two weights were placed on the wood brick to make it steady (see Figure 3.8).  

 

Figure 3.8. Displacement sensor 

To install the displacement sensors, a chain was dropped from the locations of interest and 

hooked to a ring at the tip of the wire rope (see Figure 3.9 (b) and (c)). A total of 10 

displacement sensors were installed to measure the displacement at different locations along the 

experiment setup (see Figure 3.9 (a)).  

 

(a) 
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(b) (c) 

Figure 3.9. Locations (top) and displacement sensors (bottom) 

There are two sensors at each of the two sides of the bottom plate of the loading box and four 

sensors on each specimen. At the loading box, two sensors were used to monitor the 

displacement of the loading box during the fatigue experiment. Also, the values from these two 

sensors were used to check whether the experiment setup had rotation movement due to the 

fatigue load.  

The displacement data from all the sensors was used to determine the deflected shape of the two 

specimens, so the second derivative of deflection, bending moment, and nominal stress at 

different locations could be approximated. The detail calculations are explained in Section 3.4. 

3.2.3. Data Acquisition System  

The data acquisition system chosen was the Model 5100B Scanner from Vishay Intertechnology 

(see Figure 3.10).  
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Figure 3.10. Data acquisition system 

All the sensors were connected to the scanners, and the scanners were connected to a computer. 

A software package called StrainSmart 5000 was installed in the computer and provided a user 

interface to configure the data from all the sensors. Strain data was recorded in microstrain (𝜇𝜀). 

Displacement data was recorded in 0.001 in. The displacement and load signals from the actuator 

were also recorded. During the fatigue experiment, the sampling rate was set to 50 Hz, and the 

data was recorded for 1 minute in every 15 minutes. 

3.3. Experiment Procedures 

There was a total of four specimens. Using the experiment setup explained in Section 3.1, 

Specimen A and Specimen B were tested together, and two fatigue tests were conducted. Before 

each fatigue test, there was an inspection of the specimens. A dye penetrant test and a magnetic 

particle test were used to make sure the specimens were in good condition before the fatigue test. 

Hot-spot locations including the base-to-tube connection and the weld around the hand hole were 

inspected.  

The dye penetrant test typically includes four steps. First, use a cleaner to clean the surface of the 

test object. Second, spray a dye penetrant on the surface and allow it to sit for 10–30 minutes. 

Third, wipe the surface clean with a clean towel or cloth. Fourth, spray a developer on the 

surface and watch whether there’s any red indications on the surface. The magnetic particle test 

is relatively simpler and faster and typically includes three steps. First, clean the surface of the 

test object. Second, spray a magnetic powder on the surface. Third, apply a magnetic field on the 

surface and observe whether there’s any indications.  

After the initial inspection of the specimens, a static test was conducted to determine the required 

load on the loading box to create the desired stress cycle at the base-to-tube connection. Next, by 

applying the required load, fully reversed constant-amplitude stress cycles were applied on the 
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specimens. During the fatigue testing, dye penetrant test and magnetic particle tests were 

conducted at different numbers of cycles to check the condition of the specimens. Finally, the 

fatigue test was continued until fatigue failure appeared on the specimens.  

An experiment setup model was built in Ansys software to conduct a modal analysis (see Figure 

3.11).  

 

Figure 3.11. The mode shape of the first mode of the fatigue experiment setup 

The structural frequency of the first mode of the experiment setup was identified as 4.689 Hz. To 

avoid resonance during the fatigue test, the frequency of the fatigue load was determined to be 

lower than 2 Hz. The data sampling rate was then determined to be at least 50 Hz.  

For the selection of nominal stress range at the base-to-tube connection in fatigue tests, the 

research team considered the tests conducted in Roy et al. (2011), where Type XI specimens—

which is identical to Specimen A in the present study—were tested with three different nominal 

stress ranges: 10 ksi, 12 ksi, and 16 ksi. The test results of that study are shown in Figure 129 in 

Roy et al. (2011). In the present study, a lower nominal stress range, 8 ksi, was selected for the 

first fatigue test since Specimen B, which has a larger hand hole, and Specimen A were tested at 

the same time. The plan was to observe whether Specimen A showed a similar fatigue resistance 

as specimen Type XI and whether Specimen B had a different fatigue resistance. In the second 

fatigue test, the nominal stress range was set to 16 ksi to evaluate their fatigue resistances at a 

different level of nominal stress range. Finally, the fatigue resistance of both specimens was 

determined by AASHTO fatigue category.  

