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EXECUTIVE SUMMARY 

This report presents a comprehensive analysis of the performance of the Iowa Truck Parking 

Information and Management System (TPIMS) during the grant period that spanned 2019 to 

2021. The evaluation is based primarily on fine-grained parking flow data, images, hour-of-

service violations, American Transportation Research Institute (ATRI) surveys, and a truck 

driver survey. The key aspects examined include driver use of the system, reliability, and impact 

on safety. Through quantifying various performance measures and developing visualization 

tools, we found the following: 

1. After deploying TPIMS, the average utilization increases and standard deviation decreases, 

indicating a more even distribution of use of parking sites along I-80. 

2. During the three-year grant period, most TPIMS sites experienced system downtime of less 

than 5%, indicating high system reliability. 

3. Based on the predefined accuracy standard (i.e., 85% accurate for small sites and 90% 

accurate for large site), only 60% of the time the flow data are considered accurate for small 

sites and 30% for large sites, which is consistent with driver perceptions. 

4. After TPIMS deployment, hours of service (HOS) violations by section had steadily reduced 

over years, indicating improved safety.  

Iowa is the only participating state in the Mid America Association of State Transportation 

Officials (MAASTO) TPIMS project that does not use roadside variable message signs (VMS). 

Instead, the Iowa Department of Transportation (DOT) chose to disseminate truck parking 

availability information only through applications, Iowa 511, and in-cab information systems. By 

eliminating the cost of installing and maintaining the VMS, Iowa DOT deployed TPIMS at more 

sites than other participating states. Note that the other seven states that installed VMS also 

provide real-time data feeds for apps, websites, and in-cab systems. By comparing the 

performance of the system in terms of system accuracy, parking lot use at night, and HOS 

violations, the Iowa TPIMS performs similarly to other states. This could be because most 

drivers plan for overnight parking more than an hour in advance using smartphone apps. 

Therefore, the benefit of providing parking information on VMS could be limited.  

Furthermore, since truck drivers need to be informed about the expected availability of parking 

spaces at their planned time of arrival, a popular time feature was developed using hybrid 

horizon prediction models for pre-trip planning and en route decision making. These predictive 

analytics have the potential to help truck drivers plan for parking day ahead and on the road. To 

better monitor sensor failures, a real-time alert system based on visual sensing was also 

developed. By automatically detecting significant discrepancies between truck count from 

surveillance camera images and parking flow data, this low-cost solution improves the accuracy 

of the TPIMS.  

In summary, the shortage of truck parking is a pressing issue in Iowa and the MAASTO region. 

Providing real-time truck parking information helps truck drivers better plan for parking and thus 

improves parking utilization and safety. However, the accuracy of the information largely 

depends on the performance of the sensors. The sensor pucks used in the Iowa TPIMS started to 
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fail after one and a half years at some sites, but these failures were not discovered until about a 

year later. Therefore, continuous monitoring of sensor health and independent verification of 

parking data are recommended for future TPIMS deployment. 
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1. INTRODUCTION 

During the past few decades, the growth of international and interstate trade has exerted 

significant pressure on the domestic transportation network in the United States. Among all 

modes of transportation for domestic freight delivery, trucks are the most used in terms of weight 

and value carried (BTS 2017). The Freight Analysis Framework (FAF) projects a substantial 

increase in truck traffic, especially along the major interstates (FHWA 2018).  

Various public, private, and non-profit entities have extensively discussed truck parking issues. 

Common findings include expected growth in truck activity, severe shortages of truck parking 

spaces, limited information on parking opportunities, and challenges arising from tight delivery 

schedules and specific rest requirements (FHWA 2015). Studies, such as the one conducted by 

the Federal Highway Administration (FHWA) Office of Safety Research and Development, have 

highlighted the undersupply of truck parking spaces compared with the demand (Fleger et al. 

2002).  

The investigation of the National Cooperative Highway Research Program further confirmed the 

severe shortages of truck parking (Trombly 2003). The report also described challenges related 

to legislative authority and regulatory issues in developing truck parking locations and 

highlighted a number of state transportation department practices and potential solutions to truck 

parking challenges, including intelligent transportation systems (ITS) strategies to improve the 

accessibility of real-time information about available parking spaces for truck drivers. Using 

volume and congestion data in 2012, FHWA assessed the demand for truck parking and the 

availability needs. They determined that there was a widespread shortage of truck parking 

facilities and that in certain areas the shortage was acute (FHWA 2015). 

In 2016, the American Transportation Research Institute (ATRI), on behalf of the Mid America 

Association for State Transportation Officials (MAASTO), developed and pre-tested a truck 

driver survey that contained 28 questions relating to truck parking issues in the MAASTO region 

(ATRI 2016). The survey was distributed online to carriers operating in the MAASTO region 

and through state trucking associations in the Midwest. From the 2,659 responses, ATRI 

concluded that truck parking issues result in significant amounts of lost productivity in the 

MAASTO region. Furthermore, truck parking issues in the MAASTO region are similar to or 

worse than those in other regions.  

Another face-to-face survey with truck drivers on truck parking was also conducted by ATRI at 

the Mid-America Trucking Show in Louisville, Kentucky, on March 23–25, 2018. “Truck 

parking” and “driver shortage” were the top priority issues in the freight industry according to 

the responses of commercial drivers and executives from motor carriers (ATRI 2018).  

The Truck Parking Information and Management Systems (TPIMS) project is an innovative 

multistate effort undertaken by MAASTO to address critical truck parking issues affecting 

regional economic competitiveness. The system monitors and detects available truck parking 

spaces at public and private parking facilities on designated, major interstate, and highway 

corridors throughout the region, helping commercial truck drivers make safer and more efficient 
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parking decisions through a user-focused information service that consistently provides reliable 

and timely parking information.  

Iowa is one of eight participating states in this project, along with Indiana, Kansas, Kentucky, 

Michigan, Minnesota, Ohio, and Wisconsin. The MAASTO TPIMS went live in January 2019 

and has been in operation for three years or more. To eliminate the cost of installing and 

maintaining variable message signs (VMS), Iowa Department of Transportation (DOT) chose to 

disseminate truck parking availability information only through apps, Iowa 511, and in-cab 

information systems. The seven other states installed VMS to broadcast parking information, in 

addition to providing real-time data feeds for apps, websites, and in-cab systems.  

This report presents a comprehensive analysis of the performance of the Iowa TPIMS during the 

proposed grant year that spanned 2019 to 2021. The evaluation is based primarily on fine-

grained parking flow data, images, hours of service (HOS) violations, ATRI surveys, and a truck 

driver survey. The key aspects examined include system utilization, reliability, and impact on 

safety. Furthermore, the report delves into several additional discussions, such as comparing 

TPIMS performance with other MAASTO states, conducting predictive analysis, and detecting 

anomalies in parking data. The analysis provides valuable information on the effectiveness and 

efficiency of the Iowa TPIMS and contributes to a comprehensive understanding of its impact on 

truck parking planning and safety. 
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2. DATA COLLECTION 

2.1 TPIMS Parking Flow Data 

The TPIMS has operated in Iowa since January 2019. The system uses various vehicle detection 

methods, such as in-ground pucks and in-and-out sensors, to monitor and measure the 

availability of parking spaces at different sites. The collected parking data is then transmitted to 

the state database. Subsequently, real-time parking availability information is stored and 

disseminated to the public through a standard JSON file-based web service.  

This data serves as a valuable resource for Iowa 511 traveler information systems, as well as 

third-party applications and in-cab systems accessible to truck drivers. Iowa 511, an official 

traveler information website managed by the Iowa DOT, provides up-to-date information on 

road conditions, helping travelers make well-informed decisions about their routes and travel 

plans. The TPIMS rest area information is integrated as one of the layers within the Iowa 511 

platform.  

Figure 1 shows the architecture of the system. Additionally, the Mid-America Freight Coalition 

(MAFC) archived parking flow data and the Iowa State University (ISU) Large Scale Storage 

(LSS) service archived the image data.  

 

Figure 1. TPIMS data flow 

Figure 2 is the TPIMS user interface on the Iowa 511 website. By selecting the “Rest Areas” 

layer, real-time parking availability and the corresponding images can be viewed for the TPIMS 

sites. In addition to Iowa 511, the TPIMS data feed is also consumed by application developers, 

logistics service providers, and so on. By April 25, 2023, 35 users from 23 different companies 

and organizations were registered to receive the Iowa TPIMS data feed.  
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Figure 2. TPIMS user interface on Iowa511 

The east-west freight corridor, I-80, spans Iowa and comprises 33 parking sites that are involved 

in the TPIMS project. Among those, 12 are eastbound public rest areas, 11 are westbound public 

rest areas, and 10 are private truck stops that serve traffic from both directions. There are 10 

additional sites on I-29, I-35, I-380 and I-235 with a north-south direction that are close to the I-

80 corridor. Capacities range from 5 to 850. At most sites, sensor pucks are installed in each 

parking space to monitor occupancy. At a few private sites, radar sensors are installed at the 

entrance and exit to count the number of trucks that enter and exit the parking lot. Table 1 lists 

the site information. 
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Table 1. TPIMS parking sites 

Site 

Interstate 

Highway Capacity 

Facility 

Type 

Mile 

Marker Sensor Type 

RA19E I-80 15 Public 19.6 Puck 

RA19W I-80 16 Public 19.6 Puck 

RA32E I-80 5 Public 32 Puck 

RA32W I-80 5 Public 32.2 Puck 

DALLSCAL115E I-80 23 Public 115 Puck 

RA148E I-80 24 Public 147.5 Puck 

RA148W I-80 22 Public 147.7 Puck 

JASPSCAL151W I-80 24 Public 150.75 Puck 

RA237E I-80 23 Public 236.8 Puck 

RA237W I-80 23 Public 237 Puck 

RA44E I-80 10 Public 44.2 Puck 

RA80W I-80 12 Public 80 Puck 

RA80E I-80 12 Public 80.6 Puck 

RA180E I-80 23 Public 180.3 Puck 

RA180W I-80 10 Public 180.3 Puck 

RA208E I-80 22 Public 208.3 Puck 

RA208W I-80 19 Public 208.3 Puck 

RA268E I-80 8 Public 268.3 Puck 

RA268W I-80 8 Public 268.3 Puck 

RA270E I-80 12 Public 270 Puck 

RA270W I-80 15 Public 270 Puck 

RA300E I-80 14 Public 299.6 Puck 

RA300W I-80 20 Public 300.3 Puck 

PRAIRIEM144 I-80 48 Private  142 Puck 

KG182 I-80 11 Private  182 Puck 

KG216 I-80 9 Private  216 Puck 

MD220 I-80 28 Private  220 Puck 

KG237 I-80 14 Private  237 Puck 

KG267 I-80 12 Private  267 Puck 

KWIKSTAR202 I-80 110 Private  201.8 In-and-out 

CASEYS220 I-80 20 Private  220 In-and-out 

BP259 I-80 46 Private  259 In-and-out 

TS284 I-80 850 Private  284.3 In-and-out 

RA120N I-35 16 Public 120 Puck 

RA120S I-35 17 Public 119 Puck 

RA98N I-35 20 Public 98.6 Puck 

RA98S I-35 21 Public 98.6 Puck 

KGI23511 I-235 11 Private 11 Puck 

CASI38013 I-380 92 Private 13 In-and-out 

RA11SB I-380 17 Public 11.4 Puck 

RA11NB I-380 17 Public 11.5 Puck 

KSI38013 I-380 11 Private 13 Puck 

TQPI2975 I-29 50 Private 75 In-and-out 

 



6 

All member states of MAASTO are required to provide three standard data feeds (a dynamic 

public feed, a static public feed, and a dynamic archive-only feed) for their publicly and privately 

owned truck parking sites. Dynamic and static public feeds facilitate the sharing of truck parking 

availability information with third-party application developers and other relevant agencies. This 

enables these entities to disseminate the information through their respective applications and 

platforms. On the other hand, the dynamic archive-only feed is intended for internal system 

monitoring and measuring performance. This report primarily uses the data obtained from the 

dynamic archive-only feed. Three different data feeds and their respective fields are shown in 

Figures 3 through 5 (Iowa DOT 2019). 

 

Figure 3. Fields in dynamic public feed 
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Figure 4. Fields in static public feed 
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Figure 5. Fields in dynamic archive only feed 

2.2 Truck Volume Data 

More than 200 automatic traffic recorders (ATR) are located throughout the Iowa roadway 

network to continuously count classified traffic volume and record the distribution and variation 

of traffic flow. There are 11 ATR sensors along the I-80 corridor, and 7 of them provided stable 

data during the study period. The annual average daily truck traffic (AADTT) and the monthly 

average daily truck traffic on the roads can be derived from the ATR data. Figure 6 shows the 

location of the ATR sites and the TPIMS sites on I-80.  
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Figure 6. ATR sites and TPIMS sites location 

The classified traffic volume is collected through ATR sensors. Among those 7 sites, 1483802, 

1483810, 1483811 and 1483812 have length-based detectors with three bins (Bin 1: 1 to 21.5 ft, 

Bin 2: 21.5 to 49 ft, Bin 3: 49+ ft). Trucks are classified in Bin 3 (Iowa DOT 2014). Other sites 

have axle-based detections according to FHWA’s 13-category classification. Groups 5 to 13 are 

trucks with different numbers of axles (FHWA 2014).  