According to Roy et al. (2011), fatigue failure is generally defined as a visible through-thickness 

crack with a minimum of 5 in. (127 mm) in length measured from tip to tip. However, fatigue 

failure at a tubular connection is defined as half the diameter of the tube, which is equal to 12 in. 

in this study. The run-out life for an infinite life fatigue test should be taken as: 12.5 × 106 cycles 

at 16.0 ksi, 7.0 × 106 cycles at 12.0 ksi, 8.2 × 106 cycles at 10.0 ksi, 14.7 × 106 cycles at 7.0 ksi, 

20 × 106 cycles at 4.5 ksi, and 20 × 106 cycles at 2.6 ksi.  

3.4. Static Test Results 

A static test was conducted before the fatigue test to determine the required fatigue load at the 

loading box.  
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3.4.1. Determination of Required Fatigue Loads 

As mentioned in Section 3.3, the nominal stress range at the base-to-tube connection was set to 8 

ksi and 16 ksi for the first and the second fatigue tests, respectively. Fully reversed constant-

amplitude stress cycles were applied at the base-to-tube connection. Then, the required loads at 

the loading box needed to be calculated. Knowing the cross-section property, nominal stress can 

be simply calculated from bending moment using the following equation.  

𝝈𝒏𝒐𝒎𝒊𝒏𝒂𝒍 =
𝑴𝒄

𝑰
  (3.1) 

where 𝑀 is the bending moment, 𝑐 is the perpendicular distance to the neutral axis, and 𝐼 is the 

moment of inertia.  

However, because of the design of the experiment setup, the bending moment at the base-to-tube 

connection cannot be calculated directly from the applied load at the loading box. In this study, 

stress from hot-spot gauges at the base-to-tube connection was converted to the nominal stress by 

the identified stress concentration factor. Data from the control gauges and displacement sensors 

were used to confirm whether the calculated nominal stress at the base-to-tube connection was 

accurate. Different static loads were applied at the loading box, and a fitting function was built 

for the relationship between the static load and the nominal stress at the base-to-tube connection. 

Then, the required loads to create the desired nominal stress at the base-to-tube connection were 

finally determined.  

In this study, different static loads from 11 kips to 25 kips and from -1 kips to -15 kips with an 

increment of 1 kip were applied at the loading box. Positive load represents upward direction and 

negative load represents downward direction. In the following tests, three different approaches 

were used to confirm the required fatigue load.  

In the first approach, the stress concentration factor (SCF) at the base-to-tube connection was 

used to convert the surface stress recorded by the hot-spot gauges at the base-to-tube connection 

to the nominal stress. In Figure 2.4, the finite element analysis was validated to be able to 

precisely simulate the stress response near the weld toe of the base-to-tube connection. 

Therefore, finite element models of Specimen A and Specimen B were used to calculate the SCF 

at the weld toe of the base-to-tube connection. Static load was applied on the top of the finite 

element models, and the SCF is the ratio of the surface stress and the nominal stress at the weld 

toe of the base-to-tube connection. Table 3.1 shows the identified SCF at the weld toe of the 

base-to-tube connection.  

Table 3.1. SCF at the weld toe of the base-to-tube connection 

Locations Hand hole side Back side 

SCF 1.99 2.59 
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After identifying the SCF at the base-to-tube connection, the surface stress from the hot-spot 

gauges can be converted to the nominal stress (see some examples in Table 3.2) 

Table 3.2. Surface stress (ksi) at the base-to-tube connection to nominal stress (ksi) 

Static loads (kips) 15 16 17 18 -8 -7 -6 -5 

Hand-

hole side 

Surface 

stress 
10.77 11.91 13.05 14.16 -13.71 -12.57 -11.43 -10.35 

Nominal 

stress 
5.41 5.98 6.55 7.11 -6.89 -6.31 -5.74 -5.20 

Back 

side 

Surface 

stress 
-14.01 -15.48 -16.92 -18.36 18.12 16.59 15.06 13.59 

Nominal 

stress 
-5.41 -5.98 -6.53 -7.09 6.99 6.40 5.81 5.25 

 

It can be seen that the calculated nominal stress at the hand-hole side and at the back side have a 

similar value with opposite sign, which indicates the identified SCF at the base-to-tube 

connection could be accurate. 

In the second approach, control gauges read the nominal stress at their locations, which was used 

to predict the nominal stress at the base-to-tube connection. Two stress values recorded by two 

control gauges at 150 in. and 170 in. from the base plate were used to calculate the bending 

moments at these two locations by using equation 3.1. The bending moment at the cylinder 

support was assumed to be zero. Using these three data, the bending moment along the specimen 

can be approximated by the least-square method. The bending moment function was 

approximated by a second-order polynomial function.  

Table 3.3 shows the recorded stress at the control gauges and the predicted nominal stress at the 

base-to-tube connection when applying different static loads.  
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Table 3.3. Surface stress (ksi) from control gauges to nominal stress (ksi) at the base-to-

tube connection 

Static loads (kips) 15 16 17 18 -8 -7 -6 -5 

Control 

gauge at 

150 in. 

Hand-

hole side 
3.45 3.81 4.17 4.50 -4.80 -4.47 -4.14 -3.78 

Back 

side 
-3.45 -3.84 -4.23 -4.53 4.83 4.47 4.08 3.72 

Control 

gauge at 

170 in. 

Hand-

hole side 
2.76 3.06 3.36 3.63 -3.84 -3.54 -3.24 -2.97 

Back 

side 
-2.70 -3.03 -3.30 -3.57 3.72 3.45 3.18 2.88 

Nominal stress at 

the base-to-tube 

connection 

5.02 5.58 6.11 6.59 6.98 6.47 5.95 5.43 

 

As shown in Table 3.3, the predicted nominal stress at the base-to-tube connection is similar to 

the nominal stress calculated by the SCF at the base-to-tube connection in Table 3.2. Therefore, 

the relationship between static loads and the nominal stress at the base-to-tube connection from 

the first approach was determined to be accurate. 

In the third approach, displacement data from the displacement sensors were used to approximate 

the deflection function of the specimens. The deflection function was approximated by a third-

order polynomial function. The second derivative of deflection was calculated from the 

deflection function. Then, the bending moment along the specimen was calculated by equation 

3.2, and the nominal stress at the base-to-tube connection was determined.  

𝑴(𝒙) = 𝑬𝑰𝒚′′(𝒙)  (3.2) 

where 𝐸 is the modulus of elasticity of structural steel, which equals to 30 × 106 (psi), and 𝐼 is 

the moment of inertia. 

Table 3.4 shows the displacement data at different static loads and the predicted nominal stress at 

the base-to-tube connection.  
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Table 3.4. Displacement data (in.) to nominal stress (ksi) at the base-to-tube connection 

Static loads 

(kips) 15 16 17 18 -8 -7 -6 -5 

Distance 

to base 

plate 

223 in. 0.069 0.075 0.083 0.089 -0.076 -0.071 -0.065 -0.060 

170 in. 0.242 0.266 0.293 0.317 -0.308 -0.285 -0.258 -0.239 

150 in. 0.314 0.347 0.379 0.411 -0.417 -0.386 -0.353 -0.325 

0 in. 0.620 0.682 0.750 0.809 -0.837 -0.776 -0.709 -0.657 

Nominal stress 

at the base-to-

tube connection  

5.30 5.91 6.40 7.02 6.71 6.17 5.58 5.09 

 

As shown in Table 3.4, the predicted nominal stress at the base-to-tube connection is similar to 

the nominal stress calculated by the SCF at the base-to-tube connection in Table 3.2. Therefore, 

the relationship between static loads and the nominal stress at the base-to-tube connection from 

the first approach was confirmed again. 

At this point, the relationship between the static load and the nominal stress at the base-to-tube 

connection found by using the stress concentration factor in the first approach has been validated 

by the data from the control gauges and the displacement sensors. Finally, the relationship 

between the static load and the nominal stress at the base-to-tube connection was approximated 

by a polynomial function (see Figure 3.12).  

   

Figure 3.12. Static load at the loading box vs. nominal stress at the base-to-tube connection 

The required fatigue loads were finally determined as 12.5 kips and -1.9 kips to create the 

nominal stress range of 8 ksi at the base-to-tube connection and 19.7 kips and -9.0 kips to create 

the nominal stress range of 16 ksi at the base-to-tube connection.   
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3.5. Fatigue Test Results 

3.5.1. Initial Inspection of Test Specimens 

As mentioned in Section 3.3, a dye penetrant test and a magnetic particle test were conducted on 

the specimens before the fatigue test to examine whether the specimens were in good condition. 