2.3 HOS Data 

HOS violations were used to quantitatively measure corridor safety improvement by comparing 

the number of violations before TPIMS deployment (2018) and after deployment (2019–2021) 

(HNTB 2019). This involved the use of the Federal Motor Carrier Safety Administration 

(FMCSA) database known as the Motor Carrier Management Information System (MCMIS), 

which contains inspection data from state and federal inspections of motor carriers, shippers of 

hazardous materials, and transporters of hazardous materials operating in the US. These 

inspections were carried out on the road by personnel under the Motor Carrier Safety Assistance 

Program (MCSAP). Table 2 shows a typical structure of the inspection file that contains eight 

tables. 
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Table 2. FMCSA inspection file contents 

Table Name File 

1 Inspection Table Insp_Pub_01012018_12312018HDR.txt 

2 Carrier Table Insp_Carrier_Pub_01012018_12312018HDR.txt 

3 Part Section Table Insp_Part_Section2018HDR.txt 

4 Unit Table Insp_Unit_Pub_01012018_12312018HDR.txt 

5 Violation Table Insp_Viol_Pub_01012018_12312018HDR.txt 

6 Shipper Violation Table Insp_ViolShip_Pub_01012018_12312018HDR.txt 

7 Violation Description Insp_Supp_Violation2018HDR.txt 

8 Special Studies Table Insp_Study_Pub_01012018_12312018HDR.txt 

 

Each table in the inspection file is a tab-delimited flat file with its own distinct layout. A 

common and consistent field (a key) connects the records across the tables. For this analysis, the 

Inspection and Violation tables were merged into “INSPECTION_ID” (the common key) to 

determine the number of HOS violations. It was observed that the Violation Description table 

contained an incomplete and unformatted description, and therefore it was excluded from this 

analysis. Table 3 shows the nine fields of the Inspection and Violation tables selected for 

evaluation. 

Table 3. Selected fields in inspection table and violation table 

Table Field Content Example 

Inspection 

Table 

INSPECTION_ID Inspection ID  

REPORT_STATE 
State where the 

inspection occurred 
IA, KS 

COUNTY_CODE 
County where the 

inspection occurred 
209, 197 

INSP_DATE 
Date when the 

inspection occurred 
 

LOCATION_DESC 
Location briefly 

described 

80MM EB I80, WB 

WATERLOO 

Violation 

Table 

INSPECTION_ID Inspection ID  

INSP_VIOLATION_ID Violation ID  

INSP_VIOLATION_CATEGORY_ID 

MCMIS violation 

categories (FMCSA 

2014) 

06 – 60/70-hour 

rule violation, 11 – 

seat belt 

PART_SECTION_ID 

FMCSA 

regulations 

violation code 

(FMCSA 2019) 

3576 – 395.3B/R, 

60/70-hour rule 

violation (property) 

 

The Inspection Table contains a record of all inspections, including those without violation, with 

single violations, and with multiple violations. In the violation table, there is a record of all 

violations. During the analysis, it was not feasible to geocode or directly associate a violation 

record with a specific roadway because the field “LOCATION_DESC” is an inconsistent 
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freeform text. For example, the field contains texts like “I80”, “I-80,” and “80,” which could 

mean an inspection occurred along I-80. However, it is unclear whether other text tags are 

associated with the same corridor. Therefore, the number of HOS violations was calculated by 

counties along the TPIMS corridors. 

2.4 TPIMS Image Data 

All TPIMS projects are required to provide manual check results to monitor the accuracy of 

parking flow data. Manual sensor accuracy check results are stored in two fields: 

“LASTVERIFICATIONCHECK” and “VERIFICATIONCHECKAMPLITUDE.” The time of 

the latest availability verification is in “LASTVERIFICATIONCHECK,” and the adjustment 

amplitude (can be negative, positive, and zero) from the last verification is in 

“VERIFICATIONCHECKAMPLITUDE.” These fields are meant to be used to monitor the 

accuracy of the TPIMS system, but for the puck sites, a problem in the software program caused 

overwriting, rendering these fields incapable of providing valid accuracy check information. 

Therefore, the TPIMS image data is used as a supplement for checking the system accuracy. 

Each Iowa TPIMS site is equipped with surveillance cameras. At public rest areas, one camera 

will take pictures with a 13-second rotating lens from three angles (entry, center, and exit) every 

five minutes. Private truck parking sites have a varied number of cameras, and the images are not 

for public use. Live images are displayed on the Iowa 511 website together with parking flow 

data, and the ISU LSS service archives TPIMS images displayed on the Iowa 511 website every 

five minutes. 

Figure 7 shows an example of live images from three different angles displayed on the Iowa 511 

website of the 208WB rest area at 1:25 p.m. (CDT) on April 10, 2023. We can see that three 

trucks and one truck head were at this site. RA208WB is equipped with a camera oriented 

toward the head of trucks, offering a favorable camera angle that encompasses the entire parking 

area. However, image quality varies and does not always meet this ideal condition. Figure 8 

shows some examples of poor camera angles. For these sites, it is hard to identify the number of 

trucks.  

 

Figure 7. Images from RA208W 
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Figure 8. Examples of uncountable cases: from left to right, tail view, incomplete view of 

parking lot, view with unspecified spaces 

Table 4 provides the image quality of the TPIMS sites with pucks in the pavement. Image quality 

was rated based on what was visible in the image:  

• A: clear truck head view 

• B: tail view 

• C: incomplete view of the parking site 

• D: cannot specify all parking spaces 

Only quality A sites were chosen for manual accuracy check. In this report, seven rest areas with 

relatively good image quality were selected (RA180E, RA208W, RA237W, RA270E, RA270W, 

RA300E, and RA300W) to check the accuracy of the TPIMS. 



13 

Table 4. Image quality summary of puck sites 

 Site ID Short Site Name Image Quality 

1 IA00080IS0001900ERA19E000 RA19E B 

2 IA00080IS0001900WRA19W000 RA19W B 

3 IA00080IS0003200ERA32E000 RA32E D 

4 IA00080IS0003200WRA32W000 RA32W D 

5 IA00080IS0014800ERA148E00 RA148E C 

6 IA00080IS0014800WRA148W00 RA148W C 

7 IA00080IS0023700ERA237E00 RA237E C 

8 IA00080IS0023700WRA237W00 RA237W A 

9 IA00080IS0004400ERA44E000 RA44E D 

10 IA00080IS0008000WRA80W000 RA80W D 

11 IA00080IS0008000ERA80E000 RA80E D 

12 IA00080IS0018000ERA180E00 RA180E A 

13 IA00080IS0018000WRA180W00 RA180W C 

14 IA00080IS0020800WRA208W00 RA208W A 

15 IA00080IS0026800ERA268E00 RA268E B 

16 IA00080IS0026800WRA268W00 RA268W B 

17 IA00080IS0027000ERA270E00 RA270E A 

18 IA00080IS0027000WRA270W00 RA270W A 

19 IA00080IS0030000ERA300E00 RA300E A 

20 IA00080IS0030000WRA300W00 RA300W A 

21 IA00035IS0009870NRA98N000 RA98N C 

22 IA00035IS0009870SRA98S000 RA98S C 

23 IA00080IS001150OEDALLSCAL DALLSCAL115E C 

24 IA00080IS001510OEJASPSCAL JASPSCAL151W C 

25 IA00080IS0020800ERA208E00 RA208E C 

26 IA00380IS0001140SRA11S000 RA11S C 

27 IA00380IS0001150NRA11N000 RA11N C 

28 IA00035IS0012000NRA120N00 RA120N C 

29 IA00035IS0012000SRA120S00 RA120S C 

30 IA00080IS0014400WPRAIRIEM PRAIRIEM144 C 

31 IA00080IS0018200WKUMandGO KG182 D 

32 IA00080IS0021600WKUMandGO KG216 D 

33 IA00080IS0022000WMCDONALD MD220 C 

34 IA00080IS0023700WKUMandGO KG237 D 

35 IA00080IS0026700WKUMandGO KG267 D 

36 IA00235IS0001100WKUMandGO KGI23511 C 

37 IA00380IS0001300WKWIKSTAR KSI38013 C 

 

 

The designed accuracy manual check (HNTB 2017) is performed at least once a week for the 

puck sensor sites and once or twice a day for the in-and-out sensor sites. TPIMS was first 
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planned to run for 3 years per grant requirements, so the designed number of manual checks is 

about 160 per puck site. To replicate the designed manual checks, images of seven parking sites 

are sampled from the archived image data set. Some unexpected situations made the image not 

available for manual count. For example, the image of one or more angles is missing, snow/ice is 

covering the lenses, or images were duplicated when archived.  

The duplication issue occurs when the Iowa511 images on Iowa511 are not updated and the 

Institute for Transportation (InTrans) image archiving system continues to download the same 

image with different file names (file name is timestamp.jpg). Figure 9 shows two of the 

unexpected situations (missing angle and blurry lens). With oversampling and removing 

unusable images, about 1,400 images are valid for manual counting for the three-year period and 

these seven selected sites. 

 

Figure 9. Examples of uncountable cases: missing angle (top), blurry lenses (bottom) 

2.6 ATRI Survey Data 

ATRI, established as the research arm of the American Trucking Associations (ATA), is a 

renowned research organization dedicated to advancing the trucking industry. Through data-

driven research and analysis, ATRI addresses the critical challenges faced by trucking 

companies, drivers, and other stakeholders. As part of its efforts, ATRI conducted four truck 

parking surveys in the MAASTO region in October 2016, May 2018, February 2020, and June 

2021. These surveys collected vital information on demographics, truck parking demand in the 

MAASTO region, drivers’ methods to find parking, and the frequency and severity of parking-

related issues. In particular, the survey in June 2021 focused on driver usage and perception of 

the TPIMS rather than parking demand and behavior. This report summarizes and compares 

survey responses on parking utilization, system reliability, and safety to obtain valuable 

information on truck parking patterns and TPIMS perceptions. 
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3. ANOMALY DETECTION 

Before using the parking flow data from the archive feed to evaluate performance, the reliability 

of the data needs to be determined. Inadequate baselining and unstable transmission of the pucks 

influence the accuracy of flow data, and anomaly detection was performed based on historical 

flow records. An assumption is that the daily parking pattern should not change drastically over a 

short period of time. For example, Figure 10 shows the time series of the average availability at 

night (e.g., weekly availability at 2 a.m.) in a rest area RA180W. The choice of using average 

availability during nighttime hours for anomaly detection was made due to the reduced 

likelihood of external interference during this period. This is because most truck drivers are 

resting, resulting in fewer vehicles entering and leaving the parking lot. From January 2019 to 

May 2020, the average availability is less than 1 with small fluctuations, until there was a sudden 

rise in June 2020. 

 

Figure 10. Time series trend of average availability at night 

To check if this sudden increase was due to COVID-19 lockdowns, an analysis was performed 

on the volume of trucks in the I-80 corridor. The AADTT data for 2019 and 2020 were collected 

from seven ATRs along I-80 to investigate truck volume. Figure 11 shows the AADTT of 

eastbound and westbound truck traffic at these ATR locations. Westbound truck traffic was 

slightly heavier than eastbound. Truck traffic is heavier on the east side than on the west side 

along I-80. Furthermore, there are no significant differences in AADTT between 2019 and 2020.  
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Figure 11. AADTT of selected ATR sites 

Furthermore, the average daily truck traffic (ADTT) varies by season. Figure 12 shows the 

monthly average of daily truck traffic from eastbound traffic at the ATR site 1483814 (i.e., the 

east most ATR location). Truck traffic is generally higher in the summer months and lower in the 

winter months. Furthermore, truck flow was reduced by 10% in April and 8% in May in 2020 

due to the COVID-19 lockdown. However, truck traffic recovered quickly in June. In general, 

the COVID-19 pandemic had a minimal impact on truck traffic on I-80 in Iowa. 

 

Figure 12. Monthly Average Daily Truck Traffic of ATR Site 1483814, Eastbound 

After excluding the impact of COVID-19, the sudden increase in availability at night in Figure 

10 may indicate sensor failure. This anomaly can be detected using some statistical methods. In 

particular, the pruned exact linear time (PELT) algorithm (Truong et al. 2018) is used to identify 

the change point caused by sensor failures.  

More formally, let us assume that we have an ordered sequence of data, 𝑦1:𝑛 = (𝑦1, … , 𝑦𝑛). The 

number of changepoints, 𝑚, are with their positions 𝜏1:𝑚 = (𝜏1, … , 𝜏𝑚). Each change point 

position is an integer between 1 and 𝑛 − 1 inclusive. 𝜏0 = 0 and 𝜏𝑚+1 = 𝑛 are defined and the 

change points are ordered such that 𝜏𝑖 < 𝜏𝑗 if and only if 𝑖 < 𝑗 is assumed. Consequently, the 𝑚 
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changepoints will split the data into 𝑚 + 1 segments, with the 𝑖𝑡ℎ segment containing 𝑦(𝜏𝑖−1+1):𝜏𝑖 

(Killick et al. 2012). PELT optimally partitions the data into an interval and uses an iterative 

pruning step to achieve an efficient computational cost. In particular, Truong et al. (2018) 

implemented a search method by minimizing, as shown in Equation 1:  

∑𝑖=1
𝑚+1[𝐶(𝑦𝜏𝑖−1+1, … , 𝑦𝜏𝑖

) + 𝛽] (1) 

where 

𝐶 is the cost function for a given segment,  

𝑦𝜏𝑖
 is the datapoint,  

𝜏𝑖 is the position of segment I, 

m+1 is the number of segments, 

𝛽 is the penalty term for overfitting.  

In the literature, a common cost function used for change point detection is twice the negative 

log-likelihood (Chen and Gupta 2012). However, quadratic loss, cumulative sums, and a 

combination of segment log-likelihood and segment length have also been used (Rigaill 2010). 

Regarding the penalty term, the Akaike Information Criterion (AIC) (i.e., 𝛽 = 2𝑝), the Schwarz 

Information Criterion (SIC), and the Bayesian Information Criterion (BIC) (i.e., 𝛽 = 𝑝𝑙𝑜𝑔𝑛) can 

be used, where 𝑝 represents the number of additional parameters introduced by incorporating a 

change point. In this paper, kernelized mean change with radial basis function is used as the cost 

function and the BIC is used as the penalty term.  