Figure 3.13 and Figure 3.14 show the results of the initial dye penetrant test. 

   

(a) Base-to-tube connection (b) Hand hole top left corner (c) Hand hole top right corner 

  

 

(d) Hand hole bottom left 

corner 

(e) Hand hole bottom right 

corner 

 

Figure 3.13. Initial dye penetrant test on Specimen A  
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(a) Base-to-tube connection (b) Hand hole top left corner (c) Hand hole top right corner 

  

 

(d) Hand hole bottom left 

corner 

(e) Hand hole bottom right 

corner 

 

Figure 3.14. Initial dye penetrant test on Specimen B 

Both tests showed no indications on the hot-spot locations, which indicates the specimens were 

in good condition before the fatigue test. 

3.5.2. First Fatigue Test  

In the first fatigue test, Specimen A-1 and Specimen B-1 were connected to the loading box and 

tested together. The stress range at the base-to-tube connection was set to 8 ksi, the fatigue load 

was a sinusoidal load with the high end at 12.5 kips and the low end at -1.9 kips, and the load 

frequency was set to 0.6 Hz. Dye penetrant tests and magnetic particle tests were conducted at 
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650,000, 850,000, and 1,000,000 cycles to inspect the condition of the specimens. The test was 

stopped at 1,000,000 cycles.  

On Specimen A-1, no indications were found at the base-to-tube connection and the hand-hole-

to-tube connection at 1,000,000 cycles from both the dye penetrant test and magnetic particle 

test. See Figure 3.15 for the results of the dye penetrant test on Specimen A-1 at 1,000,000 

cycles.  

  

(a) Hand-hole side of the base-to-tube 

connection  

(b) Back side of the base-to-tube connection 

  

(c) Left bottom corner of the hand hole (d) Right bottom corner of the hand hole 

Figure 3.15. Dye penetrant test result of Specimen A-1   

On Specimen B-1, small red indications were found at the bottom corners of the hand hole, and 

no red indications were found at the base-to-tube connection from the dye penetrant test at 

1,000,000 cycles (see Figure 3.16).  
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(a) Hand-hole side of the base-to-tube 

connection 

(b) Back side of the base-to-tube connection 

  

(c) Left bottom corner of the hand hole (d) Right bottom corner of the hand hole 

Figure 3.16. Dye penetrant test result of Specimen B-1  

However, the magnetic particle test at 1,000,000 cycles showed no indication at both the bottom 

corners of the hand hole and the base-to-tube connection. Also, from the readings of the hot-spot 

gauges, no obvious change was found in the stress range as the number of cycles reached 

1,000,000 (see Figure 3.17).  
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Figure 3.17. Stress ranges from hot-spot gauges of Specimen A-1 and Specimen B-1  

Therefore, the small red indications from the dye penetrant test might be due to the poor cleaning 

of the surface and might not be through-thickness fatigue cracks. 

3.5.3. Second Fatigue Test  

In the second fatigue test, Specimen A-2 and Specimen B-2 were connected to the loading box 

and tested together. The stress range at the base-to-tube connection was set to 16 ksi, the fatigue 

load was a sinusoid load with the high end at 19.7 kips and the low end at -9 kips, and the load 

frequency was set to 0.6 Hz. Dye penetrant tests and magnetic particle tests were conducted at 

100,000 and 115,000 cycles to inspect the condition of the specimens. The test was stopped at 

115,000 cycles because the vibration amplitude at the loading box increased more than 10%.  

On Specimen A-2, no indications were found at the base-to-tube connection and the hand-hole-

to-tube connection from both the dye penetrant test and magnetic particle test at 115,000 cycles. 

However, the readings from the hot-spot gauges at the base-to-tube connection showed a slightly 

decaying trend at about 110,000 cycles (see Figure 3.18).  
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Figure 3.18. Stress ranges from the hot-spot gauges of Specimen A-2 and Specimen B-2   

This might indicate that a fatigue crack might be about to occur at the base-to-tube connection on 

Specimen A-2.  

On Specimen B-2, a small indication with a length of about 4 in. at the hand-hole side of the 

base-to-tube connection was found by the magnetic particle test at 100,000 cycles (see Figure 

3.19 (a)).  
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(a) 100,000 cycles 

 

 

 

(b) 115,000 cycles 

Figure 3.19. Inspection result of Specimen B-2 at (a) 100,000 cycles and (b) 115,000 cycles  

A large fatigue crack with a length of more than 20 in. at the back side of the base-to-tube 

connection was observed at 115,000 cycles. A fatigue crack with a length of more than 20 in. at 

the top of the backing ring was also observed (see Figure 3.19 (b)). In Figure 3.18, the hot-spot 

gauge at the hand-hole side of the base-to-tube connection showed that the stress range decreased 

dramatically at about 60,000 cycles, which indicates that the fatigue crack might have occurred 

at somewhere between 60,000 and 100,000 cycles. 

3.5.4. Summary of the Fatigue Tests 

Figure 3.20 shows the fatigue test result of Specimen A-1 and Specimen A-2.  



33 

 

Figure 3.20. Fatigue test result of Specimen A 

The base-to-tube connection of Specimen A was shown to have a fatigue resistance for finite life 

higher than Category E′. Also, according to the decaying trend of the stress range at the base-to-

tube connection observed at around 110,000 cycles, the base-to-tube connection might have a 

fatigue resistance for finite life lower than Category E. The test result of specimen Type XI in 

Roy et al. (2011) also showed that the fatigue resistance of its base-to-tube connection was 

between Category E′ and Category E. No cracks were found around the hand-hole-to-tube 

connection; therefore, the fatigue resistance for finite life of the hand-hole-to-tube connection of 

Specimen A was identified as higher than Category E′.  

Figure 3.21 shows the fatigue test result of Specimen B-1 and Specimen B-2.  
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Figure 3.21. Fatigue test result of Specimen B  

The base-to-tube connection of Specimen B was shown to have a fatigue resistance for finite life 

near the lower limit of Category E′. No cracks were found around the hand-hole-to-tube 

connection; therefore, the fatigue resistance for finite life of the hand-hole-to-tube connection 

was identified as higher than Category E′.  
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4. PARAMETRIC STUDY ON OPENING RATIO TO FATIGUE RESISTANCE  

This research aims to study the influence of the opening size of the hand hole on the fatigue 

resistance of a high-mast lighting tower. The parametric study began with simulating the stress 

response at the pole base for pole models with different opening sizes, and then the study on the 

opening size to the fatigue resistance could be conducted based on the results from the fatigue 

experiment.  

4.1. Opening Ratio to the Stress Response at the Pole Base 

In Section 2.2, four pole models were studied to determine the specimens for the fatigue 

experiment. In this section, additional pole models were built to study the relationship between 

the opening ratio and the stress response at the pole base. A total of 16 models of specimen Type 

X and Type XI with different opening ratios were made. A 1 kip static load was applied at the 

top plate, and the local maximum normal stress at the front side (hand-hole side) and back side of 

the base-to-tube connection and at the hand hole corners was recorded. 

Figure 4.1 shows the maximum normal stress at the pole base of the models with different 

opening ratios.  

 
Square markers represent the results of specimen Type X, and triangle markers represent the results of specimen 

Type XI. Blue represents the stress at the front side of the base-to-tube connection, black represents the stress at the 

back side of the base-to-tube connection, and red represents the stress at the hand hole corners. 

Figure 4.1. Maximum normal stress at the pole base vs. opening ratio 

Several things can be observed in Figure 4.1. 
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First, the stress values at the hand hole corner of specimen Type X and specimen Type XI were 

very similar, which means different designs of the base-to-tube connection do not have much 

influence on the stress response around the hand hole.  

Second, specimen Type X generally had higher stress at the base-to-tube connection than at the 

hand hole corners when the opening ratio is smaller than 0.58. Based on this result, specimen 

Type X might have a higher chance of having fatigue cracks at the base-to-tube connection. 

Specimen Type X in Roy et al. (2011), which had an opening ratio of 0.46, showed fatigue 

cracks at the base-to-tube connection and no cracks around the hand hole during the previous 

fatigue experiment. Similarly, specimen Type XI in Roy et al. (2011), which had an opening 

ratio of 0.46 and is identical to Specimen A of the present study, was tested in the previous 

fatigue experiment. The result also showed that fatigue cracks occurred at the base-to-tube 

connection and no cracks were found around the hand hole. From the stress response in Figure 

4.1 and the observations from the previous fatigue experiment, it seems that fatigue cracks might 

occur at the location with the highest stress.   

Third, specimen Type XI generally showed lower stress at the base-to-tube connection than at 

the hand hole corners when the opening ratio is larger than 0.48. This might be because the 

backing ring increases the wall thickness at the base-to-tube connection and lowers the stress. 