The PELT method adds pruning to the partitioning process. The optimal segmentation is 𝐹(𝑛), 

where 

𝐹(𝑛) = {∑𝑖=1
𝑚+1[𝐶(𝑦𝜏𝑖−1+1, … , 𝑦𝜏𝑖

) + 𝛽]}
𝜏

𝑚𝑖𝑛
 (2) 

where n is the length of the data set. 

By taking the last change point as a reference and determining the optimal segmentation of the 

data prior to that change point, the following form can be obtained: 

𝐹(𝑛) = { ∑𝑖=1
𝑚 [𝐶(𝑦𝜏𝑖−1+1, … , 𝑦𝜏𝑖

) + 𝛽] +  𝐶(𝑦𝜏𝑚+1, … , 𝑦𝑛)𝜏|𝜏𝑚

𝑚𝑖𝑛 }
𝜏𝑚

𝑚𝑖𝑛
 (3) 
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The process can be repeated for the second to the last change point, the third to the last change 

point, and so on. Because conditioning is recursive and inner minimization is equivalent to 

𝐹(𝜏𝑚), Equation 3 can be reformulated as follows. 

𝐹(𝑛) = {𝐹(𝜏𝑚) + 𝐶(𝑦𝜏𝑚+1, … , 𝑦𝑛)}
𝜏𝑚

𝑚𝑖𝑛
 (4) 

The PELT algorithm starts by calculating 𝐹(1) and then recursively calculates 𝐹(2),…, 𝐹(𝑛). 

At each iteration, the optimal segmentation up to 𝜏𝑚+1 is stored. When 𝐹(𝑛) is reached, the 

optimal segmentation for the entire time series is determined and the number and location of 

change points are recorded. Minimizing over the previous values is performed at each step. The 

computational efficiency is achieved by removing candidate values of 𝜏𝑚 from the minimization. 

The essence of pruning in this scenario is to remove those change points that cannot possibly be 

minimum values from the minimization performed at each step. 

The anomaly detection results are shown in Figure 13. The bars indicate that the parking flow 

data at the parking sites are stationary from the establishment of the Iowa TPIMS at different 

daytimes. Among the 43 parking sites, time series in 30 sites show strong nonstationarity before 

the end of the grant period (3 years). Most of them show that data of the first one and a half years 

are reliable (from establishment to Q2 2020).  

 

Figure 13. PELT stationary test result 



19 

To validate the effectiveness of the change point detection method, the PELT detection result is 

compared with the puck transmission log. The operational status of the puck sensors is recorded 

in the sensor transmission log, which is provided by a third-party company. The log records the 

last successful transmission from each puck to all participating TPIMS sites, providing 

information about the reliability of the puck sensors. Two pucks are installed at each parking 

spot, and each of them presents the date of its last successful communication. When any of the 

pucks stops communicating, the data of this parking space will be considered unreliable and, 

correspondingly, the number of reliable parking spots in this parking lot will be reduced by one. 

The puck transmission log is used to verify when the data collected by the pucks become 

unreliable, as a means of providing ground truth for the anomaly detection analysis.  

Figure 14 shows an example of the parking flow data, PELT detected change points, and puck 

transmission log records at site RA180W. The top graph shows the weekly average of available 

parking spots at 2 a.m., where there was a sudden increase on Week 23 of 2020 (i.e., May 31– 

June 6, 2020). The middle graph shows that the PELT method detected a change point on week 

24 of 2020. The bottom graph shows the number of reliable parking spots which are extracted 

from the puck transmission log data. Based on the log data, one parking spot became offline (i.e., 

both puck sensors failed) on May 28, 2020, resulting in the number of reliable spots dropping by 

one.  

 

Figure 14. Stationary time series comparison 

The reasons why the PELT method might not work well for some sites are two-fold. First, at the 

sites where the parking flow data did not follow an obvious trend, it is difficult to detect the 

change points. For example, the availability at night at DALLSCAL115E fluctuated 
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significantly, as the weigh station is not a common place for truck drivers to rest overnight. The 

puck transmission log data indicated sensor failure on October 12, 2020, but the PELT algorithm 

was unable to detect the change point. Second, when a puck fails, the status is stuck in 

“occupied” or “unoccupied” according to its last status. If the failed sensor is stuck as “occupied” 

and the parking spot is usually occupied at night, the parking availability data will remain 

accurate despite sensor failure. For example, in RA300W, the puck transmission log indicated 

sensor failure at two parking spaces on July 3 of 2020, but the PELT algorithm did not detect a 

change point until August 3 of 2020 when 4 parking spaces became unreliable. This is confirmed 

by the flow data, in which the sudden increase of parking availability at 2 a.m. was observed on 

week 32 of 2020 (i.e., August 2–8, 2020). In general, the PELT method performed satisfactorily 

in detecting sensor failure based on flow data.  

Figure 15 summarizes the detection results obtained using the PELT method. The figure 

comprises a frequency histogram that illustrates the sensitivity of the method at 27 TPIMS sites 

equipped with underground pucks. Two sites, RA32E and RA32W, were excluded from the 

analysis due to the inaccessibility of the puck transmission log data. The horizontal axis of the 

histogram represents the instances in which the PELT method detects a change point and reports 

the corresponding time. This axis also indicates the number of unreliable parking spots present at 

that specific parking site during that time, and the data regarding the number of unreliable 

parking spots are extracted from the puck transmission log. The symbol “x” represents instances 

where the PELT method failed to detect any change point in the available data series. On the 

vertical axis, the percentage of parking sites is represented. For example, within 26% of parking 

sites, only one unreliable parking spot is present when the PELT method reports a detected 

anomaly time. In general, the PELT method demonstrates its ability to respond before four 

parking spots become unreliable in 70% of the TPIMS sites. This finding indicates a satisfactory 

level of effectiveness in the context of our study. 

 

Figure 15. Summary of the PELT detection results 

Based on the anomaly detection results, the study period of the evaluation analysis in this report 

is set at one and a half years from the deployment of TPIMS in Iowa (Q1 2019 to Q2 2020).  
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4. PERFORMANCE MEASURES 

4.1 Utilization and Demand Cycle 

4.1.1 Low Duration  

When the number of available spots is below a certain threshold (i.e., 10% of the site capacity), 

“LOW” will be displayed instead of the actual available spaces. Figure 16 shows the 24-hour 

demand cycle of RA19E and DALLSCAL115E on April 11, 2019. The low duration is 

calculated as the sum of time periods when the number of available spots drops below the low 

threshold. In this example, “LOW” was displayed to truck drivers from 12 a.m. to approximately 

5 a.m. and from 10 p.m. to midnight in RA19E. The daily low duration (DLD) was 420 minutes. 

The availability in DALLSCAL115E never dropped below the threshold, so the DLD is 0. A site 

with a DLD below 10% (i.e., 144 minutes) is considered as a non-busy site. 

 

Figure 16. 24-hour demand cycle of site RA19E and DALLSCAL115E on April 11, 2019 

The double-pointer method is applied to detect the time intervals when the availability is 

“LOW.” The double-pointer method is a technique to search for a specific pair of values in a 

given data set, and the condition used to move the pointers is determined by the specific 

problem. Let 𝐴 be a data set with n elements, 𝐴 =  [𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛]. The two pointers, 𝑖 and 𝑗, 

are initialized at the beginning of the data series, respectively, 𝑖 = 1 and 𝑗 = 1. At each iteration, 

the condition that 𝑎𝑗 is greater than the threshold is evaluated. If it is met, the solution is 

returned. If not, pointer 𝑗 moves forward. The process is repeated until a solution is found for the 

current interval. Then, pointer 𝑖 is set to where pointer 𝑗 is located. All low availability intervals 

can be identified with the time complexity of 𝑂(𝑛). Then those intervals are aggregated daily as 

a metric, defined as DLD, to measure how busy a parking site is.  
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Figure 17 shows an example of how the double-pointer method works when scanning the 

parking flow data to find the low duration intervals. For a one-day scope, the start and end 

timestamps are inserted; one is exactly 12 a.m. and the other is 23:59:59. Then the rows of flow 

records are scanned; when the availability drops below the threshold (i.e., 65), we put two 

pointers and move the second one, until the availability goes back; we update the location of the 

pointers. The movements of the pointers are recorded, and then the intervals are added. In this 

case, the daily low duration is 403.2 minutes, as shown in Table 5. 

 

Figure 17. Example of the double-pointer method 

Table 5. Example of low intervals and daily low duration 

Start time End time Low(min) 

2019-05-21 00:14:26 2019-05-21 05:44:12 329.77 

2019-05-21 06:13:09 2019-05-21 06:24:12 11.05 

… … … 

2019-05-21 23:01:18 2019-05-21 23:54:12 52.9 
  403.2 

 

The DLD of each site is averaged over the study period as an indicator of use. A site is 

considered busy when the average DLD is above 10%, indicating that the site is full or close to 

full for more than 2.4 hours on an average day. Figure 18 shows the average DLD of the busy 

sites listed in order from west to east along I-80. As the TPIMS sites are more densely distributed 

on the east section of I-80 than on the west side, the averaged DLDs of the east sites tend to be 

smaller than the averaged DLDs of the west sites. Clearly, more parking facilities can alleviate 

parking difficulties.  

Furthermore, two east TPIMS sites, RA270W and RA300W, had relatively high DLD. This 

could be due to the difficulty in finding parking for trucks in Illinois. Respondents to the ATRI 

survey reported that, among all MAASTO states, truck parking was the most difficult to find in 

Illinois (ATRI 2016). Note that TS284 is a private truck stop near Walcott and has a capacity of 

850 parking spots, so the DLD is not particularly high.  
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Figure 18. Average DLD of busy sites 

Figure 19 shows the quarterly summary of the averaged DLD at RA300W. The drastic drop in 

DLD in the third and fourth quarters of 2020 was due to puck sensor failure, which is consistent 

with the anomaly detection result. This bar graph summary can be retrieved for all sites in a data 

visualization dashboard, introduced in Section 4.4. 

 

Figure 19. Quarterly average daily low duration of RA300W 

4.1.2 Utilization  

Figure 16 also shows a typical demand cycle for a truck parking site. It shows that when truck 

drivers begin work every morning, availability starts increasing around 5 a.m. The site will then 

become crowded at around 10 p.m. when truck drivers start looking for a place to rest. To find 

the busiest hour of the day, a 24-hour demand cycle of the overall parking utilization distribution 

was analyzed. Overall utilization is defined as follows: 

𝑈𝐸 =
∑ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖
, 𝑖 ∈ 𝐸 (5) 
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𝑈𝑊 =
∑ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑗

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗
, 𝑗 ∈ 𝑊 (6) 

where E is a set of all eastbound sites and W is a set of all westbound sites.  

Private sites are labeled as two-direction sites and provide parking spots for truck drivers in 

either direction; therefore, they were counted in both directions. Overall utilization reached its 

maximum at 2:00 a.m. in both directions (81.1% of the westbound sites and 81.6% of the 

eastbound sites), and the corresponding 24-hour demand cycle is shown in Figure 20. 

 

Figure 20. Overall utilization 

Therefore, utilization at 2:00 am was selected as another metric to measure the busyness of a 

specific site. This metric is then analyzed across the sites to show spatial distributions. The 

temporal distribution shows the utilization demand cycle in a 24-hour scope at each site as 

another way to evaluate utilization. 

Figure 21 shows an example of the spatial distribution of utilization at night to demonstrate the 

variation in utilization between multiple sites. The average utilization and standard deviation of 

utilization among sites at 2 a.m. are computed by direction and compared by quarters.  

Since TPIMS went into operation in January 2019, truck drivers have had access to real-time 

parking availability information through Iowa 511 and other apps that consume the data feed. An 

increase in average utilization and decrease in standard deviation indicate a more even 

distribution of utilization in the next two quarters. Furthermore, seasonal changes can affect 

utilization. During the winter months, average utilization decreases due to reduced truck traffic. 

In addition, variations in utilization between sites can increase due to winter weather. 
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Figure 21. Comparison of utilization at 2 a.m.: average utilization and standard deviation 

across multiple sites 

The daily trend is influenced by the day of the week and the type of site. Figure 22 compares the 

trend of daily utilization for the first two quarters in 2019 and 2020. In 2020, the use of public 

sites increased slightly during the night and increased significantly during the day compared to 

2019. This could be due to increasing awareness of the TPIMS by drivers over time. However, 

the utilization of private sites did not show significant changes. On weekends, private site 

utilization exhibited a decline, particularly at night in 2020 compared with 2019. 

 

Figure 22. Comparison of utilization on weekdays and weekends 
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The increase in daytime parking at public sites and the decrease in nighttime parking at private 

sites in 2020 could be due to the increase in regional freight transport and the changes in HOS 

regulation made during the pandemic (FMCSA 2020). In particular, on March 13, 2020, the 

FMCSA issued an emergency declaration that suspended HOS regulations. Initially, the HOS 

suspension applied to deliveries of COVID-19-related medical supplies, food for grocery stores, 

supplies to build quarantine facilities and emergency housing, and emergency service personnel. 

Later, on March 18, 2020, FMCSA expanded the suspension to include drivers who deliver fuel, 

non-food groceries, and raw materials needed for essential goods. Under typical HOS 

regulations, truckers can drive for no more than 11 consecutive hours on a 14-hour workday. 

Until the COVID outbreak, drivers also had to take 30-minute breaks every 8 hours and 10 full 

hours off duty at the end of a workday. Furthermore, within a 7 or 8-day working period, drivers 

could drive no more than 60 or 70 hours. These regulations were temporarily lifted, which 

allowed truckers more flexibility in parking choices. 

In examining the demand cycle, a noteworthy aspect to consider is the slope of the trend line, 

which reflects the rate of change in utilization. The investigation reveals an interesting 

observation concerning the different working patterns of truck drivers during summer (Q2 and 

Q3) and winter (Q1 and Q4). The data illustrate that the most substantial decrease in utilization 

occurs between 7:00 and 8:00 a.m. for both seasons. However, the second most significant drop 

occurs between 6:00 and 7:00 a.m. in summer, whereas during winter it shifts to 8:00 and 9:00 

a.m. Evidently, truck drivers tend to begin their work earlier in the summer months. 

Additionally, the analysis highlights that truck drivers end their work approximately one to two 

hours later in the evening during summer compared with winter. This disparity can be 

rationalized by the substantial discrepancy in daylight hours between the two seasons, prompting 

truck drivers to allocate more time to travel on the road during summer. Note that the original 

data are in Coordinated Universal Time, but in the whole analysis process they are transformed 

into Central Daylight Time. 

Table 6. Change rate of utilization 

Hour Summer Winter 

6 to 7 -14% -13% 

7 to 8 -18% -20% 

8 to 9 -13% -20% 

… … … 

18 to 19 12% 18% 

19 to 20 14% 17% 

20 to 21 13% 14% 

 

The spatial and temporal distribution of utilizations and low durations can be further explored 

using the data dashboard presented in Section 4.4. 
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4.1.3 ATRI Parking Surveys  

Regarding utilization, we analyzed survey results extracted from ATRI’s analyses of its 

MAASTO truck parking survey. These results pertain to questions that appeared in multiple 

surveys, providing valuable information on the utilization patterns and trends related to truck 

parking in the MAASTO region. First, truck drivers were asked to describe their time to find 

parking in the MAASTO region. Table 7 shows the results. The study examined driver-reported 

search times for truck parking in 2016, 2018, and 2020. In 2018, drivers were less likely to report 

search times exceeding an hour (10.9% compared with 18.0% in 2016), and more likely to report 

search times of under 15 minutes (20.6% compared with 9.9% in 2016). Most responses in 2018 

fell within the search time range of 15 minutes to 1 hour (68.5%), similar to the pattern observed 

in 2016. Despite the growing economy, drivers’ proficiency in finding parking seemed to 

improve, possibly attributed to the availability of parking resources, such as parking applications. 

However, in 2020, there was an increase in the likelihood that drivers report search times greater 

than 30 minutes (44.4% compared with 31.8%), indicating a potential increase in utilization and 

a potential challenge in finding available truck (ATRI 2016, 2018, 2020). 

Table 7. Average search time 

Search Time Oct. 2016 May 2018 Feb. 2020 

Less than 15 min 9.9% 20.6% 13.3% 

15-30 min 30.0% 36.7% 24.4% 

30-60 min 42.1% 31.8% 44.4% 

More than 60 min 18.0% 10.9% 17.8% 

 

Second, truck drivers were asked to describe the frequency of parking in the MAASTO region. 

The findings, presented in Table 8, demonstrated a considerable demand for parking. Almost all 

truck drivers surveyed required parking in the MAASTO region at least once a week, with more 

than 70% of drivers needing parking two to seven times each week in 2016, more than 60% in 

2018 and more than 80% in 2020. 

Table 8. Frequency of parking in the MAASTO region 

Frequency Oct. 2016 May 2018 Feb. 2020 

Every day 9.9% 14.0% 18.6% 

5-6 times a week 15.3% 11.6% 18.1% 

2-4 times a week 47.7% 36.2% 44.2% 

Once a week 14.3% 16.9% 11.1% 

Less than once a week 12.7% 21.2% 8.0% 

 

The final focus of this research was truck drivers’ assessments of parking lot occupancy in 

facilities with designated parking areas, with data collected from the 2018 and 2020 surveys. The 

results highlight the challenge of finding available parking at existing facilities in the MAASTO 

region, which worsened in 2020. In 2018, more than 70% of drivers reported that parking 
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facilities were occupied at or above 75% capacity, while in 2020, this figure increased to more 

than 85% (Table 9).  

Table 9. Assessment of parking lot occupancy by drivers 

Occupancy May 2018 Feb. 2020 

Empty 4.3% 0.0% 

25% full 8.3% 1.3% 

50% full 12.0% 11.2% 

75% full 39.3% 32.3% 

Completely full 17.9% 12.1% 

Overcapacity 18.2% 43.0% 

 

In particular, a facility was defined as overcapacity if trucks were parked in unauthorized spaces, 

including unmarked areas, entrance/exit ramps, and road shoulders. This type of unauthorized 

parking poses safety risks for truck drivers and the general public. Parking on shoulders and 

ramps creates a driving hazard, while parking outside designated spaces may increase the 

likelihood of property damage due to limited maneuver space for drivers. 

4.2 System Reliability 

4.2.1 System Downtime 

The system downtime measure evaluates the percentage of time that the system is not working as 

intended. Data for each site are analyzed to determine whether there are data records for at least 

each 5-minute period. If records are missing, the amount of time the site is considered down will 

be determined by subtracting the time stamp field of the last record before the gap from the first 

record after the gap in data less than five minutes. Gap intervals were detected by the double-

point method and then aggregated. To evaluate the long-term reliability of the system, downtime 

was aggregated at monthly and quarterly levels in the data visualization dashboard, as discussed 

in Section 4.4.  

During the three-year grant period, 36 of 43 TPIMS sites experienced a system downtime of less 

than 5%. Figure 23 presents a summary of the overall percentage of system downtime at all sites. 

It is important to note that RA32E encountered prolonged system downtime due to a resurfacing 

project initiated in October 2020. The quarterly downtime pattern for RA32E is shown in Figure 

24, revealing a complete site outage for the subsequent two quarters starting in Q4 2020. 
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Figure 23. Percentage of system downtime 

 

Figure 24. Quarterly summary of system downtime for RA32E 

To prevent prolonged system downtime, we have also implemented a daily alert system that uses 

AWS bucket-specific email sending functionality. This system operates on a daily basis. From 

the 24-hour parking flow data for the previous day, the system downtime for each site is 
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calculated. When system downtime lasts more than 15 minutes at one or more TPIMS sites, the 

system will automatically generate and send email reports to investigators.  

4.2.2 User Complaints  

The user perception of system reliability is included in the 2020 ATRI survey. Figure 25 (ATRI 

2020) shows that about 44% of drivers reported that the information was “accurate” or 

“reasonably accurate.” A similar percentage of drivers consider the system “unpredictable” or 

“inaccurate.”  

 

Figure 25. TPIMS accuracy rating 

4.2.3 Accuracy 

In evaluating the system’s ability to report accurate information to drivers in real time, data in 

the archived feed was used. This database contains a record of the reported number of parking 

spaces available at each site with a 5-minute interval since the implementation of TPIMS. 

Routine visual inspection is performed at each site to validate the output reported by the system, 

wherein the actual number (from inspection) of available parking is stored in the database and 

used to correct the reported parking availability in the system. By comparing the reported and 

actual available parking spaces, the accuracy of the system can be quantified.  

Figure 26 elaborates using two examples of how the manual check is flagged in the archived 

data. Note that only related columns are displayed for concision. 
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Figure 26. Manual check records in parking flow data 

On June 1, 2020, at 12:39:55 p.m. (UTC), a manual check on the actual number of available slots 

was conducted, and this time flag is stored in column “LASTVERIFICATIONCHECK.” The 

value obtained from visual inspection was stored in column “AVAILABLE,” and then an 

amplitude is stored in column “VERIFICATIONCHECKAMPLITUDE.” This means that the 

system had reported the number of slots available to be 299, whereas visual inspection reported 

the actual number of slots to be 285, thus producing an amplitude of 14. The cells in columns 

“LASTVERIFICATIONCHECK” and “VERIFICATIONCHECKAMPLITUDE” were 

automatically forward filled until the next manual check that occurred on June 2, 2020, at 

12:16:38 a.m. (UTC). At the next inspection, the system reported that 130 slots were available, 

but the manual check revealed that the actual number of slots was 185. This resulted in an 

amplitude of -55.  

According to HNTB (2017), the accuracy should be calculated as a percentage of actual 

available spaces at the rest point in time by 

Accuracy =  1 − |
𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔−𝐴𝑐𝑡𝑢𝑎𝑙

𝐴𝑐𝑡𝑢𝑎𝑙
| (7) 

Since the actual availability is nonnegative, we can separate the accuracy into two cases: when 

the actual availability is zero and when the accuracy is not calculable. When the actual 

availability is positive, the equation can be rewritten as follows: 

Accuracy =  1 −
|𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔−𝐴𝑐𝑡𝑢𝑎𝑙|

𝐴𝑐𝑡𝑢𝑎𝑙
= 1 −

|𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒|

𝐴𝑐𝑡𝑢𝑎𝑙
 (8) 

According to HNTB (2017), the target level of accuracy is 85% for small lots (<15 spaces) and 

90% for other lots.  

Two detection technologies are used at Iowa parking sites. Table 10 shows the six private truck 

stops that use in-and-out detection, and their target level of accuracy is 90%. 
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Table 10. Truck stops using in-and-out detection 

Site Code Capacity 

IA00380IS0001300WCASEYS00 92 

IA00080IS0022000WCASEYS00 20 

IA00080IS0020200WKWIKSTAR 110 

IA00080IS0025900WBP000000 46 

IA00029IS0007500WTQUICPIC 50 

IA00080IS002840OEI80TRSTO 850 

 

All other sites are equipped with sensing pucks. Based on the result of the anomaly detection of 

the parking flow data and the banner puck record provided by eX2, pucks had failed since 

summer 2020 at most TPIMS sites in Iowa. Therefore, the study scope of the manual check 

analysis below is from January 2019 to June 2020. Table 11 shows the summary of the manual 

check cases in Iowa parking lots. 

Table 11. Manual check cases 

State Lots 

Total 

Number of 

Manual 

Check Cases 

Number 

of 

Actuals = 

0 cases 

Accuracy 

Calculable 

Cases 

Accuracy 

85%+ or 

90%+ 

Cases 

Accuracy 

85%+ or 90% 

+ cases 

(percentage) 

IA Small 1127 61 1066 1023 95.97% 

IA 
Large 

Puck 
1427 18 1409 1348 95.67% 

IA 

Large 

In-and-

Out 

7014 7 7007 1673 23.88% 

 

Some visual checks were also made based on the archived images of the parking sites in Iowa, as 

mentioned in Chapter 2, after checking the images and angles of all TPIMS sites, images from 

seven sites (RA180E, RA208W, RA237W, RA270E, RA270W, RA300E, and RA300W) were 

used for checking accuracy because of their relatively higher quality views of truck heads. At 

each parking site, images from three angles were archived every five minutes and then 

concatenated to obtain an overall view of the site. Among these sites, RA270E (capacity = 12) 

and RA300E (capacity=14) are small sites.  

According to the anomaly detection results, the study range is set from January 2019 to June 

2020. That leaves us with about 700 valid images for truck counting. Although the results might 

be influenced by the resolution of the image, angle of the camera, and time mismatch between 

flow records and archived images, it can be considered as an auxiliary investigation of accuracy 

of TPIMS. Table 12 shows the comparison of manual checks in parking flow data and visual 

check results. As mentioned in Section 4.2.3, the target accuracy level of small sites is 85% 

during each manual check. The manual check record in the parking flow data indicates that 
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97.39% of the manual check cases reach the target, while the image comparison shows that only 

61.86% cases reach the target. 

Table 12. Manual check in parking flow data and visual check  

Lot 

Size 

Data 

Source 

Total 

Number 

of 

Manual 

Check 

Cases 

Number of 

Actuals = 

0 cases 

Accuracy 

Calculable 

Cases 

Accuracy 

85%+ or 

90%+ 

Cases 

Accuracy 85%+ 

or 90% + cases 

(percentage) 

Small 
Flow data 118 3 115 112 97.39% 

Image 195 1 194 120 61.86% 

Large 
Flow data 303 8 295 275 93.22% 

Image 534 1 533 164 30.77% 

 

4.3 Corridor Safety 

4.3.1 HOS Violation 

Fourteen counties were selected to investigate whether the Iowa TPIMS had improved corridor 

safety, as shown in Figure 27. The study period is from 2018 to 2021. Table 13 shows a 

summary of the number of inspections and violations compared year by year. 