Based on the hypothesis mentioned previously, specimen Type XI might have a higher chance of 

observing fatigue cracks around the hand hole at the base-to-tube connection when the opening 

ratio is larger than 0.48. This hypothesis can be examined through the fatigue test on Specimen 

B, which had an opening ratio of 0.54, and is discussed in Section 4.2. 

4.2. Opening Ratio to the Fatigue Resistance of High-Mast Lighting Towers  

In the present study, two fatigue tests were conducted. In the first fatigue test, no fatigue cracks 

were found on both Specimen A-1 and Specimen B-1 after the test was stopped at 1,000,000 

cycles. In the second fatigue test, fatigue cracks were observed at the base-to-tube connection of 

Specimen B-2, and no fatigue cracks were found on Specimen A-2. The fatigue resistance for 

finite life of the base-to-tube connection of Specimen A was identified as higher than Category 

E′ and possibly lower than Category E. The fatigue resistance for finite life of the base-to-tube 

connection of Specimen B was identified as near the lower limit of Category E′. Therefore, the 

fatigue resistance of Specimen A is higher than the fatigue resistance of Specimen B.  

Based on this result, it can be inferred that increasing the opening ratio from 0.46 to 0.54 can 

result in a decrease of fatigue resistance of the base-to-tube connection. In Figure 4.1, it can be 

seen that there is a slightly increasing trend of stress at the back side of the base-to-tube 

connection as the opening ratio increases, which might relate to the decrease of fatigue resistance 

at the base-to-tube connection.   

Also, in Section 4.1, based on the finite element analysis and the results from the previous 

fatigue experiment, a hypothesis was proposed that the fatigue crack on a high-mast pole 

specimen might occur at the location with the highest stress response. On Specimen B, both the 

hot-spot gauges and the finite element analysis confirmed that the stress at the hand hole corners 
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is higher than the stress at the weld toe of the base-to-tube connection. It was expected that a 

fatigue crack might occur at the hand hole corners prior to the base-to-tube connection. However, 

in the second fatigue test, a fatigue crack was first observed at the base-to-tube connection, and 

no cracks were found around the hand hole corners after the test was terminated at 115,000 

cycles. Therefore, fatigue cracks on a pole specimen might not occur at the location with the 

highest stress response. There might be other factors such as the geometry near the 

discontinuities to determine the location of fatigue cracks.    
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5. CONCLUSIONS AND FUTURE WORK 

In this study, high-mast lighting pole specimens with two different opening ratios of the hand 

hole were fatigue tested to study the influence that the opening ratio has on fatigue resistance. 

The findings of this study and potential future work are discussed in this chapter.  

The findings of this study are as follows:  

• First, the fatigue resistance of the base-to-tube connection decreased as the opening ratio of 

the hand hole increases. Specimen A had an opening ratio of 0.46, and the fatigue resistance 

of its base-to-tube connection was determined to be higher than Category E′ and possibly 

lower than Category E. Specimen B had an opening ratio of 0.54, and the fatigue resistance 

of its base-to-tube connection was determined to be near the lower limit of Category E′. From 

the parametric study, a slightly increasing trend of stress at the base-to-tube connection was 

found as the opening ratio increases. This could be the reason that fatigue resistance 

decreases at the base-to-tube connection.  

• Second, the fatigue resistance of the hand-hole-to-tube connection might be higher than the 

base-to-tube connection, as no fatigue cracks were observed around both larger and smaller 

hand holes in both fatigue tests.   

• Third, the location of fatigue cracks on a high-mast pole specimen might not completely 

relate to the stress response, as fatigue cracks were only observed at the base-to-tube 

connection. However, the stress response at the base-to-tube connection was lower than the 

stress response at the hand hole corners. There might be other factors such as the geometry 

near the discontinuities that determine where a fatigue crack will occur on a pole specimen.  

Recommendations for future work include the following:  

• Only four specimens were tested to determine their fatigue resistance in this study. Tests on 

additional specimens of each type are needed to identify their fatigue resistance category and 

scalar more precisely.  

• Specimens with only two different opening ratios of the hand hole were tested in this study. 

Additional tests on different types of specimens with different opening ratios are required to 

develop the relationship between the opening ratio and fatigue resistance to determine the 

appropriate opening size based on the required fatigue resistance.   
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