 

Figure 27. Counties traversed by the TPIMS corridors in Iowa 
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Table 13. Inspections and violations 

Year 

Number of 

Inspections 

Number of 

inspections without 

violation 

Number of inspections 

with violation 

Number of 

Violations 

2018 19567 4317 15250 41523 

2019 19454 3893 15561 42181 

2020 12400 2406 9994 26776 

2021 16989 2925 14064 37409 

 

The selection of the kind of violation to be analyzed was guided by the MCMIS Inspection File 

Catalog Documentation (FMCSA 2014) and the proposed HOS Violation Measures by HNTB 

(2019), which led to the emergence of two grouping systems. HNTB (2019) identified the 

criteria fields as “INSP_VIOLATION_CATEGORY_ID” and “PART_SECTION_ID,” 

respectively. Table 14 provides more details on the selection criteria for quantifying HOS 

violations. 
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Table 14. HOS violations 

Identification 

system 

Field 

Value 

Data 

Element Description 

INSP_VIOLATION 

_CATEGORY_ID 

04 10/15 10/15 hour rule violation 

05 15/20 15/20 hour rule violation 

06 60/70 60/70 hour rule violation 

07 OTTHOS All other HOS violations 

PART_SECTION_ID 

3570 395.1O 
16-hour rule violation (property-

carrying vehicle) 

3572 395.3A1/R 
11-hour rule violation (property-

carrying vehicle) 

393840 
395.3A2-

PROP 

Driving beyond 14-hour duty period 

(property-carrying vehicle) 

3574 395.3A2/R 
14-hour rule violation (property-

carrying vehicle) 

395654 395.3A3II 

Driving beyond the 8-hour limit since 

the end of the last off-duty or sleeper 

period of at least 30 minutes 

393841 
395.3A3-

PROP 

Driving beyond the 11-hour driving 

limit in a 14-hour period (property- 

carrying vehicle) 

396340 
395.3A3-

PROPN 

Nominal violation: Driving beyond the 

11-hour driving limit in a 14-hour 

period (property-carrying vehicle) 

393842 
395.3B1-

PROP 

Driving after 60 hours on duty in a 7-

day period (property-carrying vehicle) 

396341 
395.3B1-

PROPN 

Nominal violation: Driving after 60 

hours on duty in a 7-day period 

(property-carrying vehicle)  

393843 395.3B2 
Driving after 70 hours on duty in an 8-

day period (property-carrying vehicle) 

396342 
395.3B2-

NOM 

Nominal violation: Driving after 70 

hours on duty in an 8-day period 

(property-carrying vehicle)  

3576 395.3B/R 
60/70-hour rule violation (property-

carrying vehicle) 

 

The results were classified into “HOS violations” and “Other violations” for each year and for 

each grouping system. Subsequently, a year-by-year comparison with the result shown in Figure 

28. The main findings are as follows: 

1. The number of violations was significantly reduced in 2020, which could be due to the 

reduced number of roadside inspections during the pandemic. 
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2. The percentage on the bars indicates the proportion of HOS violations and other violations in 

that year. After the TPIMS was deployed in January 2019, HOS violations by section had 

decreased from 1.82% to 1.08%, which was a 40.7% percent reduction.  

 

Figure 28. Comparison year by year of HOS violations 

4.3.2 ATRI Truck Parking Survey  

The ATRI surveys include some questions about safety. The survey included various questions, 

and, for some, consistent responses were observed, enabling the identification of continuous 

trends. However, questions were asked differently regarding some aspects, making it difficult for 

longitudinal comparison. 

Specifically, drivers were first asked to share their experiences with respect to various truck 

parking problems. Their responses are consolidated in Table 15. In particular, two parking-

related concerns, namely the availability of parking solely on shoulders/ramps and the presence 

of parking in unsafe locations, demonstrated an upward trend in prevalence over the years 2016 

to 2020. For instance, in 2020, a substantial 85.3% of respondents indicated that parking was 

“always” or “sometimes” available on ramps/shoulders, whereas in 2016 and 2018 the 

corresponding percentages were 62.7% and 70.8%, respectively. These findings show growing 

safety concerns expressed by respondents and underscore the importance of addressing truck 

parking challenges and their potential safety implications (ATRI 2016, 2018, 2020). 
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Table 15. Parking issues in the MAASTO region 

Issue 

Oct. 2016 May 2018 Feb. 2020 

Always/

Often 

Somet

imes 

Rarely/

Never 

Always/

Often 

Some

times 

Rarely/

Never 

Always/

Often 

Some

times 

Rarely/

Never 

Rest area 

time limit 
15.6% 38.4% 46.0% 15.1% 36.9% 48.0% 14.2% 37.6% 48.2% 

Parking is 

available 

only on 

ramps or 

shoulder 

30.1% 32.6% 37.3% 33.1% 37.7% 29.2% 49.4% 35.9% 14.8% 

Parking is 

available 

only in 

unsafe 

locations 

29.8% 38.4% 31.7% 27.7% 39.3% 33.0% 32.1% 43.0% 24.9% 

Truck 

damage 

while 

parked 

3.1% 16.3% 80.6% 4.5% 19.9% 75.6% 6.4% 18.6% 75.0% 

No 

parking 

available 

for 

oversize 

vehicle 

27.8% 20.3% 
51.9%

% 
31.5% 23.2% 45.2% 45.9% 20.9% 33.1% 

 

ATRI also delved into the issue of truck drivers parking in unauthorized locations. In the 2018 

survey, participants were questioned about their unsafe parking behavior. Approximately 22.8% 

of the respondents admitted to parking “often” or “always” in unauthorized locations (Figure 29). 

However, in the subsequent 2020 survey, the approach to questions and responses changed. 

Participants were instead asked to describe their parking frequency in unauthorized locations 

“since the installation of the MAASTO truck parking information system” (TPIMS). The 

findings, as shown in Figure 30 (ATRI 2020), revealed that the majority of survey participants 

(58.2%) reported no significant change in their parking frequency compared to before MAASTO 

TPIMS implementation. This consistency in behavior can be attributed to the persistent lack of 

parking capacity in areas where parking is most urgently needed. 

 

Figure 29. Frequency of drivers parking in an unauthorized location (2018) 
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Figure 30. Frequency of drivers parking in an unauthorized location (2020) 

Participants were asked to assess whether they perceived an improvement in their safety and/or 

compliance with HOS requirements regarding the availability of the MAASTO truck parking 

system. Figure 31 (ATRI 2020) illustrates the responses to this question. Among the respondents, 

21.5% reported that the MAASTO system had indeed contributed to improved safety or 

compliance with HOS regulations. However, a higher proportion responded negatively, 35.4% 

indicating that their safety was not perceived as beneficial and 43.0% stating that their safety 

remained relatively unchanged. ATRI also stresses that while many participants did not perceive 

a safety benefit or a change in their safety levels, it is essential to note that this does not imply 

that these drivers are less safe. An alternative explanation is that they may already be safe drivers 

and, therefore, the MAASTO truck parking system may not significantly impact their safety 

practices. 

 

Figure 31. TPIMS improve safety and/or HOS compliance 

4.4 Visualization Tool  

A dashboard was developed to evaluate and monitor the performance of TPIMS. Since 

commercial truck activities can be influenced by seasons and days of the week, quarter and 

weekday filters can be used for various temporal analyses. In addition, the “Map Selector” panel 

allows users to select a specific site or a group of sites on the map and view the corresponding 

performance measures. The “Select Direction” filter can select sites based on travel direction for 

spatial analysis.  

Figure 32 demonstrates the use of the visualization tool. By selecting sites in the “Map Selector” 

in the upper left panel, the average DLD (in minutes) and system downtime (in percentage) are 

https://public.tableau.com/app/profile/yilun2183/viz/ReportDashboard_16902221142680/ReportDashboard
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shown in the upper right panel of the dashboard. The measures are summarized by quarter, with 

a monthly summary also available when hovering the cursor on a specific quarter summary 

result.  

 

Figure 32. Overview of the data dashboard 

The spatial distribution of utilization can be investigated when a set of adjacent sites are selected 

in the “Map Selector.” For example, the spatial utilization distribution is shown in the lower left 

panel that compares three eastbound sites. The average utilization at 2 a.m. in the first quarter of 

2019 was 83.89%, with a standard deviation of 12.07%. However, in 2020, the average 

utilization increased to 86.59%, and the standard deviation decreased to 7.01%. A higher mean 

and a lower standard deviation of utilization across multiple sites indicate a more evenly 

distributed parking demand.  

Similarly, the temporal distribution can be observed in the “Utilization 24-Hour Trend” panel. 

By selecting the sites and days of the week, the averaged 24-hour trend of each quarter is plotted 

in the lower right panel.  

 

  

https://public.tableau.com/app/profile/yilun2183/viz/ReportDashboard_16902221142680/ReportDashboard
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5. COMPARISON WITH OTHER STATES 

Eight states participated in the MAASTO TPIMS project. All states besides Iowa have 

implemented variable message signs to display parking spaces available on the roadside. 

Therefore, sensing technology, data availability, and performance are compared. 

5.1 Sensing Method 

Different states adopted different sensing technologies in their TPIMS. In the Iowa TPIMS, both 

space-by-space underground pucks and in-and-out sensors are used to collect occupancy data. 

Table 16 summarizes the different sensing methods in the MAASTO states. 

Table 16. Sensing method 

State Detection 

IA In-and-out, space-by-space detection by Banner pucks 

IN Space-by-space detection using magnetometers by Sensys 

KS Space-by-space detection by University of Minnesota computer vision 

KY In-and-out radar-based detection 

MI Video analytics software (Quantum Signal) 

MN Space-by-space detection by Banner pucks 

OH In-and-out detection, space-by-space puck detection 

WI In-and-out detection 

 

5.2 Performance Comparison 

5.2.1 Utilization  

This section assesses the utilization of parking before and after the deployment of the TPIMS. To 

begin this evaluation, the availability of data across all states is examined. Table 17 presents a 

list of all data stored in the MAFC data warehouse. It is observed that the flow data before the 

implementation of the TPIMS is notably scarce. 
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Table 17. Flow data availability  

State Before After Comment 

IA 
12/1/2018–

12/31/2018 
Since 1/11/2019  

IN — Since 1/11/2019 Cannot compare before and after difference 

KS 
12/7/2018–

12/27/2018 
Since 1/11/2019 No before data in 2 sites (Total 13 sites) 

KY 
12/21/2018–

12/28/2018 
Since 1/11/2019 Limited before data 

MI 
12/7/2018–

12/28/2018 
Since 1/11/2019  

MN — Since 1/14/2019 Cannot compare before and after difference 

OH — Since 3/24/2019 

Started recording since 12/7/2018, but the 

data is invalid (recorded capacity as 

availability). Valid data after 3/24/2019. 

WI 
12/7/2018– 

12/27/2018 
Since 1/11/2019 No data before in 7 sites (Total 11 sites) 

 

As mentioned in the previous section, occupancy at night can be a good indicator of utilization. 

Table 18 is a summary of the average utilization of all sites in each of the eight TPIMS states 

before and after the launch of the TPIMS. Data from before the deployment of the TPIMS were 

available from December 7–27, 2018, for most states. For Kentucky, pre-TPIMS data were only 

available from December 21–28, 2018 (Christmas week). Q2 utilization in 2019 was compared 

to data from before the TPIMS was implemented to account for gradual adoption by apps and 

Iowa511. In general, the growth in utilization during the night can be found in all comparable 

states. 

Table 18. Average utilization at 2 a.m.  

 Before* After (2019 Q1) After (2019 Q2) 

Before vs. 2019 Q2 

Growth*** 

IA 71.8% 72.6% 78.3% 6.5% 

IN — 54.1% 48.7% — 

KS 66.3% 72.1% 72.7% 6.4% 

KY 49.2%** 77.3% 81.2% 32% (limited before data) 

MI 50.4% 57.1% 61.0% 10.6% 

MN — 68.3% 73.1% — 

OH — — 82.9% — 

WI 67.2% 74.5% 74.8% 7.6% 

* Before data were collected 12/7/2018-12/27/2018. 

** Before data were only available from 12/21/2018 to 12/28/2018 (Christmas week) for KY. 

*** 2019 Q2 utilization is compared with Before to account for gradual adoption of TPIMS. 

 



42 

5.2.2 Accuracy 

Based on the parking flow data collected from the dynamic archive-only feed, the manual check 

accuracy in other states is also analyzed. The background of how accuracy is calculated can be 

found in the section Accuracy under System Reliability. Table 19 is the summary of manual 

checks in all MAASTO states. Note that only Iowa, Indiana, Kentucky, Ohio, and Wisconsin 

recorded their manual check details in the parking flow data. The lots are separated into small- 

and large-capacity lots as required. Lots in Kentucky and Wisconsin all have more than 15 

spaces. 

Table 19. Manual check cases in MAASTO states 

State 

Lot 

Size 

Total 

Number of 

Manual 

Check Cases 

Number 

of Actual 

= 0 cases 

Accuracy 

Calculable 

Cases 

Accuracy 

85%+ or 

90%+ 

Cases 

Accuracy 

85%+ or 

90%+ Cases 

(percentage) 

IA Small 1127 61 1066 1023 95.97%* 

IA Large 8441 25 8416 3021 35.90% 

IN Small 800 37 763 59 7.73% 

IN Large 10129 217 9912 1856 18.72% 

KY Large 17155 6503 10652 2428 22.79% 

OH Small 926 11 915 641 70.05% 

OH Large 7143 26 7117 2523 35.45% 

WI Large 18296 268 18028 7718 42.81% 

*To be consistent with other states, we used manual data checking to assess the accuracy of the Iowa TPIMS. The 

more reliable estimates based on images are presented in Table 12. 

5.2.3 Safety 

An investigation of HOS violations was conducted in other MAASTO states using FMCSA 

roadway inspection data. Detailed descriptions of the data can be found in Section 4.3.1. Only 

data for the grouping system that used “PART_SECTION_ID” were included in this analysis. 

This is because from the previous results obtained, the part section group produced a more 

accurate data set, which could be linked to the clear description it has for all violation records. 

Figure 33 shows a map of the counties through which the TPIMS corridor traversed other 

MAASTO states, and Figure 34 shows the proportion of HOS violations in each year in each 

MAASTO state. Among the eight states, seven states experienced a reduction in the proportion 

of HOS violations after TPIMS was deployed in January 2019, except Minnesota.  
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Figure 33. Counties traversed by the TPIMS corridors in other MAASTO states 

 

 

Figure 34. Percentage of HOS violations as a percentage of total violations each year in 

each MAASTO state 
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6. TRUCK DRIVER SURVEY 

A questionnaire was developed to understand the parking experience of truck drivers and their 

opinions on TPIMS. The questionnaire asked about parking experience in general, parking 

experience outside Iowa, and parking experience in Iowa, as well as some general information 

about the drivers and their employers. The detailed questions are provided in Appendix A.  

ISU’s Center for Survey Statistics and Methodology-Survey Research Services (CSSM-SRS) 

conducted intercept surveys of truck drivers in Iowa. The purpose of the surveys was to gain 

information to improve the experience of parking trucks in Iowa. 

The principal investigator (PI) submitted an application to ISU’s Institutional Review Board 

(IRB) for approval to collect human subjects’ data. At the direction of the IRB, CSSM-SRS 

contacted the ISU Office of Risk Management (ORM) to obtain approval from that office prior 

to IRB approval. ORM required CSSM-SRS staff to meet with an officer of ISU’s Police 

Department to develop procedures for data collection that would be followed to ensure the safety 

of CSSM-SRS field staff. After completion of the approved procedures, IRB approval was 

granted. Safety procedures included sending teams of at least two field personnel to each 

location, setting up outdoors in areas covered by video cameras where available, and only 

surveying truck drivers during daylight hours. 

The research team worked with Iowa DOT contacts to identify truck stops and rest areas along 

interstate highways that use TPIMS. Additional sites without the system were also selected due 

to the high volume of truck drivers at these sites. 

6.1 Data Collection Procedures 

CSSM-SRS sent teams to seven different sites to collect data. Two sites with higher volume 

truck driver traffic were visited twice. A short survey of 31 questions was printed on the front 

and back of a single sheet of paper. Field staff intercepted truck drivers as they approached the 

truck stop or rest area building to ask them to complete the survey. The surveys were distributed 

on clipboards for ease of completion. A short summary of the study was provided. Study 

participants were thanked for their participation with a $5 gift card that could be used at the 

survey location. 

At each site, field staff set up a table covered by an ISU Survey Research Services tablecloth (see 

Figure 35a) and additional signage alerting participants to the truck parking survey and the $5 

incentive (Figure 35b). 
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(a) Tablecloth from ISU Survey Research Services 

 
(b) Additional signage 

Figure 35. Setup of survey location 

The initial plan was to visit four Kum and Go truck stops and two rest areas for a total of six 

sites, with the expectation to stay at each site for six hours in the afternoon and early evening 

hours.  

Kum and Go corporate management granted permission to survey truck drivers at their locations. 

After the first two attempts at data collection, the plan was revised due to the low number of 

truck drivers available for survey participation. Higher traffic volume truck stops were then 

contacted to obtain approval to survey truck drivers at their locations. The following companies 

were contacted: Casey’s, Kwik Star, Taylor’s QuikPick, and Walcott’s I-80 Truck Stop. Only 

Casey’s corporate management allowed survey data collection at their sites. Based on feedback 

from truck stop employees, data collection was performed earlier in the day to catch drivers in 

the morning and during lunch hour.  
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A total of nine site visits were made to achieve the data collection goal of 200 completed 

surveys. Field staff visited two sites in one day to maximize time.  

Table 20. Site visit locations, dates, and survey completion 

Site Date Completed Surveys 

Grinnell Kum and Go I-80 6/5/23 6 

MM80 Rest Area I-80 6/6/23 14 

Cedar Rapids Casey’s I-380 6/8/23 44 

Des Moines Kum and Go I-235 6/13/23 4 

MM99 Rest Area I-235 6/13/23 5 

Cedar Rapids Casey’s I-380 6/14/23 37 

Newton Casey’s I-80 6/15/23 15 

Ankeny Casey’s I-235 6/20/23 38 

Ankeny Casey’s I-235 6/22/23 46 

Total Completed Surveys 209 

 

Field staff intercepted all truck drivers, but about 50% declined to participate in data collection 

due to a number of factors, including language barriers, tight timelines, and lack of interest in the 

survey. Anecdotally, field staff were told by truck drivers that the subject of the survey was 

important and necessary due to the lack of truck parking spaces available in Iowa. 

6.2 Survey Results 

This section presents some key findings of the survey. The summaries of the responses to all the 

questions are provided in Appendix B.  

First, most drivers plan to park 30 minutes or more in advance. In particular, when parking 

overnight, two-thirds of drivers start planning more than an hour in advance (Figure 36).  
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Figure 36. How far in advance do you plan to park?  

Second, most drivers (78%) use smartphone apps, in-cab applications, or websites to access 

parking information (Figure 37).  

 

Figure 37. Main source of parking information  

Third, finding parking takes less time in Iowa compared with other states but could take more 

than 30 minutes in 40% of cases (Figure 38).  
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Figure 38. How long does it take to find parking? 

Fourth, most drivers (57%) use real-time information to find parking in Iowa (Figure 39). 

Additionally, about two-thirds of drivers view images of the parking lot, indicating the 

importance of providing visual information (Figure 40).  

  

Figure 39. Use of real-time information to find parking in Iowa 
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Figure 40. View images of parking lots 

Finally, a total of 38% of drivers find parking information accurate, which is consistent with the 

ATRI survey results (Figure 41). This highlights the importance of improving sensor 

technologies and continuous monitoring of sensor health.  

 

Figure 41. Perception by drivers of the accuracy of parking information  
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7. PREDICTIVE ANALYSIS 

The Iowa TPIMS offers real-time utilization data, but truck drivers also want to know the 

expected availability of parking spaces at their planned arrival time. This section aims to 

introduce hybrid horizon prediction models for pre-trip planning and en route decision making 

for truck drivers, and the model is used in a user-friendly “Popular Time” panel. 

7.1 Prediction Models 

7.1.1 Pre-trip Model  

In this study, it is hypothesized that truck drivers plan where they will spend the night while 

traveling prior to departure. We assume that truck drivers follow a two-step procedure when 

planning their parking arrangements, requiring the development of two different types of pre-trip 

prediction model. First, truck drivers estimate their workload for the upcoming day and then look 

for a possible parking site based on this estimate. Second, while on the road the following day, 

truck drivers recheck the availability of the initially chosen parking site when approaching and 

make a final decision on the most suitable place to park. 

First, the historical use of the parking sites obtained from the TPIMS dynamic archive-only feed 

is organized into the “previous day” and “previous week” levels. Second, referring to the 

experience of past research and the analysis results in the data dashboard, parking behavior is 

greatly influenced by attributes like location, time, traffic, and weather condition. Therefore, the 

TPIMS sites are organized into a network, and each site is mapped to adjacent TPIMS parking 

sites upstream and downstream to obtain the utilizations in the adjacent sites. Note that there may 

be other parking lots outside the scope of the Iowa TPIMS.  

Truck volume is also collected from 7 ATR and 20 Wavetronix sensors based on data 

availability to cover more TPIMS sites. In consideration of resolution unity (ATR volume is in 

15 minutes and the Wavetronix volume is in 20 second) and the fact that the truck volume can be 

very low in some sparsely populated areas, the truck volume is aggregated into an hour-level 

scope.  

Third, weather information is collected from the Iowa Environmental Mesonet (IEM) developed 

by the Department of Agronomy at ISU. The IEM collects environmental data, such as road 

temperature, weather watches and warnings, and wind direction from cooperating members. The 

IEM Gridded Analysis is an integrated system where all weather information is aggregated every 

five minutes into a small rectangular longitude and latitude grid at a resolution of 0.01 degrees in 

both directions. It is assumed that the weather in the grid is the same as it is in the TPIMS sites 

and that the TPIMS sites are mapped into the grid to provide weather information for each site.  

Those attributes are integrated together and analyzed in various tree-based machine learning 

methods to accurately predict parking before a trip, and the performances of the models are 

described by root mean square error (RMSE) (Equation 9). Furthermore, to reduce the running 



51 

time of the model, the experiment covers the period from January 2019 to December 2019, with 

a training set comprising 70% of the data. 𝑢𝑖 is the utilization of a parking site. 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
 ∑(𝑢𝑖 − �̂�𝑖)2

𝑁

1

 

(9) 

The pre-trip models were built on two different scopes: more specific models that predicted 

parking for each site and overall models that predicted parking for all sites. Table 21 shows that 

the overall models that used the historical utilization of the previous week gave slightly more 

accurate predictions than the models that used data from the previous day. This reveals a weekly 

pattern in parking demand, which is consistent with the results of previous analysis of truck 

parking patterns (Sadek et al. 2020). The best model is XGB because of its mechanism for better 

generalizing the large data set (in which all sites are evaluated together).  

Table 21. Prediction results for overall models  

 Decision Tree Random Forest Gradient Boosting XGB 

Previous Day 0.241 0.178 0.174 0.170 

Previous Week 0.236 0.174 0.170 0.166 

 

Site-specific models were then built to compare with the overall model, and the gradient boost 

regressor was selected as the best performance model in all test parking sites. Again, we found 

that models using the historical utilization of the previous week performed slightly better than 

the models using the historical utilization of the previous day. We also found that the models that 

included all constructed attributes (spatial relation, weather condition, and truck traffic volume) 

performed better than the models that only included historical utilization itself. Table 22 shows 

the test results of the average RMSE. 

Table 22. Prediction results for site specific models 

 

Gradient 

Boosting 

Gradient Boosting with 

only utilization attribute 

Previous Day 0.157 0.166 

Previous Week 0.154 0.162 

 

Overall, the recommended pre-trip prediction model is a site-specific machine learning ensemble 

model with a gradient boost regressor that uses the historical utilization of the previous week, 

spatial relation, weather conditions, and truck traffic volume. 
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7.1.2 En Route Model  

Although ensemble tree-based methods demonstrate favorable prediction results, their 

implementation requires additional efforts in collecting and manipulating weather data from the 

Iowa IEM gridded system, as well as traffic volume data from the Iowa ATR traffic planning 

system and the Iowa Wavetronix traffic operation system. These two data sets are highly 

localized, and the processes of verifying the availability, quality, and mapping of these data 

sources is time-consuming relative to the process of manipulating the parking flow data.  

Therefore, to predict utilization for en route decision-making, some black-box deep learning 

models that do not depend on these additional data sources can be considered. In this report, we 

introduce a sequence-to-sequence neural network architecture to develop a truck parking site 

utilization prediction (TPSUP) model that only uses historical utilization information, where the 

spatial and temporal characteristics are extracted and represented by transforming the utilization 

data (Yang et al. 2021).  

The input attributes are organized differently to adapt to the architecture of the neural network. 

The historical utilization sequence of the current site (𝐶𝑖) is a sequence based on continuous 

temporal utilization records from the recorded farking flow data. The time interval 𝑡𝑖 and 

window sized 𝑤𝑠𝑖 are fixed. The flow data are used as inputs for the TPSUP, including the 

records of 𝑐1, 𝑐2, … , 𝑐𝑖.  

The spatial and temporal dependency sequence 𝐷𝑖 contains encoded location and time 

information belonging to each utilization record for the current site. 𝐷𝑖 includes the utilization in 

adjacent sites and the temporal dependency extracted from timestamps. A model would need to 

reflect periodicity so that the parking behavior of hour 23 is closer to that of hour 0 instead of 

hour 20. The day and month attributes cannot be used in their raw forms because, for example, 

the raw format of the last hour of the day will have 24 times the weight of the first. To achieve 

this, the time information is encoded with sine and cosine as follows, where 𝑠𝑖 represents the 

accumulated second of the current record: 

𝑥𝑖
𝑠𝑖𝑛 = sin (𝑠𝑖 ×

2𝜋

∑ 𝑠
) (10) 

𝑥𝑖
𝑐𝑜𝑠 = cos (𝑠𝑖 ×

2𝜋

∑ 𝑠
) (11) 

After the encoding process, a long short-term memory (LSTM) cell-based neural network is 

constructed to memorize the historical utilization in the processed sequence. Figure 42 shows the 

sequential logic structure of the TPSUP network.  
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Figure 42. Structure of TPSUP model 

Our proposed TPSUP architecture was tested on a specific site, PRAIRIEM144, which has a 

capacity of 48 spots. The number of units is fixed at 64 in two hidden layers, and the activation 

function is a hyperbolic tangent. The prediction scope is set to one hour because, based on the 

results of the ATRI survey (ATRI 2018), 42.1% of the test respondents spent 30 minutes to 1 

hour searching for safe parking. The prediction results are compared with the basic recurrent 

neural network (RNN) model in Table 23.  

Table 23. TPSUP model performance and comparison 

 RNN TPSUP 

Test RMSE 0.0759 0.0429 

Training Time 855s 650s 

 

Our proposed TPSUP performs better than a basic RNN in terms of RMSE and training time. 

Therefore, our study recommends the proposed TPSUP architecture as an effective en route 

prediction model for truck drivers looking for up-to-date information on safe parking areas. 

Figure 43 shows an example of the predictive results of the data for one week from December 

15, 2019. 
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Figure 43. Actual and predicted utilization 

7.2 Design of “Popular Times” Feature 

The “Popular Times” feature in the map application is a valuable tool that provides users with 

information about how busy a particular location is at different times of the day and week. It 

helps users plan visits more effectively by providing information on crowd levels in various 

establishments, such as restaurants, cafes, shopping malls, and other popular destinations. The 

focus of this section is to investigate the possibility of integrating this feature into the TPIMS 

user interface to improve the travel planning capabilities of truck drivers.  

As described in Section 7.1.1, the prediction models are designed in two scopes (an ensemble 

machine learning model using data from the previous week for pre-trip use and a deep learning 

long-short-term memory model using data from the previous hour for en route use). 

An experiment was carried out at site PRAIRIEM144. Figure 44 presents an example of the 

estimated popular times derived from the application of the gradient boost model, using data 

from the previous week. Using this feature, truck drivers can select the desired time of day and 

day of the week to assess the level of crowding and plan their workload accordingly. As an 

example, consider a scenario where a truck driver intends to rest at site PRAIRIEM144 on a 

Thursday at 7:00 p.m., where the estimated utilization rate reflects approximately 0.85, 

indicating the availability of 7 vacant spots. 

 

Figure 44. Pre-trip popular times 
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Then on the following Thursday, while actively driving towards the designated site, the most 

recent estimation of utilization obtained from the LSTM model indicates that the parking site 

will be nearing maximum capacity by the driver’s anticipated arrival time. Consequently, the 

driver can choose to explore alternative secure parking options. Note that the ground truth 

utilization value at 7 p.m. corresponds to a utilization rate of 1, indicating that the parking site is 

indeed fully occupied at this specified time. 

 

Figure 45. En route popular times 

This popular dual-level time estimation offers several benefits to users. It helps truck drivers plan 

their activities by providing them with a better understanding of when a location is expected to 

be more or less busy. Additionally, it allows truck drivers to avoid peak times and choose less 

crowded periods or areas to park, reducing illegal parking and ensuring a more pleasant rest.  

It is worth noting that while popular times provides estimates based on historical data, it may not 

be 100% accurate in real time. Factors such as unexpected events or changes in local 

circumstances can affect crowd levels (e.g., parking site closures). Nevertheless, this feature 

remains a valuable tool for gaining general insights into a location’s popularity patterns. 

While truck drivers are using this tool, especially when they are en route, it is important to know 

how often the en route model is wrong to the extent that drivers notice the difference. For 

example, the tool may tell a driver that the site ahead is almost full (e.g., that the number of 

available spots is less than 10% of the site capacity, causing “LOW” to be displayed on Iowa511 

as described in Section 4.1.1). However, upon reaching the site, the driver finds that it is not as 

occupied as the tool suggested. Alternatively, the tool may indicate that a site has significant 

availability, implying a relatively empty condition. However, on arrival, the driver has difficulty 

finding an unoccupied parking space. 

Therefore, in this experiment, the en route results are transformed into a “frustration” matrix. In 

Table 24, “low” indicates that the availability is below 10% of the site capacity (i.e., 5 in the case 

of site PRAIRIEM144). In this particular scenario, the calculated frustration index amounts to 
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4.49%, which signifies the magnitude of frustration experienced by drivers who may perceive 

the notable disparity between anticipated and actual parking conditions. 

Table 24. Frustration matrix 

 

Actual 

Not Low 

Actual 

Low 

Predicted Not Low 66.41% 1.49% 

Predicted Low 3.00% 29.11% 
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8. VISUAL SENSING 

Previous studies on the reliability of the Iowa TPIMS have identified various functional failures 

that significantly impact the system’s efficiency. This chapter presents a system architecture for 

the data archiving and retrieval system, as well as reliability measures and an image processing-

based failure detection method to monitor the system’s operation and prevent prolonged system 

failures using the dynamic archive-only feed. The proposed fault detection and reporting system 

aims to improve the accuracy of TPIMS, consequently improving the safety and competitiveness 

of freight transportation in Iowa and providing valuable information for the prospective 

implementation of smart truck parking systems. 

Advancements in sensing, data storage, and transmission technologies have allowed information 

management systems to be rapidly developed and implemented in various fields in recent years. 

However, most of the research on detection and warning of abnormal behaviors of intelligent 

transportation systems has investigated the reasons behind abnormal data trends. For example, 

Chen et al. (2015) used color-coded charts and a semantic zooming method to investigate 

anomalies in speed, flow, and lane occupancy information from sensing sites along a freeway in 

Taiwan. Those anomalies did reflect traffic events such as bottlenecks, human mobility during a 

traditional holiday, and typhoon strikes, during the three-year study period.  

However, it is worth noting that abnormal data may not always indicate changes in travel 

behavior, but rather instability in the system itself. Less research has focused on monitoring 

sensor failure and life span to detect these problems. Abnormal parking behaviors in highway 

truck rest areas were found in the summer of 2020. However, the investigation of truck activities 

(volume) during 2019 and 2020 showed that the anomaly was caused by large-scale sensor 

failure, not by the change in the travel pattern due to the COVID-19 pandemic.  

Surveillance cameras installed at parking sites along Iowa corridors make image-based detection 

possible. The field of vehicle detection has achieved remarkable success through the use of 

convolutional neural networks. Since its introduction in 2018, the You Only Look Once (YOLO) 

architecture has been used for vehicle detection in many experiments conducted on different road 

scenarios throughout the world. Lin and Sun (2018) developed a system for counting vehicles on 

roadways and conducted an experiment at certain entrances and exits on the campus of National 

Central University in Taiwan. In that study, the image recognition block of YOLO was employed 

for object detection.  

After YOLO was used to identify objects in each frame, the counting block subsequently 

determined whether detected objects in successive frames were indeed the same entity. A 

checkpoint was defined in the counting block, at which the counter would check if a vehicle was 

passing that checkpoint frame by frame. For each vehicle coordinate in the current frame, the 

counter would find the pair that had the shortest distance between this coordinate and all vehicle 

coordinates in the previous frame. By comparing the ground truth and the counting results, the 

accuracy could reach 100% in the morning and afternoon periods.  
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Song et al. (2019) introduced a detection and counting system by transforming the highway road 

surface into effective areas (remote and primary areas) and applying the processed images into 

YOLOv3 networks to detect the type and location of vehicles. The experimental result of about 

60,000 annotated instances verified that the proposed method achieved an 87% mean average 

precision (mAP) for highway scenes.  

For parking scenarios, Ding and Yang (2019) used YOLOv3 with a self-designed feature 

extraction residual block and conducted an experiment of their deeper structure in the Kaggle 

PKLot data set. Precision increased from 91.6% for YOLOv3 to 93.3% for their improved 

model, while recall increased from 87.2% to 90.9%. Dixit et al. (2020) proposed a smart parking 

system for urban parking lots using mobile applications, internet of things (IoT) technologies, 

and computer vision. Besides the proposed architecture of driver-side data upload through 

NodeMCU data transmission, CCTV cameras and the YOLO algorithm were also included in the 

structure to verify the occupancy of parking spaces. The authors claimed that this “belt and 

braces” architecture would report parking lot occupancy in a timely and robust manner and that it 

reduced deployment and operating costs compared to the existing sensor-based smart parking 

system.  

In the context of urban street parking, Chen et al. (2020) proposed a system based on the 

YOLOv3 algorithm and deployed it on a Jetson TX2 platform. The system was designed to 

accurately detect parking occupancy by integrating controlled streetlights that could detect 

whether a spot was occupied, with the goal of reducing costs while maintaining robustness under 

various weather conditions. The proposed solution was evaluated using the CNRPark+EXT data 

set (a simulated model) and real-world scenes captured by a camera. The system achieved high 

test accuracies of 98% and 93% in CNRPark+EXT images and real scenes, respectively, 

validating the effectiveness of the proposed approach.  

Xie and Wei (2021) developed an advanced YOLOv3 algorithm to detect parking occupancy. 

The new network improved on the original by six different measures, including changing the 

resolution of network input, increasing momentum, increasing the weight attenuation value, 

increasing the batch size, and reducing jitter. Furthermore, a novel item-based attention 

mechanism was incorporated, featuring both channel and spatial attention in the feature 

extraction network. In particular, the selected feature vector replaced the original feature vector, 

and residual fusion and second-order terms were used to accelerate convergence while 

minimizing information loss in the fusion process. Experiments on 493 parking lot images 

showed that the algorithm effectively reduces the positioning error of the bounding box and 

improves the detection accuracy of unoccupied spots. 

8.1 Methodology Behind the Sensor Fault Detection System  

As illustrated in Figure 46, the proposed architecture entails seven modules.  
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Figure 46. System overview 

First, a set of timestamps within the study period (e.g., one week) is selected to be checked for 

accuracy, including peak and off-peak hours. Second, the images are verified to be up to date. 

The filename of each image is the date and time that the image was archived, and the 

exchangeable image file format (Exif) metadata contains the date and time when the image was 

taken. If the timestamp information in the metadata does not match the filename, it means that 

the images on Iowa511 have stopped updating and that the archiving system is saving the same 

image with different filenames. In such cases, the sites and timestamps will be labeled 

incomparable in the report and skipped in the YOLO detection steps. Third, the images from 

different angles are concatenated and sent to the truck detection model (TDM). Fourth, the TDM 

detects trucks from the concatenated image. The annotated results with coordinates are translated 

into truck counts. The fifth step is to extract the number of occupied spaces from the flow data 

collected by the sensor pucks. Sixth, the accuracy metric is calculated by comparing the sensor 

data with the TDM results. Finally, a report is generated if the accuracy rate falls below a 

predefined threshold, such as 90%, over a period of one week. The corresponding images are 

sent along with the result to the operator for further inspection to determine whether further 

action is necessary. 

The TDM was implemented using the YOLOv5s network (Jocher 2022). The YOLO algorithm 

first divides the input image into a grid of size S * S, and each grid cell is responsible for 

detecting the object centered in it. The B bounding boxes and their corresponding confidence 

scores are predicted by each grid cell, and the final predictions are made based on a combination 

of the bounding box coordinates and confidence scores. This approach allows for fast and 

accurate object detection and has become widely used in various computer vision applications. 

The confidence score 𝑃𝑟 (𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡𝑟𝑢𝑡ℎ  represents the probability that an object exists 

(𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) > 0) and the confidence of the prediction (𝐼𝑂𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡𝑟𝑢𝑡ℎ ). Intersection over union 

(IOU) is an important measure of the degree of overlap between a prediction box and a ground 

truth box. The higher the IOU score, the more accurate the position of the predicted box. 



60 

Equation 12 shows the calculation of the IOU score, where 𝐵𝑝𝑟𝑒𝑑𝑖𝑐𝑡 represents the predicted 

bounding box and 𝐵𝑔𝑡 is the ground truth box. The score can be further improved with more 

advanced algorithms, such as generalized IOU (GIOU), which considers the size of the boxes 

and no-intersection situations, and complete IOU (CIOU), which considers the non-coincident 

border and width height ratio. 

𝐼𝑂𝑈 =  
𝑎𝑟𝑒𝑎 (𝐵𝑝𝑟𝑒𝑑𝑖𝑐𝑡∩𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎 (𝐵𝑝𝑟𝑒𝑑𝑖𝑐𝑡∪𝐵𝑔𝑡)
 (12) 

The conditional class probability 𝑃𝑟(= 𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡) is also predicted in each grid cell 

regardless of the number of boxes, and only the contribution of the grid cell containing an object 

is calculated. A class-specific confidence score 𝐶𝑖
𝑗
 for each box is obtained by multiplying the 

individual box’s confidence prediction with the conditional class probability (Equation 13). This 

process takes into account both the existing probability of class-specific objects in the box and 

the fitness between the predicted box and the object.  

𝐶𝑖
𝑗

= 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡𝑟𝑢𝑡ℎ ∗ 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡) = 𝑃𝑟 (𝐶𝑙𝑎𝑠𝑠)𝑗

𝑖 ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡𝑟𝑢𝑡ℎ  (13) 

For the 𝑖𝑡ℎ grid, j represents the bounding box and 𝐶𝑖
𝑗
 represents the confidence score of the 𝑗𝑡ℎ 

bounding box of the 𝑖𝑡ℎ grid. 𝑃𝑖
𝑗

= 1 means that a target exists. During the training process, the 

following loss function is optimized: 

𝐿 =  𝑙𝑜𝑠𝑠𝑏𝑜𝑥 + 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 + 𝑙𝑜𝑠𝑠𝑜𝑏𝑗𝑒𝑐𝑡

= 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ Ι𝑖𝑗
𝑜𝑏𝑗𝑒𝑐𝑡[(𝑥𝑖 − �̂�𝑖)

2 + (𝑦𝑖 − �̂�𝑖)
2]

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ Ι𝑖𝑗
𝑜𝑏𝑗𝑒𝑐𝑡

[(√𝑤𝑖 − √�̂�𝑖)
2

+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]
𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑐𝑙𝑎𝑠𝑠 ∑ ∑ Ι𝑖𝑗
𝑜𝑏𝑗𝑒𝑐𝑡

𝐵

𝑗=0
∑ (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))

2

𝑐∈𝐶𝑙𝑎𝑠𝑠

𝑆2

𝑖=0

+ 𝜆𝑜𝑏𝑗𝑒𝑐𝑡 ∑ ∑ Ι𝑖𝑗
𝑜𝑏𝑗𝑒𝑐𝑡

(𝐶𝑖 − �̂�𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗𝑒𝑐𝑡 ∑ ∑ Ι𝑖𝑗
𝑛𝑜𝑜𝑏𝑗𝑒𝑐𝑡

(𝐶𝑖 − �̂�𝑖)
2 

𝐵

𝑗=0

𝑆2

𝑖=0
 

 (14) 

where λ is the coefficient of each component, (𝑥𝑖, 𝑦𝑖) denote the center of the box relative to the 

bounds of the grid cell for the 𝑖𝑡ℎ grid, (𝑤𝑖, ℎ𝑖) are the normalized width and height relative to 

the image size, Ι𝑖𝑗
𝑜𝑏𝑗𝑒𝑐𝑡

= 1 indicates the existence of objects, and 𝑝𝑖(𝑐) represents the category 

probability of the target. Note that the loss function penalizes classification errors only when an 
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object is present in the corresponding grid cell. Similarly, the loss function penalizes bounding 

box coordinate errors only when the predictor is “responsible” for the ground truth box (i.e., the 

highest IOU of any predictor in that grid cell is achieved) (Xu et al. 2021, Zhao et al. 2019). 

In the YOLOv5 official code, four versions of the detection network are available, namely 

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Among them, YOLOv5s is the network with 

the smallest depth and width of the feature map. Unlike YOLOv4's significant improvements to 

YOLOv3, YOLOv5 does not have many algorithmic innovations for YOLOv4, and no research 

paper has explained the architecture and components. Therefore, to gain a comprehensive 

understanding of the algorithmic framework, we refer to the yolo5s.pt file and the network yaml 

file.  

The architectures of YOLOv3, YOLOv4, and YOLOv5 all adopt the classic one-stage structure, 

which comprises four components: input, backbone, neck, and prediction. To understand the 

evolution from YOLOv3 to YOLOv4 and YOLOv5, it is imperative to review the structure of 

YOLOv3 and the enhancements made by YOLOv5. 

The backbone consists of several convolutional neural network (CNN)–based blocks and is used 

to extract the features of the input image. By referencing residual learning in ResNet, the blocks 

enable the training of much deeper neural networks, which can lead to better performance. This 

backbone adopted by YOLOv3 is called Darknet-53. In YOLOv3, a grid unit is assigned to 

predict three bounding boxes with different scales for a particular object. During inference, the 

box with the highest IOU with the ground truth box is considered the final predicted result. 

YOLOv5 incorporates modifications to its structures that are based on both v3 and v4 (Jiang 

2020). This process has the following advantages:  

1. In the input, mosaic data augmentation enhances the network’s ability to generalize to new 

data by providing it with a wide variety of augmented images and encourages the network to 

learn contextual relationships between objects and their surroundings. It also helps to 

mitigate the class imbalance problem that is often encountered in object detection data sets.  

2. In the backbone, the focus module with slicing replaces the traditional pooling and stride 

operations with a convolutional operation that achieves spatial down-sampling. This module 

has the advantage of being computationally efficient and being able to reduce the number of 

parameters while maintaining high accuracy. It also helps increase the receptive field of the 

network, which improves the detection performance on smaller objects. The cross-stage-

partial (CSP) structure (Wang et al. 2020) is adopted in both the backbone and neck to 

improve the performance of the model by reducing the number of computations required and 

improving information flow between layers. The feature map of the base layer is divided into 

two branches and then merges through a cross-stage hierarchy, which can ensure accuracy 

while reducing the amount of memory.  

3. In the neck, the feature pyramid networks (FPN) and the path aggregate network (PAN) (Liu 

et al. 2018) are used for feature fusion and better feature representation. In this combination 

of operations, the FPN layer conveys strong semantic features from top to bottom, while the 

PAN conveys strong positioning features from bottom to top. Together, the parameters of 
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different detection layers are aggregated, providing a rich set of features that capture objects 

at different scales and resolutions. 

The image data set presented in Section 2.4 was sent to the YOLOv5s structure for training, and 

after evaluating several different scenarios, the truck object detection model was obtained. 

Precision denotes the fraction of accurately predicted objects among all predicted objects, and 

recall measures the fraction of accurately predicted objects among all ground truth objects. The 

average precision is computed as the area under the precision-recall curve, and mAP is the mean 

of the average precision across all classes. mAP quantifies the average precision (AP) of the 

model across all classes and confidence levels and is a widely used evaluation metric in image-

based object detection methods, including YOLO. 

Comparing the mAP values of different object detection models is crucial in assessing their 

performance and overall detection accuracy. The corresponding equations are as follows. It 

should be noted that when multiple predicted boxes exist for a single ground truth box, only the 

predicted box with the highest IOU value will be labeled as true positive (TP). That is, a single 

ground truth box can only have one predicted box marked as TP. The precision-recall curve can 

then be drawn on the basis of the accumulated prediction labels. To find the area, the 

interpolation method is always used by setting 11 points [0, 0.1, 0.2…, 1]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 (16) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐿𝑎𝑏𝑒𝑙 =  {
𝑇𝑃   (𝑚𝑎𝑥)𝐼𝑂𝑈 ≥ 0.5
𝐹𝑃               𝐼𝑂𝑈 < 0.5

 (17) 

𝐴𝑃 =  
1

11
∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)𝑟∈{0,0.1,0.2,…,1}   (18) 

𝑚𝐴𝑃 =  
∑ 𝐴𝑃𝑖

𝐶
𝑖=1

𝐶
 (19) 

The mAP of the validation set in the training process can be used to evaluate the model’s 

performance. The images in the test set are then sent to the selected TDM. Although the mAP 

can also be calculated for these testing images, we define a different metric here using the 

number of counts since our task is to identify only trucks. When the manual annotated files are 

taken as the ground truth, a comparison of accuracy between this TDM and the sensor puck is 

also conducted. The accuracies can be represented in the following: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖𝑚𝑎𝑔𝑒 = 1 − |
𝑛𝑖𝑚𝑎𝑔𝑒−𝑛𝑡𝑟𝑢𝑒 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
| (20) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝𝑢𝑐𝑘 = 1 − |
𝑛𝑝𝑢𝑐𝑘−𝑛𝑡𝑟𝑢𝑒 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
| (21) 

where 𝑛𝑡𝑟𝑢𝑒 is the manual annotation count, 𝑛𝑖𝑚𝑎𝑔𝑒 is the object detection result of existing 

truck/truck head, 𝑛𝑝𝑢𝑐𝑘 is the occupancy in puck flow data records, and 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is the parking 

site capacity. 

The detection and reporting system is designed under the assumption that the image-based TDM 

provides counts closer to the ground truth. As stated above, an alert will be sent when a certain 

accuracy threshold is reached. To measure the accuracy of the sensor puck in the detection 

procedure, we refer to the following metric: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − |
𝑛𝑖𝑚𝑎𝑔𝑒−𝑛𝑝𝑢𝑐𝑘 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
| (22) 

where 𝑛𝑖𝑚𝑎𝑔𝑒 is the object detection result of the number of trucks and 𝑛𝑝𝑢𝑐𝑘 is the occupancy in 

puck flow data.  

To match the images and the flow records, a forward-fill method is used in the parking flow data, 

where the records are aligned with the next nearest five-minute interval.  

8.2 Fault Detection System Test Results 

In this section, the proposed error detection method and system design are tested with the real-

world truck parking rest area image data mentioned in Section 2.4. TDMs were trained and 

tested in different scenarios, and the detection results are compared here. The experiments were 

carried out on both a local workstation with a CPU (Intel Xeon Gold 6230R) and a Google Colab 

cloud computing platform with a GPU (Nvidia Tesla T4). Torch version 1.13 was used. 

8.2.1 TDM Training and Testing 

In this research study, YOLOv5s was selected as the initial model due to its small size and fast 

processing speed. Compared with other YOLOv5 variants, v5s has a lower number of parameters 

(7.5 million) and requires less memory. The data set was split into three parts for training, 

validation, and testing, with ratios of 0.7, 0.2, and 0.1, respectively. Before using the established 

data set, we reviewed the recommended data sets from the official documentation of YOLOv5 

for baseline training, including common objects in context (COCO), PASCAL VOC, and 

ImageNet.  

Among the recommendations, the COCO data set (Lin et al. 2014) was selected because it was 

the most widely used. It consists of approximately 330,000 images with more than 2.5 million 

annotated object instances that span more than 80 object categories. The data set also features 

instance segmentation and key-point annotations. We first tried our test set on this multicategory 

model, and a half batch detection result (batch size = 16) is shown in Figure 47.  
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Figure 47. Testing result of YOLOv5s with default multi-category training set 

COCO is a complete and high-precision database, and it might perform well in some balanced 

scenarios, such as when objects are about the same size with a clear front view. However, it is 

not suitable for our data set because a truck trailer might be detected as suitcase, bus, or train or a 

truck in the distance (usually from entry angle) might be detected as car. Noise is also high 

because COCO is so sensitive that the camera pole is detected as a traffic light and vehicles on 

the truck deck are also detected. Therefore, only annotating the truck head might help reduce 

these errors.  

The annotated data set of a single pilot site (RA300) with about 150 images was first used to 

train the YOLOv5s architecture through a single CPU for speed estimation. For 300 epochs, the 

training time was about 663 minutes. Due to this long training time, cloud computing with GPU 

was used for subsequent training. The established training set consisted of approximately 1,000 

concatenated images, with 15,000 annotated instances. The stochastic gradient descent (SGD) 

momentum was set to 0.937, with an initial learning rate and final one-cycle learning rate of 

0.01. A batch size of 16 was used, resulting in a training time of approximately 201 minutes for 

300 epochs. Subsequently, an entirely distinct test set was utilized to evaluate the model’s 

performance. Table 25 presents a comparison between the model configurations and the results 

achieved. Analysis of the mAPs across epochs indicates convergence at around epoch 40 and 

that the test mAPs of Model 2 and Model 3 are the same. Therefore, Model 2 was selected as the 

final TDM. Figure 48 shows the loss and mAP at IOU = 0.5 of Model 2.  

Table 25. Model summary 

Index Model Epoch Validation mAP Test mAP 

1 YOLOv5s + COCO 100 - 0.169 

2 YOLOv5s + TPIMS 100 0.771 0.708 

3 YOLOv5s + TPIMS 300 0.777 0.709 
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Figure 48. Loss and mAP of Model 2 

8.2.2. Accuracy Comparison 

The reliability of the sensor puck counts is determined by comparing with the image processing 

counts. Manual counts from the test set images are used as the basis for this analysis. 

Specifically, the accuracy of the image processing counts and the sensor puck counts are 

computed by comparing them with the ground truth. 

Moreover, to determine the detection time of the proposed system, the test set is divided into two 

categories, truck parking during off-peak hours (i.e., 9:00 a.m. to 4 p.m.) and during peak hours 

(i.e., 5:00 p.m. to 8:00 a.m.). Table 26 compares the accuracy metrics for the different test 

scenarios.   

Table 26. Summary of different test scenarios 

Test time TDM mAP 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒊𝒎𝒂𝒈𝒆  𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒑𝒖𝒄𝒌 

All 0.709 0.940 0.844 

Off-Peak Hours 0.824 0.973 0.829 

Peak Hours 0.677 0.922 0.867 

 

The results indicate that the proposed TDM performs better with images collected during the off-

peak hours. This finding is expected as the lighting conditions during the day are better and the 

sparsely parked trucks have less overlap. In addition, image processing with the TDM is more 

accurate than the sensor pucks, though it is not intended to replace the puck system. Instead, the 

TDM is used to monitor and identify erroneous counts due to faulty sensors. Thus, the TDM is 

applied to images selected during off-peak hours to check the accuracy of sensor puck counts. 

This project was started in 2017, when the technology for image processing and deep learning 

was not as advanced as it is now, suggesting that current state-of-the-art techniques may provide 

even higher accuracy rates. 
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8.2.3. Detection and Reporting System  

Real-time sensor fault detection and reporting was developed and demonstrated in the RA270W 

rest area. For example, on May 6, 2022, four detection times during off peak hours were selected 

(i.e., 9:00 a.m., 11 a.m., 1 p.m. and 3 p.m.). The images of these hours were concatenated and 

sent to the TDM. The TDM counts were compared with the sensor puck flow records to evaluate 

accuracy. The accuracy threshold was set to 0.9. At 3 p.m., the accuracy was below the 

predefined threshold, indicating possible sensor fault. Therefore, a report with the summary and 

the image taken at 3 p.m. was sent through the AWS S3 bucket to the operators for further 

investigation. The contents of this alert email are shown in Figure 49.  

The proposed system can also be scheduled to run weekly to identify systematic errors in parking 

flow data. It is also a valuable tool to reduce the need for frequent manual checks at all TPIMS 

sites, allowing operators to focus on the sites that have been flagged by the image-based TDM.   

 

Figure 49. Example of the contents in the email report 
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9. CONCLUSION AND RECOMMENDATIONS 

This report presented a comprehensive analysis of Iowa's TPIMS performance during the grant 

year from 2019 to 2021. Since January 2019, the Iowa TPIMS has been providing real-time 

parking availability information to truck drivers through smartphone applications, in-cab 

technology, and traveler information websites. This report presented an evaluation of the system 

based on fine-grained parking flow data, HOS violations, images, ATRI surveys, and an 

intercept survey of truck drivers. The evaluation focuses on system utilization, reliability, and 

safety impact. In addition, anomaly detection methods and visualization tools were developed to 

help transportation agencies better monitor the performance of the TPIMS and make informed 

decisions based on large real-world data.  

Specifically, the PELT-based anomaly detection method can detect sensor failures by identifying 

change points in the time series of parking flow data, allowing for quick response to detection 

failures without additional data collection effort. The data dashboard helps to monitor the TPIMS 

operations, identify spatial and temporal trends in parking site utilization, and support long-range 

planning decisions. The results of the data dashboard show that the Iowa TPIMS helped 

distribute the utilization more evenly between parking facilities along I-80 by providing real-time 

information about parking availability to truck drivers.  

Iowa is the only participating state in the MAASTO TPIMS project that does not use roadside 

VMS. Instead, Iowa DOT chose to disseminate truck parking availability information only 

through apps, Iowa 511, and in-cab information systems. By eliminating the cost of installing 

and maintaining the VMS, the Iowa DOT was able to deploy TPIMS at more sites than other 

participating states. Note that the other seven states that installed VMS also provide real-time 

data feeds for apps, websites, and in-cab systems. By comparing the performance of the system 

in terms of system accuracy, parking lot utilization at night, and HOS violations, the Iowa 

TPIMS perform similarly to other states. This might be because most drivers plan for overnight 

parking more than an hour ahead using smartphone apps. Therefore, the benefit of providing 

parking information on VMS could be limited.  

Furthermore, since there is a need for truck drivers to be informed about the expected availability 

of parking spaces at their planned time of arrival, a “Popular Time” feature was developed using 

hybrid horizon prediction models for pre-trip planning and en route decision making. These 

predictive analytics have the potential to help truck drivers plan for parking day ahead and on the 

road. To better monitor sensor failures, a real-time alert system based on visual sensing is also 

developed. By automatically detecting significant discrepancies between truck count from the 

surveillance camera images and the parking flow data, this low-cost solution improves the 

accuracy of the TPIMS.  

In summary, the shortage of truck parking is a pressing issue in Iowa and the MAASTO region. 

Providing real-time truck parking information helps truck drivers better plan for parking, and 

thus improves parking utilization and safety. However, the accuracy of the information largely 

depends on the performance of the sensor. The sensor pucks used in the Iowa TPIMS started to 

fail after one and a half years at some sites, but the failures were not discovered until about a 
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year later. Therefore, continuous monitoring of sensor health and independent verification of 

parking data are recommended for future TPIMS deployment. 
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